Effects of Oral Fish Collagen and l-Cystine on Skin Ageing in Mature Women and Skin Imperfections in Young Women: Findings from Two Randomised, Three-Arm, Double-Blind, Placebo-Controlled Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Subjects
2.3. Randomisation and Interventions
2.4. Study Procedures
2.5. Assessment Methods
2.5.1. Assessments in the Mature Skin Study
2.5.2. Assessments in the Young Skin Study
2.5.3. Assessments Common to the Mature Skin and Young Skin Studies
2.6. Data Analysis and Statistics
3. Results
3.1. Baseline Demographic Characteristics
3.2. Compliance of the Subjects
3.3. Moisturising Effects in Mature Participants
3.4. Anti-Wrinkle Effects in Mature Participants
3.5. Thickening of the Skin in Mature Participants
3.6. Lightening of the Skin in Mature Participants
3.7. Effects upon Skin Roughness and Pigmentation Imperfections in Mature Participants
3.8. Safety and Tolerability in Young Participants
3.9. Bioavailability
3.10. Global Aesthetic Improvement in Young Participants
3.11. Effects upon Skin Roughness and Pigmentation Imperfections in Young Participants
3.12. Effect upon Skin Redness and Anti-Inflammatory Effect in Young Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salo, A.M.; Myllyharju, J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp. Dermatol. 2021, 30, 38–49. [Google Scholar] [CrossRef]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Águirre-Alvarez, G. Hydrolyzed collagen—Sources and applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef]
- Shenoy, M.; Abdul, N.S.; Qamar, Z.; Al Bahri, B.M.; Al Ghalayini, K.Z.K.; Kakti, A. Collagen structure, synthesis, and its applications: A systematic review. Cureus 2022, 14, e24856. [Google Scholar] [CrossRef] [PubMed]
- Avila Rodriguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Land, E.J.; Ito, S.; Wakamatsu, K.; Riley, P.A. Rate constants for the first two chemical steps of eumelanogenesis. Pigment. Cell Res. 2003, 16, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ren, W.; Yang, G.; Duan, J.; Huang, X.; Fang, R.; Li, C.; Li, T.; Yin, Y.; Hou, Y.; et al. L-cysteine metabolism and its nutritional implication. Mol. Food Res. 2016, 60, 134–146. [Google Scholar] [CrossRef]
- Del Marmol, V.; Ito, S.; Bouchard, B.; Libert, A.; Wakamatsu, K.; Ghanem, G.; Solano, F. Cysteine deprivation promotes eumelanogenesis in human melanoma cells. J. Investig. Dermatol. 1996, 107, 698–702. [Google Scholar] [CrossRef]
- Simon, J.D.; Peles, D.; Wakamatsu, K.; Ito, S. Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment. Cell Melanoma Res. 2009, 22, 563–579. [Google Scholar] [CrossRef]
- McPherson, R.A.; Hardy, G. Clinical and nutritional benefits of cysteine-enriched protein supplements. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 562–568. [Google Scholar] [CrossRef]
- Duperray, J.; Sergheraert, R.; Chalothorn, K.; Tachalerdmanee, P.; Perin, F. The effects of the oral supplementation of L-cystine associated with reduced L-Glutathione-GSH on human skin pigmentation: A randomized, double-blind, benchmark- and placebo-controlled clinical trial. J. Cosmet. Dermatol. 2022, 21, 802–813. [Google Scholar] [CrossRef]
- Nobile, V.; Duperray, J.; Cestone, E.; Sergheraert, S.; Tursi, F. Efficacy and safety of L-cystine associated or not to a natural keratin (Kera-Diet®) hydrolysate on hair and nails: Randomized, placebo-controlled, clinical trial on healthy females. J. Cosmo. Trichol. 2019, 5, 142–150. [Google Scholar]
- Bazin, R.; Flament, F. Skin Ageing Atlas. Volume 2, Asian Type; Editions Med’Com: Paris, France, 2010; pp. 40–41. [Google Scholar]
- Petit, L.; Pierard, G.E. Skin-lightening products revisited. Int. J. Cosmet. Sci. 2003, 25, 169–181. [Google Scholar] [CrossRef] [PubMed]
- ISO 24444:2019; Cosmetics—Sun Protection Test Methods—In Vivo Determination of the Sun Protection Factor (SPF). American National Standards Institute (ANSI): New York, NY, USA, 2019.
