water-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5828 KiB  
Article
Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach
by Kazem Javan, Ali Altaee, Mariam Darestani, Mehrdad Mirabi, Farshad Azadmanesh, John L. Zhou and Hanieh Hosseini
Water 2023, 15(20), 3673; https://doi.org/10.3390/w15203673 - 20 Oct 2023
Cited by 6 | Viewed by 2758
Abstract
Ardabil Plain, which holds significant political and economic importance in agricultural production in Iran, has faced various challenges including climate change, economic sanctions, and limited access to global trade. Ensuring food security has become a key priority for the region. The main objective [...] Read more.
Ardabil Plain, which holds significant political and economic importance in agricultural production in Iran, has faced various challenges including climate change, economic sanctions, and limited access to global trade. Ensuring food security has become a key priority for the region. The main objective of this research is to identify a suitable crop for this critical region with regard to future climate change conditions. This study employs a new framework of the system dynamics model (SDM) and the Hybrid Weighted Averaging (HWA) method to assess the Water–Energy–Food (WEF) nexus and resource sustainability in the Ardabil Plain under different climate change scenarios (RCP 2.6, RCP 4.5, and RCP 8.5). The research addresses current and future water challenges, emphasizing the need for additional energy and selecting optimal crops. Using the SDM, the study analyzes the impact of water supply fluctuations on agriculture, economic gain, and energy consumption from 2021 to 2050. The results indicate that barley is the most suitable crop for the Ardabil Plain in the near future, based on the overall ranking derived from the HWA method, which is as follows: barley > wheat > soybeans > potatoes > pears. The study highlights the significant challenges in energy supply for agriculture due to declining water levels and the increased force required by pumps to supply water to farms. These findings provide valuable insights for policymakers and stakeholders to make informed decisions in addressing water scarcity and rising energy demands in the Ardabil Plain. Full article
(This article belongs to the Special Issue Sustainable Developments Goals: Water and Wastewater Management)
Show Figures

Figure 1

14 pages, 4690 KiB  
Article
Automatic Extraction Method of Aquaculture Sea Based on Improved SegNet Model
by Weiyi Xie, Yuan Ding, Xiaoping Rui, Yarong Zou and Yating Zhan
Water 2023, 15(20), 3610; https://doi.org/10.3390/w15203610 - 16 Oct 2023
Cited by 6 | Viewed by 2635
Abstract
Timely, accurate, and efficient extraction of aquaculture sea is important for the scientific and rational utilization of marine resources and protection of the marine environment. To improve the classification accuracy of remote sensing of aquaculture seas, this study proposes an automatic extraction method [...] Read more.
Timely, accurate, and efficient extraction of aquaculture sea is important for the scientific and rational utilization of marine resources and protection of the marine environment. To improve the classification accuracy of remote sensing of aquaculture seas, this study proposes an automatic extraction method for aquaculture seas based on the improved SegNet model. This method adds a pyramid convolution module and a convolutional block attention module based on the SegNet network model, which can effectively increase the utilization ability of features and capture more global image information. Taking the Gaofen-1D image as an example, the effectiveness of the improved method was proven through ablation experiments on the two modules. The prediction results of the proposed method were compared with those of the U-Net, SegNet, and DenseNet models, as well as with those of the traditional support vector machine and random forest methods. The results showed that the improved model has a stronger generalization ability and higher extraction accuracy. The overall accuracy, mean intersection over union, and F1 score of the three test areas were 94.86%, 87.23%, and 96.59%, respectively. The accuracy of the method is significantly higher than those of the other methods, which proves the effectiveness of the method for the extraction of aquaculture seas and provides new technical support for automatic extraction of such areas. Full article
Show Figures

