The Evaluating Skin Acid–Base Balance After Application of Cold-Processed and Hot-Processed Natural Soaps: A Double-Blind pH Monitoring Study
Abstract
:1. Introduction
1.1. Stratum Corneum Structure
1.2. The Effect of Soaps on the Stratum Corneum
1.3. Composition and Production Process of Natural Soaps
- Cold and hot process soap production—In the first stage of the study, soap samples were prepared using two different production methods to obtain representative samples for further analysis.
- The assessment of the effect of soaps on epidermal pH—The effect of cold and hot process soaps on skin pH after application was investigated. The epidermal pH measurements were taken before and after soap application to assess changes in skin pH in response to soap contact.
- The comparison of the effects of both production methods on skin pH—The aim of this stage of the study was to compare which method (cold or hot) causes the soap to have a relative pH change on the skin, which is important for maintaining the proper pH balance of the epidermis and preventing skin irritation or dryness.
2. Materials and Methods
2.1. The Soap Production
2.2. Instrumental Tests
2.3. Study Group
2.4. Double-Blind Study
2.5. Statistical Analysis
3. Results
4. Discussion
- Reducing the skin’s buffering capacity;
- Disturbing the water–lipid balance;
- Slowing down the amino acid conversion cycle, which leads to a weakening of the protective barrier and an increase in TEWL.
- Destabilization of the skin microbiome;
- Dryness (due to a disrupted amino acid cycle);
- Greater susceptibility to inflammation and allergic reactions, and reduced effectiveness of subsequent applications of active substances.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Téot, L. Structure de la peau et cicatrisation cutanée [Skin structure and cutaneous scarring]. Rev Infirm. 2002, 80, 20–23. [Google Scholar]
- Baroni, A.; Buommino, E.; De Gregorio, V.; Ruocco, E.; Ruocco, V.; Wolf, R. Structure and Function of the Epidermis Related to Barrier Properties. Clin. Dermatol. 2012, 30, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Darlenski, R.; Fluhr, J.W. Influence of Skin Type, Race, Sex, and Anatomic Location on Epidermal Barrier Function. Clin. Dermatol. 2012, 30, 269–273. [Google Scholar] [CrossRef]
- Schmid-Wendtner, M.-H.; Korting, H.C. The PH of the Skin Surface and Its Impact on the Barrier Function. Ski. Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.; Masur, C.; Reich, H.; Knie, U.; Dähnhardt, D.; Dähnhardt-Pfeiffer, S.; Abels, C. Skin Acidification with a Water-in-Oil Emulsion (PH 4) Restores Disrupted Epidermal Barrier and Improves Structure of Lipid Lamellae in the Elderly. J. Dermatol. 2019, 46, 457–465. [Google Scholar] [CrossRef]
- Castro, B.M.; Prieto, M.; Silva, L.C. Ceramide: A Simple Sphingolipid with Unique Biophysical Properties. Prog. Lipid Res. 2014, 54, 53–67. [Google Scholar] [CrossRef]
- Bornkessel, A.; Flach, M.; Arens-Corell, M.; Elsner, P.; Fluhr, J.W. Functional Assessment of a Washing Emulsion for Sensitive Skin: Mild Impairment of Stratum Corneum Hydration, PH, Barrier Function, Lipid Content, Integrity and Cohesion in a Controlled Washing Test. Ski. Res. Technol. 2005, 11, 53–60. [Google Scholar] [CrossRef]