- Schindelin, J.; Argand-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji—An open source platform for biological image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Águirre-Alvarez, G. Collagen hydrolysates for skin protection: Oral administration and topical formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef]
- Geng, R.; Kang, S.G.; Huang, K.; Tong, T. Boosting the photoaged skin: The potential role of dietary components. Nutrients 2021, 13, 1691. [Google Scholar] [CrossRef]
- Asserin, J.; Lati, E.; Shioya, T.; Prawitt, J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J. Cosmet. Dermatol. 2015, 14, 291–301. [Google Scholar] [CrossRef]
- Addor, F.A.S.; Vieira, J.C.; Melo, C.S.A. Improvement of dermal parameters in aged skin after oral use of a nutrient supplement. Clin. Cosmet. Investig. Dermatol. 2018, 30, 195–201. [Google Scholar] [CrossRef]
- Evans, M.; Lewis, A.D.; Zakaria, N.; Pelipyagina, T.; Guthrie, N. A randomized, triple-blind, placebo-controlled, parallel study to evaluate the efficacy of a freshwater marine collagen on skin wrinkles and elasticity. J. Cosmet. Dermatol. 2021, 20, 825–834. [Google Scholar] [CrossRef]
- Proksch, E.; Schunck, M.; Zague, V.; Segger, D.; Degwert, J.; Oesser, S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol. Physiol. 2014, 27, 113–119. [Google Scholar] [CrossRef]
- Laing, S.; Bielfeldt, S.; Ehrenberg, C.; Wilhelm, K.P. A dermonutrient containing special collagen peptides improves skin structure and function: A randomized, placebo-controlled, triple-blind trial using confocal laser scanning microscopy on the cosmetic effects and tolerance of a drinkable collagen supplement. J. Med. Food 2020, 23, 147–152. [Google Scholar] [PubMed]
- Myung, S.K.; Park, Y. Effects of collagen supplements on skin aging: A systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2025, 138, 1264–1277. [Google Scholar] [CrossRef] [PubMed]
- Nobile, V.; Burioli, A.; Yu, S.; Zhifeng, S.; Cestone, E.; Insolia, V.; Zaccaria, V.; Malfa, G.A. Photoprotective and antiaging effects of a standardized red orange (Citrus sinensis (L.) Osbeck) extract in Asian and Caucasian subjects: A randomized, double-blind, controlled study. Nutrients 2022, 14, 2241. [Google Scholar] [CrossRef] [PubMed]
- Morse, N.L.; Reid, A.J.; St-Onge, M. An open-label clinical trial assessing the efficacy and safety of Bend skincare anti-ageing formula on minimal erythema dose in skin. Photodermatol. Photoimmunol. Photomed. 2018, 34, 152–161. [Google Scholar] [CrossRef]