Figure 1

17 pages, 3331 KiB  
Article
A Machine Learning Framework for Enhancing Short-Term Water Demand Forecasting Using Attention-BiLSTM Networks Integrated with XGBoost Residual Correction
by Shihao Shan, Hongzhen Ni, Genfa Chen, Xichen Lin and Jinyue Li
Water 2023, 15(20), 3605; https://doi.org/10.3390/w15203605 - 15 Oct 2023
Cited by 13 | Viewed by 3271
Abstract
Accurate short-term water demand forecasting assumes a pivotal role in optimizing water supply control strategies, constituting a cornerstone of effective water management. In recent times, the rise of machine learning technologies has ushered in hybrid models that exhibit superior performance in this domain. [...] Read more.
Accurate short-term water demand forecasting assumes a pivotal role in optimizing water supply control strategies, constituting a cornerstone of effective water management. In recent times, the rise of machine learning technologies has ushered in hybrid models that exhibit superior performance in this domain. Given the intrinsic non-linear fluctuations and variations in short-term water demand sequences, achieving precise forecasts presents a formidable challenge. Against this backdrop, this study introduces an innovative machine learning framework for short-term water demand prediction. The maximal information coefficient (MIC) is employed to select high-quality input features. A deep learning architecture is devised, featuring an Attention-BiLSTM network. This design leverages attention weights and the bidirectional information in historical sequences to highlight influential factors and enhance predictive capabilities. The integration of the XGBoost algorithm as a residual correction module further bolsters the model’s performance by refining predicted results through error simulation. Hyper-parameter configurations are fine-tuned using the Keras Tuner and random parameter search. Through rigorous performance comparison with benchmark models, the superiority and stability of this method are conclusively demonstrated. The attained results unequivocally establish that this approach outperforms other models in terms of predictive accuracy, stability, and generalization capabilities, with MAE, RMSE, MAPE, and NSE values of 544 m3/h, 915 m3/h, 1.00%, and 0.99, respectively. The study reveals that the incorporation of important features selected by the MIC, followed by their integration into the attention mechanism, essentially subjects these features to a secondary filtration. While this enhances model performance, the potential for improvement remains limited. Our proposed forecasting framework offers a fresh perspective and contribution to the short-term water resource scheduling in smart water management systems. Full article
Show Figures

Figure 1

20 pages, 15137 KiB  
Article
Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia
by Wanrui Wang, Yaning Chen, Weihua Wang, Yapeng Chen and Yifeng Hou
Water 2023, 15(20), 3601; https://doi.org/10.3390/w15203601 - 14 Oct 2023
Cited by 8 | Viewed by 3338
Abstract
Groundwater is essential to residents, ecology, agriculture, and industry. The depletion of groundwater impacted by climatic variability and intense human activities could threaten water, food, and socioeconomic security in arid regions. A thorough understanding of groundwater level dynamics and its response to land-cover [...] Read more.
Groundwater is essential to residents, ecology, agriculture, and industry. The depletion of groundwater impacted by climatic variability and intense human activities could threaten water, food, and socioeconomic security in arid regions. A thorough understanding of groundwater level dynamics and its response to land-cover change is necessary for groundwater management and ecosystem improvement, which are poorly understood in arid desert regions due to a scarcity of field monitoring data. In our study, spatiotemporal characteristics of groundwater level impacted by land-cover change and its relationship with vegetation were examined using 3-years in-situ monitoring data of 30 wells in the desert regions of Tarim Basin during 2019–2021. The results showed that the depth to groundwater level (DGL) exhibited obvious spatial and seasonal variations, and the fluctuation of DGL differed significantly among the wells. The cultivated land area increased by 1174.6, 638.0, and 732.2 km2 during 2000–2020 in the plains of Yarkand, Weigan-Kuqa, and Dina Rivers, respectively, mainly transferring from bare land and grassland. Annual average Normalized Difference Vegetation Index (NDVI) values increased with time during the period in the plains. DGL generally exhibited a weakly increasing trend from 2019 to 2021, mainly due to human activities. Land-cover change significantly affected the groundwater level dynamic. Generally, the groundwater system was in negative equilibrium near the oasis due to agricultural irrigation, was basically in dynamic equilibrium in the desert region, and was in positive equilibrium near the Tarim River Mainstream due to irrigation return water and streamflow. NDVI of natural desert vegetation was negatively correlated with DGL in the desert regions (R2 = 0.78, p < 0.05). Large-scale land reclamation and groundwater overexploitation associated with water-saving irrigation agriculture development have caused groundwater level decline in arid oasis-desert regions. Hence, controlling groundwater extraction intensity, strengthening groundwater monitoring, and promoting water-saving technology would be viable methods to sustainably manage groundwater and maintain the ecological environment in arid areas. Full article
(This article belongs to the Special Issue Water Management in Arid and Semi-arid Regions)
Show Figures