- Behm, B.; Kemper, M.; Babilas, P.; Abels, C.; Schreml, S. Impact of a Glycolic Acid-Containing PH 4 Water-in-Oil Emulsion on Skin PH. Ski. Pharmacol. Physiol. 2015, 28, 290–295. [Google Scholar] [CrossRef]
- Schreml, S.; Meier, R.J.; Wolfbeis, O.S.; Landthaler, M.; Szeimies, R.-M.; Babilas, P. 2D Luminescence Imaging of PH in Vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 2432–2437. [Google Scholar] [CrossRef]
- Turner, N.G.; Cullander, C.; Guy, R.H. Determination of the PH Gradient across the Stratum Corneum. J. Investig. Dermatol. Symp. Proc. 1998, 3, 110–113. [Google Scholar] [CrossRef]
- Furuichi, Y.; Matsui, T.; Amagai, M. Real Time 3D in Vivo PH Imaging of Stratum Corneum Revealed Complex Morphology-Based Regulation in Mice. J. Dermatol. Sci. 2017, 86, e40. [Google Scholar] [CrossRef]
- Walsh, T.R.; Efthimiou, J.; Dréno, B. Systematic Review of Antibiotic Resistance in Acne: An Increasing Topical and Oral Threat. Lancet Infect. Dis. 2016, 16, e23–e33. [Google Scholar] [CrossRef]
- Proksch, E. PH in Nature, Humans and Skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef]
- Andonova, M.; Urumova, V. Immune Surveillance Mechanisms of the Skin against the Stealth Infection Strategy of Pseudomonas Aeruginosa—Review. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 433–448. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural Skin Surface PH Is on Average below 5, Which Is Beneficial for Its Resident Flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef]
- Runeman, B.; Faergemann, J.; Larkö, O. Experimental Candida Albicans Lesions in Healthy Humans: Dependence on Skin PH. Acta Derm.-Venereol. 2000, 80, 421–424. [Google Scholar] [CrossRef]
- Gfatter, R.; Hackl, P.; Braun, F. Effects of Soap and Detergents on Skin Surface PH, Stratum Corneum Hydration and Fat Content in Infants. Dermatology 1997, 195, 258–262. [Google Scholar] [CrossRef]
- Hachem, J.-P.; Crumrine, D.; Fluhr, J.; Brown, B.E.; Feingold, K.R.; Elias, P.M. PH Directly Regulates Epidermal Permeability Barrier Homeostasis, and Stratum Corneum Integrity/Cohesion. J. Investig. Dermatol. 2003, 121, 345–353. [Google Scholar] [CrossRef]
- Hachem, J.-P.; Man, M.-Q.; Crumrine, D.; Uchida, Y.; Brown, B.E.; Rogiers, V.; Roseeuw, D.; Feingold, K.R.; Elias, P.M. Sustained Serine Proteases Activity by Prolonged Increase in PH Leads to Degradation of Lipid Processing Enzymes and Profound Alterations of Barrier Function and Stratum Corneum Integrity. J. Investig. Dermatol. 2005, 125, 510–520. [Google Scholar] [CrossRef]
- Mijaljica, D.; Spada, F.; Harrison, I.P. Skin Cleansing without or with Compromise: Soaps and Syndets. Molecules 2022, 27, 2010. [Google Scholar] [CrossRef]
- Kawano, T.; Andou, Y. Synthesis and Mechanical Performance of Thermoformable Cellulose Fatty Acid Esters Using Natural Soap. RSC Adv. 2023, 13, 24286–24290. [Google Scholar] [CrossRef]
- Borhan, F.P.; Abd Gani, S.S.; Shamsuddin, R. The Use of D-Optimal Mixture Design in Optimising Okara Soap Formulation for Stratum Corneum Application. Sci. World J. 2014, 2014, 173979. [Google Scholar] [CrossRef]