- Zague, V.; de Freitas, V.; da Costa Rosa, M.; de Castro, G.A.; Jaeger, R.G.; Machado-Santelli, G.M. Collagen hydrolysate intake increases skin collagen expression and suppresses matrix metalloproteinase 2 activity. J. Med. Food 2011, 14, 618–624. [Google Scholar] [CrossRef]
- Virgilio, N.; Schön, C.; Mödinger, Y.; van der Steen, B.; Vlemickx, S.; van Holthoon, F.L.; Kleinnijenhuis, A.J.; Silva, C.I.F.; Prawitt, J. Absorption of bioactive peptides following collagen hydrolysate intake: A randomized, double-blind crossover study in healthy individuals. Front. Nutr. 2024, 11, 1416643. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Qian, J.; Liang, Q.; Wang, Z.; Xu, J.; He, S.; Ma, H. Bioavailability and bioavailable forms of collagen after oral administration to rats. J. Agric. Food Chem. 2015, 63, 3752–3756. [Google Scholar] [CrossRef]
- Liu, H.; Dong, J.; Du, R.; Gao, Y.; Zhao, P. Collagen study advances for photoageing skin. Photodermatol. Photoimmunol. Photomed. 2024, 40, e12931. [Google Scholar] [CrossRef]
- Samadi, A.; Movaffaghi, M.; Kazemi, F.; Yazdanparast, T.; Nasrollahi, S.A.; Firooz, A. Tolerability and efficacy assessment of an oral collagen supplement for the improvement of biophysical and ultrasonic parameters of skin in Middle Eastern consumers. J. Cosmet. Dermatol. 2023, 22, 2252–2258. [Google Scholar] [CrossRef]
- Vleminckx, S.; Virgilio, N.; Asserin, J.; Prawitt, J.; Silva, C.I.F. Influence of collagen peptide supplementation on visible signs of skin and nail health and –aging in an East Asian population: A double-blind, randomized, placebo-controlled trial. J. Cosmet. Dermatol. 2023, 23, 3645–3653. [Google Scholar] [CrossRef]
Young Skin Study | Mature Skin Study | |||||
---|---|---|---|---|---|---|
Naticol®-Cyskin® (5.5 g/d) | Naticol®-Cyskin® (11 g/d) | Placebo | Naticol®- Cyskin® (5.5 g/d) | Naticol®-Cyskin® (11 g/d) | Placebo | |
Age (years ± sd) | 24.2 ± 3.8 | 23.2 ± 3.1 | 23.5 ± 3.3 | 59.6 ± 3.0 | 60.8 ± 2.8 | 59.1 ± 3.2 |
Median | 24 | 23 | 22 | 60 | 61 | 59 |
Range | 18–30 | 18–29 | 18–30 | 55–65 | 55–65 | 55–65 |
Phototype (n, %) | ||||||
Phototype III | 10 (30.3%) | 11 (33.3%) | 9 (27.3%) | 14 (42.4%) | 16 (48.5%) | 16 (48.5%) |
Phototype IV | 23 (69.7%) | 22 (66.7%) | 24 (72.7%) | 19 (57.6%) | 17 (51.5%) | 17 (51.5%) |
Nature of the skin (n, %) | ||||||