Figure 1

17 pages, 3185 KiB  
Article
Effect of pH, COD, and HRT on the Performance of Microbial Fuel Cell Using Synthetic Dairy Wastewater
by Aritro Banerjee, Rajnish Kaur Calay and Subhashis Das
Water 2023, 15(19), 3472; https://doi.org/10.3390/w15193472 - 30 Sep 2023
Cited by 16 | Viewed by 4028
Abstract
Microbial fuel cells (MFC) are emerging technologies that can produce electricity while treating wastewater. A series of tests were carried out to evaluate the efficiency of this technology for treating dairy wastewater (DWW). The experiments used Shewanella baltica as an exoelectrogen in a [...] Read more.
Microbial fuel cells (MFC) are emerging technologies that can produce electricity while treating wastewater. A series of tests were carried out to evaluate the efficiency of this technology for treating dairy wastewater (DWW). The experiments used Shewanella baltica as an exoelectrogen in a small single MFC to treat simulated DWW. The impacts of various operational factors, specifically pH, hydraulic retention time (HRT), and chemical oxygen demand (COD) in the influent to the anode chamber, were investigated, and the effect of these variables on the output performance of the cell was evaluated. The best performance of the MFC was found when the pH, HRT, and COD were 8, 6.66 h, and 20,632 mg/L, respectively, in the scaled experimental setup. Under these conditions, the maximum power density and percentage removal of COD in terms of wastewater treatment ability were found to be 138 mW/m2 and 71%, respectively. It may be concluded that MFCs are suitable treatment technologies for treating dairy wastewater while potentially simultaneously generating power. Full article
(This article belongs to the Special Issue Biological Wastewater Treatment around the Globe)
Show Figures

Graphical abstract

20 pages, 4634 KiB  
Article
Experimental Study on Mode I Fracture Characteristics of Granite after Low Temperature Cooling with Liquid Nitrogen
by Linchao Wang, Yi Xue, Zhengzheng Cao, Hailing Kong, Jianyong Han and Zhizhen Zhang
Water 2023, 15(19), 3442; https://doi.org/10.3390/w15193442 - 30 Sep 2023
Cited by 48 | Viewed by 2994
Abstract
Liquid nitrogen fracturing has emerged as a promising technique in fluid fracturing, providing significant advantages for the utilization and development of geothermal energy. Similarly to hydraulic fracturing in reservoirs, liquid nitrogen fracturing entails a common challenge of fluid–rock interaction, encompassing the permeation and [...] Read more.
Liquid nitrogen fracturing has emerged as a promising technique in fluid fracturing, providing significant advantages for the utilization and development of geothermal energy. Similarly to hydraulic fracturing in reservoirs, liquid nitrogen fracturing entails a common challenge of fluid–rock interaction, encompassing the permeation and diffusion processes of fluids within rock pores and fractures. Geomechanical analysis plays a crucial role in evaluating the transfer and diffusion capabilities of fluids within rocks, enabling the prediction of fracturing outcomes and fracture network development. This technique is particularly advantageous for facilitating heat exchange with hot dry rocks and inducing fractures within rock formations. The primary objective of this study is to examine the effects of liquid nitrogen fracturing on hot dry rocks, focusing specifically on granite specimens. The experimental design comprises two sets of granite samples to explore the impact of liquid nitrogen cooling cycles on the mode I fracture characteristics, acoustic emission features, and rock burst tendency of granite. By examining the mechanical properties, acoustic emission features, and rock burst tendencies under different cycling conditions, the effectiveness of liquid nitrogen fracturing technology is revealed. The results indicate that: (1) The ultimate load-bearing capacity of the samples gradually decreases with an increase in the number of cycling times. (2) The analysis of acoustic emission signals reveals a progressive increase in the cumulative energy of the samples with cycling times, indicating that cycling stimulates the release of stored energy within the samples. (3) After undergoing various cycling treatments, the granite surface becomes rougher, exhibiting increased porosity and notable mineral particle detachment. These results suggest that the cyclic application of high-temperature heating and liquid nitrogen cooling promotes the formation of internal fractures in granite. This phenomenon is believed to be influenced by the inherent heterogeneity and expansion–contraction of internal particles. Furthermore, a detailed analysis of the morphological sections provides insights into the structural changes induced by liquid nitrogen fracturing in granite samples. Full article
Show Figures