- Blaak, J.; Staib, P. The Relation of PH and Skin Cleansing. Curr. Probl. Dermatol. 2018, 54, 132–142. [Google Scholar] [CrossRef]
- Plum, F.; Yüksel, Y.T.; Agner, T.; Nørreslet, L.B. Skin Barrier Function after Repeated Short-Term Application of Alcohol-Based Hand Rub Following Intervention with Water Immersion or Occlusion. Contact Dermat. 2020, 83, 215–219. [Google Scholar] [CrossRef]
- Houben, E.; De Paepe, K.; Rogiers, V. Skin Condition Associated with Intensive Use of Alcoholic Gels for Hand Disinfection: A Combination of Biophysical and Sensorial Data. Contact Dermat. 2006, 54, 261–267. [Google Scholar] [CrossRef]
- Törmä, H.; Lindberg, M.; Berne, B. Skin Barrier Disruption by Sodium Lauryl Sulfate-Exposure Alters the Expressions of Involucrin, Transglutaminase 1, Profilaggrin, and Kallikreins during the Repair Phase in Human Skin in Vivo. J. Investig. Dermatol. 2008, 128, 1212–1219. [Google Scholar] [CrossRef]
- di Nardo, A.; Sugino, K.; Wertz, P.; Ademola, J.; Maibach, H.I. Sodium Lauryl Sulfate (SLS) Induced Irritant Contact Dermatitis: A Correlation Study between Ceramides and in Vivo Parameters of Irritation. Contact Dermat. 1996, 35, 86–91. [Google Scholar] [CrossRef]
- Zgoda, M.M.; Piechota-Urbańska, M.; Kołodziejska, J. Wpływ wybranych klas kosmetyków na cykl przemian aminokwasów w warstwie rogowej naskórka i poziom równowagi kwasowo-zasadowej powierzchni skóry. Pol. J. Cosmetol. 2001, 1, 38–53. [Google Scholar]
- Visscher, M.; Robinson, M.; Wickett, R. Stratum Corneum Free Amino Acids Following Barrier Perturbation and Repair. Int. J. Cosmet. Sci. 2011, 33, 80–89. [Google Scholar] [CrossRef]
- Hama, T.; Kouchi, A.; Watanabe, N.; Shioya, N.; Shimoaka, T.; Hasegawa, T. In Vivo Characterization of the Structures of Films of a Fatty Acid and an Alcohol Adsorbed on the Skin Surface. Biophys. Chem. 2020, 266, 106459. [Google Scholar] [CrossRef]
- Tapfumaneyi, P.; Imran, M.; Alavi, S.E.; Mohammed, Y. Science of, and Insights into, Thermodynamic Principles for Dermal Formulations. Drug Discov. Today 2023, 28, 103521. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.T.; Barua, S.; Yoo, S.-Y.; Hong, S.-C.; Lee, K.B.; Lee, J. Seeking Better Topical Delivery Technologies of Moisturizing Agents for Enhanced Skin Moisturization. Expert Opin. Drug Deliv. 2018, 15, 17–31. [Google Scholar] [CrossRef]
- Baldwin, H.E.; Arrowitz, C.; Del Rosso, J. Natural Moisturizing Factor-Enriched Formulations Compared to a Ceramide-Based Cream. J. Drugs Dermatol. 2024, 23, 141–145. [Google Scholar]
- Yadav, N.P.; Meher, J.G.; Pandey, N.; Luqman, S.; Yadav, K.S.; Chanda, D. Enrichment, Development, and Assessment of Indian Basil Oil Based Antiseptic Cream Formulation Utilizing Hydrophilic-Lipophilic Balance Approach. BioMed Res. Int. 2013, 2013, 410686. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Q.; Chen, Z.; Wu, W.; Zhu, Q.; Lu, Y. In Vitro and in Vivo Correlation for Lipid-Based Formulations: Current Status and Future Perspectives. Acta Pharm. Sin. B 2021, 11, 2469–2487. [Google Scholar] [CrossRef]