Dry | 3 (9.1%) | 3 (9.1%) | 4 (12.1%) | 8 (24.2%) | 9 (27.3%) | 5 (15.2%) |
Normal | 2 (6.1%) | 3 (9.1%) | 0 (0.0%) | 7 (21.2%) | 9 (27.3%) | 8 (24.2%) |
Combination | 15 (45.5%) | 13 (39.4%) | 16 (48.5%) | 15 (45.5%) | 10 (30.3%) | 16 (48.5%) |
Oily | 13 (39.4%) | 14 (42.4%) | 13 (39.4%) | 3 (9.1%) | 5 (15.2%) | 4 (12.1%) |
Skin sensitivity (n, %) | ||||||
Sensitive | 2 (6.1%) | 4 (12.1%) | 3 (9.1%) | 6 (18.2%) | 6 (18.2%) | 12 (36.4%) |
Non-sensitive | 31 (93.9%) | 29 (87.9%) | 30 (90.9%) | 27 (81.8%) | 27 (81.8%) | 21 (63.6%) |
Mature Skin Study | Naticol®-Cyskin® (5.5 g/d) | Placebo | Naticol®-Cyskin® (11 g/d) | Inter-Group Comparison | ||||
---|---|---|---|---|---|---|---|---|
Mean ± sd | p Value | Mean ± sd | p Value | Mean ± sd | p Value | p Value | ||
Skin hydration | Absolute change after 12 w. | +0.3 ± 5.8 | 0.739 | −0.4 ± 6.4 | 0.723 | +3.1 ± 5.5 | 0.002 | 0.047 |
% change after 12 w. | +0.5% | −0.6% | +4.9% | |||||
Crow’s feet wrinkles grade | Absolute change after 12 w. | −0.16 ± 017 | 6.1 × 10−5 | −0.13 ± 017 | 4.9 × 10−4 | −0.15 ± 017 | 6.1 × 10−5 | 0.810 |
% change after 12 w. | −3.9% | −3.1% | −3.5% | |||||
Thickness of the temple skin | Absolute change after 12 w. | +65.5 ± 104.9 | 1.6 × 10−3 | −9.0 ± 72.9 | 0.490 | +111.0 ± 100.8 | 6.3 × 10−7 | 0.010 |
% change after 12 w. | +5.6% | −0.7% | +9.6% | |||||
Thickness of the forearm skin | Absolute change after 12 w. | +38.2 ± 60.7 | 1.4 × 10−3 | +7.4 ± 61.4 | 0.500 | +76.2 ± 50.2 | 1.1 × 10−9 | 0.001 |
% change after 12 w. | +3.9% | +0.8% | +8.3% | |||||
Total pigmented area | Absolute change after 12 w. | −2201 ± 5833 | 0.044 | −2479 ± 5466 | 0.015 | −134 ± 4638 | 0.870 | 0.158 |
% change after 12 w. | −3.7% | −3.5% | −0.2% | |||||
Total rough area | Absolute change after 12 w. | −1501 ± 3935 | 0.036 | −1134 ± 5912 | 0.286 | +61 ± 8092 | 0.966 | 0.569 |
% change after 12 w. | −2.7% | −2.3% | +0.1% | |||||
Luminance L* | Absolute change after 12 w. | +0.46 ± 1.12 | 0.029 | +0.33 ± 1.01 | 0.018 | +0.25 ± 0.83 | 0.094 | 0.698 |
% change after 12 w. | +0.8% | +0.5% | +0.4% | |||||
Individual typological angle (ITA°) | Absolute change after 12 w. | +1.05 ± 4.05 | 0.027 | +0.71 ± 3.00 | 0.053 | +0.51 ± 2.86 | 0.317 | 0.602 |
% change after 12 w. | +3.7% | +2.1% | +1.6% |
Naticol®-Cyskin® (5.5 g/d) | Naticol®-Cyskin® (11 g/d) | Placebo | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Physical examination and vital signs | Reference ranges | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks |
Body weight (kg) | - | 54.4 ± 9.3 | 54.5 ± 9.3 | 54.8 ± 9.3 | 55.2 ± 9.6 | 55.8 ± 10.1 b | 56.3 ± 10.6 b | 53.0 ± 7.9 | 53.2 ± 8.0 | 53.2 ± 8.2 |
Body mass index (kg.m−2) | 18.5–24.9 | 21.60 ± 3.75 | 21.64 ± 3.79 | 21.77 ± 3.77 | 21.30 ± 3.29 | 21.52 ± 3.43 b | 21.72 ± 3.50 b | 20.87 ± 2.99 | 20.93 ± 2.98 | 20.94 ± 2.99 |
Systolic blood pressure (mm Hg) | <120 | 111.8 ± 10.8 | 105.7 ± 12.2 b | 107.8 ± 10.8 a | 114.1 ± 10.0 | 108.4 ± 10.7 b | 110.1 ± 10.3 a | 112.1 ± 10.0 | 105.6 ± 9.9 b | 108.3 ± 10.1 |
Diastolic blood pressure (mm Hg) | <80 | 68.5 ± 7.9 | 64.3 ± 8.2 b | 68.3 ± 7.9 | 71.1 ± 8.4 | 66.3 ± 7.9 | 69.3 ± 7.9 | 69.6 ± 6.1 | 67.1 ± 6.3 a | 69.8 ± 7.8 |
Mean arterial pressure (mm Hg) | 70–100 | 82.9 ± 8.1 | 78.1 ± 8.8 b | 81.4 ± 8.5 | 85.4 ± 8.1 | 80.3 ± 8.3 b | 82.9 ± 7.8 a | 83.8 ± 6.6 | 79.9 ± 6.9 b | 82.6 ± 7.8 |
Heart rate (bpm) | 60–100 | 80.8 ± 11.5 | 73.4 ± 10.4 b | 78.7 ± 12.2 | 82.3 ± 8.6 | 72.8 ± 9.7 b | 76.8 ± 10.2 a | 81.9 ± 12.8 | 76.0 ± 8.2 b | 82.2 ± 12.3 |
Routine hematology | Reference ranges | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks |
Hemoglobin (g.dl−1) | 12.0–16.0 | 12.6 ± 1.0 | 12.7 ± 1.0 | 12.7 ± 1.1 | 12.3 ± 1.1 | 12.3 ± 1.2 | 12.3 ± 1.2 | 12.7 ± 1.1 | 12.6 ± 1.1 | 12.5 ± 1.2 |
Hematocrit (%) | 36–48 | 38.5 ± 3.1 | 38.5 ± 2.4 | 38.7 ± 2.9 | 37.5 ± 3.4 | 37.5 ± 3.5 | 37.7 ± 3.5 | 38.8 ± 3.1 | 38.5 ± 3.1 | 38.4 ± 3.3 |
WBCs (103 cells/cu.mm) | 4.0–10.0 | 7.14 ± 2.24 | 6.50 ± 1.31 a | 6.94 ± 1.58 | 6.47 ± 0.94 | 6.58 ± 1.29 | 6.63 ± 1.23 | 7.05 ± 1.83 | 6.79 ± 1.94 | 6.94 ± 1.49 |
PMN neutrophils (%) | 40.0–74.0 | 55.3 ± 9.1 | 54.8 ± 8.0 | 53.8 ± 8.1 | 55.8 ± 6.8 | 57.7 ± 7.3 | 56.8 ± 9.9 | 58.5 ± 7.7 | 57.9 ± 8.5 | 56.0 ± 7.1 |
Lymphocytes (%) | 19.0–48.0 | 36.0 ± 8.0 | 36.5 ± 7.3 | 37.5 ± 7.6 | 35.5 ± 6.6 | 34.2 ± 7.1 | 34.6 ± 9.4 | 32.9 ± 7.3 | 33.0 ± 7.5 | 35.4 ± 7.0 a |
Monocytes (%) | 3.0–9.0 | 5.6 ± 1.3 | 5.6 ± 1.5 | 5.6 ± 1.3 | 5.7 ± 1.2 | 5.6 ± 1.2 | 6.0 ± 1.6 | 5.8 ± 1.4 | 6.1 ± 1.5 | 5.7 ± 1.3 |
Eosinophils (%) | 0.0–7.0 | 2.7 ± 3.1 | 2.7 ± 1.7 | 2.6 ± 1.4 | 2.6 ± 2.0 | 2.2 ± 1.2 | 2.1 ± 1.5 | 2.5 ± 1.6 | 2.7 ± 1.7 | 2.5 ± 1.4 |
Basophils (%) | 0.0–2.0 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.3 | 0.4 ± 0.3 |
Platelets (103 cells/cu.mm) | 140–400 | 284.6 ± 54.9 | 266.7 ± 60.4 a | 280.6 ± 53.3 | 311.13 ± 63.45 | 297.49 ± 59.45 a | 303.68 ± 62.98 | 313.00 ± 81.5 | 309.60 ± 94.57 | 320.50 ± 98.01 |