Figure 1

21 pages, 23300 KiB  
Article
Cloud Modelling of Property-Level Flood Exposure in Megacities
by Christos Iliadis, Vassilis Glenis and Chris Kilsby
Water 2023, 15(19), 3395; https://doi.org/10.3390/w15193395 - 27 Sep 2023
Cited by 4 | Viewed by 2788
Abstract
Surface water flood risk is projected to increase worldwide due to the growth of cities as well as the frequency of extreme rainfall events. Flood risk modelling at high resolution in megacities is now feasible due to the advent of high spatial resolution [...] Read more.
Surface water flood risk is projected to increase worldwide due to the growth of cities as well as the frequency of extreme rainfall events. Flood risk modelling at high resolution in megacities is now feasible due to the advent of high spatial resolution terrain data, fast and accurate hydrodynamic models, and the power of cloud computing platforms. Analysing the flood exposure of urban features in these cities during multiple storm events is essential to understanding flood risk for insurance and planning and ultimately for designing resilient solutions. This study focuses on London, UK, a sprawling megacity that has experienced damaging floods in the last few years. The analysis highlights the key role of accurate digital terrain models (DTMs) in hydrodynamic models. Flood exposure at individual building level is evaluated using the outputs from the CityCAT model driven by a range of design storms of different magnitudes, including validation with observations of a real storm event that hit London on the 12 July 2021. Overall, a novel demonstration is presented of how cloud-based flood modelling can be used to inform exposure insurance and flood resilience in cities of any size worldwide, and a specification is presented of what datasets are needed to achieve this aim. Full article
Show Figures

Figure 1

23 pages, 9543 KiB  
Article
Basin-Scale Hydraulic Evaluation of Groundwater Flow Controlled Biogenic Gas Migration and Accumulation in the Central Pannonian Basin
by Brigitta Czauner, Zsóka Szabó, Béla Márton and Judit Mádl-Szőnyi
Water 2023, 15(18), 3272; https://doi.org/10.3390/w15183272 - 15 Sep 2023
Cited by 6 | Viewed by 1971
Abstract
Biogenic or microbial methane has an increasing share in the global gas resource base, though its exploration still faces challenges and welcomes innovations. Critical elements of its migration and accumulation models are the groundwater flows which gather and transport the gas in aqueous [...] Read more.
Biogenic or microbial methane has an increasing share in the global gas resource base, though its exploration still faces challenges and welcomes innovations. Critical elements of its migration and accumulation models are the groundwater flows which gather and transport the gas in aqueous solution, and the seal rocks or aquifers which lead groundwater flows horizontally over great distances. This paper intends to introduce the hydraulic trap concept into these models, which is able to drive fluids horizontally without an overlying seal rock. Since hydraulic traps can evolve as a result of the interplay of regional groundwater flow systems, the basin-scale hydraulic evaluation methodology which was developed for the analysis of these systems was further improved by this study to focus on their interplay. The improved methodology was applied on measured hydraulic data in a study area in the Central Pannonian Basin (Hungary) around the Hajdúszoboszló gas field where as a result, the first groundwater flow controlled dissolved biogenic gas migration and accumulation model could be set up. In addition, the proposed methodology can be used in any terrestrial sedimentary basin, and in particular, where topography-driven flow systems are underlaid by an abnormal pressure regime. Full article
Show Figures

Figure 1

22 pages, 5749 KiB  
Article
CMADS and CFSR Data-Driven SWAT Modeling for Impacts of Climate and Land-Use Change on Runoff
by Bailin Du, Lei Wu, Bingnan Ruan, Liujia Xu and Shuai Liu
Water 2023, 15(18), 3240; https://doi.org/10.3390/w15183240 - 12 Sep 2023
Cited by 7 | Viewed by 2396
Abstract
Climate and land-use change significantly impact hydrological processes and water resources management. However, studies of runoff simulation accuracy and attribution analysis in large-scale basins based on multi-source data and different scenario projections are limited. This study employed the Soil and Water Assessment Tool [...] Read more.
Climate and land-use change significantly impact hydrological processes and water resources management. However, studies of runoff simulation accuracy and attribution analysis in large-scale basins based on multi-source data and different scenario projections are limited. This study employed the Soil and Water Assessment Tool (SWAT) model in conjunction with spatial interpolation techniques to evaluate the accuracy of Climate Forecast System Reanalysis (CFSR), China Meteorological Assimilation Driven Dataset (CMADS), and observation (OBS) in runoff simulations, and configured various scenarios using the Patch-generating Land-use Simulation (PLUS) model to analyze effects of climate and land-use changes on runoff in the Jing River Basin from 1999 to 2018. Results demonstrated the superior performance of the CMADS+SWAT model compared to than CFSR+SWAT model, as the latter underestimated peak runoff. Changes in precipitation had a stronger impact on runoff than temperature, with increased flow from farmland and strong interception effects from forestland. Integrated climate and land-use changes led to an average annual runoff reduction of 1.24 m3/s (I2), primarily attributed to climate change (1.12 m3/s, I3), with a small contribution from land-use change (0.12 m3/s, I4). CMADS exhibited robust applicability under diverse scenarios, effectively enhancing runoff simulation accuracy. The findings provide invaluable guidance for water resources management in semi-arid regions. Full article
Show Figures