- Huang, T.-H.; Wang, P.-W.; Yang, S.-C.; Chou, W.-L.; Fang, J.-Y. Cosmetic and Therapeutic Applications of Fish Oil’s Fatty Acids on the Skin. Mar. Drugs 2018, 16, 256. [Google Scholar] [CrossRef]
- Lin, M.-H.; Khnykin, D. Fatty acid transporters in skin development, function and disease. Biochim. Biophys Acta 2014, 1841, 362–368. [Google Scholar] [CrossRef]
- He, X.; Wan, F.; Su, W.; Xie, W. Research Progress on Skin Aging and Active Ingredients. Molecules 2023, 28, 5556. [Google Scholar] [CrossRef]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Tamagawa-Mineoka, R.; Katoh, N. Atopic Dermatitis: Identification and Management of Complicating Factors. Int. J. Mol. Sci. 2020, 21, 2671. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, Y.; Natsume, O.; Matsunaga, M.; Monna, Y.; Okada, E.; Kato, Y.; Taguchi, T. Washing with Water Alone versus Soap in Maintaining Remission of Eczema. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2020, 62, 663–668. [Google Scholar] [CrossRef]
- Waldroup, W.; Scheinfeld, N. Medicated Shampoos for the Treatment of Seborrheic Dermatitis. J. Drugs Dermatol. 2008, 7, 699–703. [Google Scholar] [PubMed]
Microorganism | Optimal Growth pH |
---|---|
Staphylococcus aureus | ~7.5 |
Cutibacterium acnes | ~6.3 |
Pseudomonas aeruginosa | 7.0–7.4 |
Escherichia coli | 6.0–8.0 |
Candida albicans—hyphal form | ≥6.5 |
Candida albicans—yeast form | ≤5.5 |
Ingredient | Unit | Soap 1 | Soap 2 | Soap 3 | Soap 4 |
---|---|---|---|---|---|
(Cold Method) | (Cold Method) | (Cold Method) | (Hot Method) | ||
Sodium hydroxide | g | 14.19 | 13.63 | 14.01 | 14.11 |
Distilled water | g | 38.00 | 38.00 | 38.00 | 38.00 |
Coconut oil | g | 32.00 | 20.00 | 30.00 | 30.00 |
Grape seed oil | g | 30.00 | - | 35.00 | 20.00 |
Olive oil | g | - | 30.00 | 30.00 | 50.00 |
Sunflower oil | g | 18.00 | 5.00 | - | - |
Linseed oil | g | - | 30.00 | - | - |
Sweet almond oil | g | 20.00 | - | - | - |
Shea butter | g | - | 20.00 | - | - |
Essential oil (type) | mL * | Violet (approx. 0.75) | Lemon balm (approx. 0.25) | Rose (approx. 0.75) | Bergamot (approx. 0.75) |
Tocopherol | mL * | Approx. 0.25 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdrada-Nowak, J.; Aniołkowska, S.; Deska, M. The Evaluating Skin Acid–Base Balance After Application of Cold-Processed and Hot-Processed Natural Soaps: A Double-Blind pH Monitoring Study. Cosmetics 2025, 12, 120. https://doi.org/10.3390/cosmetics12030120
Zdrada-Nowak J, Aniołkowska S, Deska M. The Evaluating Skin Acid–Base Balance After Application of Cold-Processed and Hot-Processed Natural Soaps: A Double-Blind pH Monitoring Study. Cosmetics. 2025; 12(3):120. https://doi.org/10.3390/cosmetics12030120
Chicago/Turabian StyleZdrada-Nowak, Julita, Sandra Aniołkowska, and Małgorzata Deska. 2025. "The Evaluating Skin Acid–Base Balance After Application of Cold-Processed and Hot-Processed Natural Soaps: A Double-Blind pH Monitoring Study" Cosmetics 12, no. 3: 120. https://doi.org/10.3390/cosmetics12030120
APA StyleZdrada-Nowak, J., Aniołkowska, S., & Deska, M. (2025). The Evaluating Skin Acid–Base Balance After Application of Cold-Processed and Hot-Processed Natural Soaps: A Double-Blind pH Monitoring Study. Cosmetics, 12(3), 120. https://doi.org/10.3390/cosmetics12030120