Blood chemistry | Reference ranges | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks |
Fasting blood sugar (mg.dl−1) | 70–99 | 83.1 ± 8.8 | 80.0 ± 6.9 | 87.3 ± 7.0 b | 82.5 ± 4.8 | 79.9 ± 6.1 a | 88.8 ± 6.5 b | 82.0 ± 8.1 | 77.3 ± 7.9 b | 86.7 ± 2.6 b |
Blood urea nitrogen (mg.dl−1) | 6.0–20.0 | 11.4 ± 3.5 | 11.4 ± 3.0 | 12.5 ± 3.2 | 11.5 ± 3.2 | 11.3 ± 3.1 | 10.7 ± 2.6 | 10.3 ± 2.6 | 9.7 ± 2.3 | 10.0 ± 2.2 |
Creatinine (mg.dl−1) | 0.51–0.95 | 0.71 ± 0.07 | 0.70 ± 0.08 | 0.69 ± 0.09 | 0.70 ± 0.10 | 0.69 ± 0.09 | 0.70 ± 0.10 | 0.72 ± 0.13 | 0.71 ± 0.11 | 0.71 ± 0.10 |
Uric acid (mg.dl−1) | 2.4–5.7 | 4.5 ± 1.1 | 4.3 ± 1.1 a | 4.6 ± 1.0 | 4.8 ± 1.1 | 4.4 ± 0.8 b | 4.7 ± 0.9 | 4.8 ± 0.8 | 4.6 ± 0.7 a | 4.8 ± 0.8 |
Cholesterol (mg.dl−1) | <200 | 187.3 ± 31.0 | 186.9 ± 31.3 | 186.8 ± 29.3 | 198.6 ± 30.8 | 191.4 ± 30.4 | 192.9 ± 33.6 | 190.7 ± 29.4 | 185.7 ± 32.1 | 186.7 ± 29.3 |
Triglycerides (mg.dl−1) | <150 | 100.2 ± 65.9 | 94.1 ± 68.6 | 107.2 ± 77.4 | 84.2 ± 44.4 | 79.4 ± 35.5 | 77.1 ± 22.5 | 75.6 ± 27.9 | 83.6 ± 33.6 | 84.9 ± 39.3 |
HDL (mg.dl−1) | >44 | 67.3 ± 14.9 | 62.5 ± 11.9 b | 64.5 ± 14.1 | 64.1 ± 10.0 | 64.0 ± 12.3 | 64.5 ± 10.9 | 67.0 ± 12.6 | 64.9 ± 13.8 | 64.3 ± 14.5 |
LDL (mg.dl−1) | <130 | 100.0 ± 30.1 | 106.3 ± 29.7 | 103.2 ± 28.9 | 117.5 ± 26.8 | 111.5 ± 28.4 | 113.0 ± 33.4 | 108.6 ± 29.6 | 104.1 ± 29.6 | 103.8 ± 28.2 |
SGOT (u.l−1) | 0–35 | 20.8 ± 4.9 | 20.7 ± 5.1 | 21.0 ± 3.3 | 20.6 ± 4.5 | 19.9 ± 4.0 | 22.4 ± 5.4 | 21.4 ± 5.1 | 21.8 ± 5.4 | 22.4 ± 11.3 |
SGPT (u.l−1) | 0–35 | 17.0 ± 12.3 | 17.2 ± 12.2 | 16.5 ± 8.5 | 18.4 ± 11.7 | 16.5 ± 9.7 | 19.4 ± 10.9 | 17.9 ± 11.3 | 18.1 ± 11.8 | 17.8 ± 10.7 |
Calcium (mg.dl−1) | 8.6–10.0 | 9.1 ± 0.4 | 9.6 ± 0.3 b | 9.4 ± 0.3 b | 9.0 ± 0.4 | 9.7 ± 0.3 b | 9.5 ± 0.3 b | 9.1 ± 0.4 | 9.6 ± 0.3 b | 9.5 ± 0.4 b |
hs-CRP (mg.l−1) | <5.0 | 2.6 ± 4.1 | 1.6 ± 2.3 | 1.6 ± 1.8 | 1.5 ± 2.0 | 1.5 ± 1.8 | 2.3 ± 3.3 a | 1.3 ± 1.8 | 2.9 ± 7.9 | 1.3 ± 1.9 |
Urine analysis | Reference ranges | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks | Baseline | 6 weeks | 12 weeks |
pH | 5.0–8.0 | 5.6 ± 0.7 | 5.7 ± 0.7 | 5.9 ± 0.6 a | 5.7 ± 0.7 | 5.9 ± 0.8 | 5.9 ± 0.6 a | 6.0 ± 0.7 | 5.9 ± 0.7 | 6.0 ± 0.7 |
Specific gravity | 1.003–1.035 | 1.023 ± 0.007 | 1.023 ± 0.006 | 1.022 ± 0.007 a | 1.022 ± 0.007 | 1.021 ± 0.008 | 1.021 ± 0.008 | 1.022 ± 0.007 | 1.022 ± 0.007 | 1.020 ± 0.008 |
Side-by-Side Forced Comparison | Naticol®-CySkin® (5.5 g/d) | Placebo | Naticol®-CySkin® (11 g/d) |