Figure 1

30 pages, 1247 KiB  
Review
Discrimination Methods of Mine Inrush Water Source
by Donglin Dong and Jialun Zhang
Water 2023, 15(18), 3237; https://doi.org/10.3390/w15183237 - 11 Sep 2023
Cited by 10 | Viewed by 3119
Abstract
Ensuring mining safety and efficiency relies heavily on identifying the source of mine water inrush. This review article aims to provide a comprehensive overview of standard methods used to pinpoint the origin of mine water inrush, highlighting the development and progress in the [...] Read more.
Ensuring mining safety and efficiency relies heavily on identifying the source of mine water inrush. This review article aims to provide a comprehensive overview of standard methods used to pinpoint the origin of mine water inrush, highlighting the development and progress in the research of discrimination methods. These methods are systematically classified into various categories, encompassing hydrochemistry examination, water level and temperature analysis, geostatistical approaches, machine learning and deep learning methods, as well as the utilization of other analytical techniques. The review not only presents a quantitative and visual analysis of the theoretical methods proposed by scholars but also emphasizes their strengths, weaknesses, and applicability to various mining operations. Furthermore, it explores the increasing utilization of artificial neural networks and machine learning algorithms in source discrimination models, indicating the advancement in this area of research. To further advance the field, specific examples of these methods and their effectiveness in identifying the source of mine water inrush are provided, aiming to stimulate further research. The article also offers detailed recommendations for future research directions and emerging trends, underlining the importance of comprehensive multidisciplinary and multi-method analysis. It suggests exploring emerging technologies such as the Internet of Things (IoT) and cloud computing, while emphasizing the need to develop more accurate and reliable models for source identification. The fusion of artificial intelligence (AI), heightened computational capabilities, online programming, and intelligent data collection systems presents the prospect of transforming the way industries respond to these critical events. By providing a comprehensive overview, analyzing the effectiveness of existing methods, and proposing future research directions, this review aims to contribute to the continuous development and progress of discrimination methods for mine water inrush incidents. Ultimately, it seeks to enhance mining safety and efficiency by facilitating the prompt and accurate identification of the sources of mine water inrush. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogeology: Featured Reviews)
Show Figures

Figure 1

20 pages, 1731 KiB  
Review
A Review of Non-Contact Water Level Measurement Based on Computer Vision and Radar Technology
by Zeheng Wu, Yu Huang, Kailin Huang, Kang Yan and Hua Chen
Water 2023, 15(18), 3233; https://doi.org/10.3390/w15183233 - 11 Sep 2023
Cited by 8 | Viewed by 7182
Abstract
As pioneering non-contact water level measurement technologies, both computer vision and radar have effectively addressed challenges posed by traditional water level sensors in terms of maintenance cost, real-time responsiveness, and operational complexity. Moreover, they ensure high-precision measurements in appropriate conditions. These techniques can [...] Read more.
As pioneering non-contact water level measurement technologies, both computer vision and radar have effectively addressed challenges posed by traditional water level sensors in terms of maintenance cost, real-time responsiveness, and operational complexity. Moreover, they ensure high-precision measurements in appropriate conditions. These techniques can be seamlessly integrated into unmanned aerial vehicle (UAV) systems, significantly enhancing the spatiotemporal granularity of water level data. However, computer-vision-based water level measurement methods face the core problems of accurately identifying water level lines and elevation calculations, which can lead to measurement errors due to lighting variations and camera position offsets. Although deep learning has received much attention in improving the generation, the effectiveness of the models is limited by the diversity of the datasets. For the radar water level sensor, the hardware structure and signal processing algorithms have to be further improved. In the future, by constructing more comprehensive datasets, developing fast calibration algorithms, and implementing multi-sensor data fusion, it is expected that the robustness, accuracy, and computational efficiency of water level monitoring will be significantly improved, laying a solid foundation for further innovations and developments of hydrological monitoring. Full article
Show Figures

Figure 1

21 pages, 3671 KiB  
Article
Anaerobic Membrane Bioreactor for Microalgae and Primary Sludge Co-Digestion at Pilot Scale: Instrumentation, Control and Automation Implementation, and Performance Assessment
by Juan Francisco Mora-Sánchez, Rebecca Serna-García, Alberto Bouzas, Aurora Seco and Maria Victoria Ruano
Water 2023, 15(18), 3225; https://doi.org/10.3390/w15183225 - 11 Sep 2023
Cited by 6 | Viewed by 2690
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is gaining interest for circular economy integration in the water sector. However, its complexity, arising from the integration of anaerobic processes with membrane technology, poses a key challenge. Developing an appropriate instrumentation, control, and automation (ICA) system is [...] Read more.
Anaerobic membrane bioreactor (AnMBR) technology is gaining interest for circular economy integration in the water sector. However, its complexity, arising from the integration of anaerobic processes with membrane technology, poses a key challenge. Developing an appropriate instrumentation, control, and automation (ICA) system is essential for its reliable long-term operation. In this study, an ICA system was developed to successfully manage an AnMBR pilot plant co-digesting two waste streams (microalgae and primary sludge). The ICA implementation enabled its stable long-term operation for 576 days, ensuring the proper performance of biological and filtration processes and yielding 215 NmLCH4·gCODinf−1 at 35 °C. Variables such as temperature, oxidation-reduction potential, permeate flux and biogas flow were identified as key parameters and controlled. This included a 23% reduction in the integral of absolute error compared to a PID controller for permeate flow and the maintenance of a 0.5% standard deviation for digester temperature. These controls enabled AnMBR performance optimization, the rapid detection of process issues, and early corrective actions. As a start-up strategy to ensure proper filtration performance in the long term, critical flux tests were conducted, guaranteeing a competitive total annualized equivalent cost of 0.0016 EUR/m3 for optimal conditions. The study also calculated greenhouse gas emissions in different scenarios, proposing optimal and more sustainable pilot plant operations, mesophilic conditions, biogas upgrading through microalgae cultivation, and grid injection, reducing emissions by 423 kgCO2e·tCOD−1. To ensure the viability of emerging technologies such as AnMBR, proper start-up protocols are crucial, including favorable filtration and biological process operating conditions, ICA implementation, and key parameter control for technical, economic and environmental success. Full article
Show Figures

Graphical abstract

14 pages, 2614 KiB  
Article
Service Pressure and Energy Consumption Mitigation-Oriented Partitioning of Closed Water Distribution Networks
by Enrico Creaco, Carlo Giudicianni and Alessandro Tosco
Water 2023, 15(18), 3218; https://doi.org/10.3390/w15183218 - 10 Sep 2023
Cited by 4 | Viewed by 1728
Abstract
This paper presents the partitioning of the closed water distribution network (WDN) serving the city of Pavia, Italy. As a thus far poorly explored aspect in the scientific literature, clustering for the definition of size and extension of district metered areas (DMAs) and [...] Read more.
This paper presents the partitioning of the closed water distribution network (WDN) serving the city of Pavia, Italy. As a thus far poorly explored aspect in the scientific literature, clustering for the definition of size and extension of district metered areas (DMAs) and of inter-DMA boundary pipes is performed by ensuring that the DMAs respect the altimetric areas of the WDN by leaning on a modified formulation of modularity. To define the boundary pipes to be closed or alternatively fitted with a flow meter for the monitoring of DMA consumption, the dividing is performed with an innovative heuristic algorithm. This technique operates by sequentially implementing the boundary closures that do not cause significant head losses, to obtain an approximation of the Pareto front in the trade-off between number of flow meters installed and WDN reliability. In the last part of the work, the pumps present in the network are assumed to be equipped with the variable speed drive, and their hourly settings are optimized to regulate service pressure. Overall, WDN partitioning and pump setting optimization are proven to mitigate the service pressure and energy consumption of the WDN, offering evident and attractive benefits up to about 50% for water utilities. Full article
(This article belongs to the Special Issue Smart Technologies for Urban Water Systems)
Show Figures