After 6 weeks | 0.50 ± 0.51 CI: 0.32–0.68 | 0.67 ± 0.48 CI: 0.49–0.84 | 0.77 ± 0.43 CI: 0.62–0.92 |
After 12 weeks | 0.58 ± 0.50 CI: 0.40–0.76 | 0.70 ± 0.47 CI: 0.53–0.87 | 0.57 ± 0.50 CI: 0.38–0.75 |
Global Aesthetic Improvement Scale | Naticol®-CySkin® (5.5 g/d) | Placebo | Naticol®-CySkin® (11 g/d) |
After 6 weeks | 1.81 ± 1.09 | 1.77 ± 1.19 | 1.94 ± 1.19 |
After 12 weeks | 1.90 ± 1.30 | 1.97 ± 1.25 | 2.11 ± 1.26 |
Young Skin Study | Naticol®-Cyskin® (5.5 g/d) | Placebo | Naticol®-Cyskin® (11 g/d) | Inter-Group Comparison | ||||
---|---|---|---|---|---|---|---|---|
Mean ± sd | p Value | Mean ± sd | p Value | Mean ± sd | p Value | p Value | ||
Total pigmented area | Absolute change after 6 w. | −196 ± 5632 | 0.845 | −1914 ± 4348 | 0.022 | −2809 ± 5353 | 6.6 × 10−3 | 0.129 |
% change after 6 w | −0.5% | −6.0% | −8.2% | |||||
Absolute change after 12 w. | −2518 ± 6533 | 0.040 | 3394 ± 5935 | 3.9 × 10−3 | −3477 ± 6206 | 6.3 × 10−3 | 0.549 | |
% change after 12 w | −6.6% | −11.0% | −10.5% | |||||
Total rough area | Absolute change after 6 w. | −1538 ± 6796 | 0.210 | +875 ± 4257 | 0.269 | −795 ± 8057 | 0.587 | 0.245 |
% change after 6 w. | −6.5% | +3.5% | −2.8% | |||||
Absolute change after 12 w. | −1859 ± 3942 | 0.013 | −807 ± 3858 | 0.261 | −1278 ± 7852 | 0.397 | 0.456 | |
% change after 12 w. | −7.8% | −3.2% | −4.4% | |||||
Average roughness Ra | Absolute change after 6 w. | −16.42 ± 12.85 | 2.0 × 10−6 | −12.63 ± 12.00 | 1.8 × 10−5 | −7.62 ± 9.00 | 2.3 × 10−4 | 0.013 |
% change after 6 w. | −52.7% | −48.0% | −36.1% | |||||
Absolute change after 12 w. | −17.97 ± 15.26 | 9.0 × 10−6 | −14.23 ± 12.67 | 1.2 × 10−5 | −8.22 ± 9.70 | 4.2 × 10−4 | 0.017 | |
% change after 12 w. | −57.7% | −54.0% | −38.9% | |||||
Root mean squared roughness Rq | Absolute change after 6 w. | −22.58 ± 17.66 | 3.0 × 10−6 | −18.84 ± 17.99 | 1.4 × 10−5 | −10.96 ± 12.63 | 9.6 × 10−5 | 0.019 |
% change after 6 w. | −54.1% | −52.1% | −38.4% | |||||
Absolute change after 12 w. | −24.76 ± 21.34 | 9.0 × 10−6 | −20.63 ± 19.28 | 1.2 × 10−5 | −11.72 ± 13.59 | 4.2 × 10−4 | 0.027 | |
% change after 12 w. | −59.4% | −57.0% | −41.1% | |||||
Elevation span Rt | Absolute change after 6 w. | −0.07 ± 0.06 | 8.0 × 10−6 | −0.07 ± 0.07 | 4.1 × 10−5 | −0.05 ± 0.05 | 1.2 × 10−4 | 0.312 |
% change after 6 w. | −40.7% | −41.7% | −30.6% | |||||
Absolute change after 12 w. | −0.08 ± 0.08 | 2.3 × 10−5 | −0.07 ± 0.08 | 3.9 × 10−5 | −0.05 ± 0.06 | 0.0010 | 0.287 | |