Figure 1

25 pages, 1509 KiB  
Review
Water Masses of the Mediterranean Sea and Black Sea: An Overview
by Serafeim E. Poulos
Water 2023, 15(18), 3194; https://doi.org/10.3390/w15183194 - 7 Sep 2023
Cited by 10 | Viewed by 7782
Abstract
This overview presents the different water masses present in the various primary and secondary marine regions of the Mediterranean Sea and Black Sea, providing information on their main physical characteristics (i.e., temperature, salinity, density), the water depths at which they have been observed [...] Read more.
This overview presents the different water masses present in the various primary and secondary marine regions of the Mediterranean Sea and Black Sea, providing information on their main physical characteristics (i.e., temperature, salinity, density), the water depths at which they have been observed and the processes involved in their formation. There is a characteristic difference in the overall hydrology of the Mediterranean Sea compared to the Black Sea, in terms of the number and characteristics of water masses and their formation processes, although they form a single (integrated) marine system. This difference is explained by the limited communication between the two seas through the Sea of Marmara and its straits (the Dardanelles and Bosporus) and by the fact that the Mediterranean Sea is a condensation basin while the Black Sea is a dilution basin; therefore, the deficit of water in the former is compensated by the inflow of Atlantic waters, while the surplus in the latter outflows to the Aegean Sea. In total, 21 different water masses have been identified in the Mediterranean Sea (excluding the Straits of Gibraltar and the Sea of Marmara) compared to the 5 water masses identified in the Black Sea (excluding the Sea of Azov). This large number of water masses is attributed to coastal morphology (i.e., presence of straits) and submarine relief (i.e., deep basin separated by shallow sills) and different formation processes. Full article
(This article belongs to the Topic Aquatic Environment Research for Sustainable Development)
Show Figures

Figure 1

23 pages, 10543 KiB  
Article
Impact of Vegetation Differences on Shallow Landslides: A Case Study in Aso, Japan
by Hiroki Asada and Tomoko Minagawa
Water 2023, 15(18), 3193; https://doi.org/10.3390/w15183193 - 7 Sep 2023
Cited by 12 | Viewed by 4344
Abstract
Climate change has increased the frequency and scale of heavy rainfall, increasing the risk of shallow landslides due to heavy rainfall. In recent years, ecosystem-based disaster risk reduction (Eco-DRR) has attracted attention as one way to reduce disaster risks. Vegetation is known to [...] Read more.
Climate change has increased the frequency and scale of heavy rainfall, increasing the risk of shallow landslides due to heavy rainfall. In recent years, ecosystem-based disaster risk reduction (Eco-DRR) has attracted attention as one way to reduce disaster risks. Vegetation is known to increase soil strength through its root system and reduce the risk of shallow landslides. To reduce the risk of shallow landslides using vegetation, it is necessary to quantitatively evaluate the effects that vegetation has on shallow landslides. In this study, we constructed a generalized linear model (GLM) and random forest (RF) model to quantitatively evaluate the impact of differences in the vegetation, such as grasslands and forests, on the occurrence of shallow landslides using statistical methods. The model that resulted in the lowest AIC in the GLM included elevation, slope angle, slope aspect, undulation, TWI, geology, and vegetation as primary factors, and the hourly rainfall as a trigger factor. The slope angle, undulation, and hourly rainfall were selected as significant explanatory variables that contribute positively to shallow landslides. On the other hand, elevation and TWI were selected as significant explanatory variables that contribute negatively to shallow landslides. Significant differences were observed among multiple categories of vegetation. The probability of shallow landslide in secondary grasslands was approximately three times that of coniferous and broadleaf forests, and approximately nine times that of broadleaf secondary forests. The landslide probability of shrubs was approximately four times that of coniferous and broadleaf forests, and approximately ten times that of broadleaf secondary forests. The results of constructing the RF model showed that the importance was highest for the hourly rainfall, followed by geology, then elevation. AUC values for the GLM and RF model were 0.91 and 0.95, respectively, indicating that highly accurate models were constructed. We quantitatively showed the impact of differences in vegetation on shallow landslides. The knowledge obtained in this study will be essential for considering appropriate vegetation management to reduce the risk of future shallow landslides. Full article
(This article belongs to the Topic Landslide Prediction, Monitoring and Early Warning)
Show Figures