% change after 12 w. | −49.0% | −44.1% | −33.6% | |||||
Average Hb level | Absolute change after 6 w. | −0.29 ± 0.18 | 1.0 × 10−6 | −0.33 ± 0.20 | 2.0 × 10−6 | −0.29 ± 0.17 | 1.0 × 10−6 | 0.669 |
% change after 6 w. | −17.9% | −19.7% | −18.4% | |||||
Absolute change after 12 w. | −0.37 ± 0.21 | 2.0 × 10−6 | −0.42 ± 0.21 | 2.0 × 10−6 | −0.29 ± 0.18 | 4.0 × 10−6 | 0.063 | |
% change after 12 w. | −22.6% | −25.0% | −18.3% | |||||
Variations of Hb level | Absolute change after 6 w. | −0.08 ± 0.05 | 3.0 × 10−6 | −0.13 ± 0.09 | 5.0 × 10−6 | −0.13 ± 0.06 | 1.0 × 10−6 | 0.0067 |
% change after 6 w. | −35.2% | −46.0% | −47.6% | |||||
Absolute change after 12 w. | −0.12 ± 0.08 | 3.0 × 10−6 | −0.17 ± 0.10 | 2.0 × 10−6 | −0.15 ± 0.06 | 4.0 × 10−6 | 0.071 | |
% change after 12 w. | −51.1% | −59.4% | −56.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perin, F.; Bruno-Bonnet, C.; Soulard, J.-P.; Rahabi, M.; Duperray, J.; Suntipraron, K.; Chalothorn, K. Effects of Oral Fish Collagen and l-Cystine on Skin Ageing in Mature Women and Skin Imperfections in Young Women: Findings from Two Randomised, Three-Arm, Double-Blind, Placebo-Controlled Studies. Cosmetics 2025, 12, 188. https://doi.org/10.3390/cosmetics12050188
Perin F, Bruno-Bonnet C, Soulard J-P, Rahabi M, Duperray J, Suntipraron K, Chalothorn K. Effects of Oral Fish Collagen and l-Cystine on Skin Ageing in Mature Women and Skin Imperfections in Young Women: Findings from Two Randomised, Three-Arm, Double-Blind, Placebo-Controlled Studies. Cosmetics. 2025; 12(5):188. https://doi.org/10.3390/cosmetics12050188
Chicago/Turabian StylePerin, Fabrice, Christelle Bruno-Bonnet, Jean-Philippe Soulard, Mouna Rahabi, Joël Duperray, Kunkanit Suntipraron, and Kunyanatt Chalothorn. 2025. "Effects of Oral Fish Collagen and l-Cystine on Skin Ageing in Mature Women and Skin Imperfections in Young Women: Findings from Two Randomised, Three-Arm, Double-Blind, Placebo-Controlled Studies" Cosmetics 12, no. 5: 188. https://doi.org/10.3390/cosmetics12050188
APA StylePerin, F., Bruno-Bonnet, C., Soulard, J.-P., Rahabi, M., Duperray, J., Suntipraron, K., & Chalothorn, K. (2025). Effects of Oral Fish Collagen and l-Cystine on Skin Ageing in Mature Women and Skin Imperfections in Young Women: Findings from Two Randomised, Three-Arm, Double-Blind, Placebo-Controlled Studies. Cosmetics, 12(5), 188. https://doi.org/10.3390/cosmetics12050188