Figure 1

12 pages, 2681 KiB  
Article
A Probabilistic Analysis of Drought Areal Extent Using SPEI-Based Severity-Area-Frequency Curves and Reanalysis Data
by Nunziarita Palazzolo, David J. Peres, Brunella Bonaccorso and Antonino Cancelliere
Water 2023, 15(17), 3141; https://doi.org/10.3390/w15173141 - 1 Sep 2023
Cited by 8 | Viewed by 2276
Abstract
Assessing and monitoring the spatial extent of drought is of key importance to forecasting the future evolution of drought conditions and taking timely preventive and mitigation measures. A commonly used approach in regional drought analysis involves spatially interpolating meteorological variables (e.g., rainfall depth [...] Read more.
Assessing and monitoring the spatial extent of drought is of key importance to forecasting the future evolution of drought conditions and taking timely preventive and mitigation measures. A commonly used approach in regional drought analysis involves spatially interpolating meteorological variables (e.g., rainfall depth during specific time intervals, deviation from long-term average rainfall) or drought indices (e.g., Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index) computed at specific locations. While plotting a drought descriptor against the corresponding percentage of affected areas helps visualize the historical extent of a drought, this approach falls short of providing a probabilistic characterization of the severity of spatial drought conditions. That can be overcome by identifying drought Severity-Area-Frequency (SAF) curves over a region, which establishes a link between drought features with a chosen probability of recurrence (or return period) and the corresponding proportion of the area experiencing those drought conditions. While inferential analyses can be used to estimate these curves, analytical approaches offer a better understanding of the main statistical features that drive the spatial evolution of droughts. In this research, a technique is introduced to mathematically describe the Severity-Area-Frequency (SAF) curves, aiming to probabilistically understand the correlation between drought severity, measured through the SPEI index, and the proportion of the affected region. This approach enables the determination of the area’s extent where SPEI values fall below a specific threshold, thus calculating the likelihood of observing SAF curves that exceed the observed one. The methodology is tested using data from the ERA5-Land reanalysis project, specifically studying the drought occurrences on Sicily Island, Italy, from 1950 to the present. Overall, findings highlight the improvements of incorporating the spatial interdependence of the assessed drought severity variable, offering a significant enhancement compared to the traditional approach for SAF curve derivation. Moreover, they validate the suitability of reanalysis data for regional drought analysis. Full article
(This article belongs to the Special Issue Drought Monitoring and Risk Assessment)
Show Figures

Figure 1

19 pages, 651 KiB  
Review
A Review of Data Quality and Cost Considerations for Water Quality Monitoring at the Field Scale and in Small Watersheds
by Robert Daren Harmel, Heather Elise Preisendanz, Kevin Wayne King, Dennis Busch, Francois Birgand and Debabrata Sahoo
Water 2023, 15(17), 3110; https://doi.org/10.3390/w15173110 - 30 Aug 2023
Cited by 10 | Viewed by 4120
Abstract
Technological advances and resource constraints present scientists and engineers with renewed challenges in the design of methods to conduct water quality monitoring, and these decisions ultimately determine the degree of project success. Many professionals are exploring alternative lower-cost options because of cost constraints, [...] Read more.
Technological advances and resource constraints present scientists and engineers with renewed challenges in the design of methods to conduct water quality monitoring, and these decisions ultimately determine the degree of project success. Many professionals are exploring alternative lower-cost options because of cost constraints, and research and development is largely focused on in situ sensors that produce high temporal resolution data. While some guidance is available, contemporary information is needed to balance water quality monitoring decisions with financial and personnel constraints, while meeting data quality needs. This manuscript focuses on monitoring constituents, such as sediment, nutrients, and pathogens, at the field scale and in small watersheds. Specifically, the impacts on the costs and data quality of alternatives related to site selection, discharge measurement, and constituent concentration measurement, are explored. The present analysis showed that avoiding sites requiring extensive berm construction and the installation of electric power to reach distant sites greatly reduces the initial costs with little impact on data quality; however, other decisions directly impact data quality. For example, proper discharge measurement, high-frequency sampling, frequent site and equipment maintenance, and the purchase of backup power and monitoring equipment can be costly, but are important for high quality data collection. In contrast, other decisions such as the equipment type (mechanical samplers, electronic samplers, or in situ sensors) and whether to analyze discrete or composite samples greatly affect the costs, but have minimal impact on data quality. These decisions, therefore, can be based on other considerations (e.g., project goals, intended data uses, funding agency specifications, and agency protocols). We hope this guidance helps practitioners better design and implement water quality monitoring to satisfy resource constraints and data quality needs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 9916 KiB  
Article
Groundwater Level Prediction with Deep Learning Methods
by Hsin-Yu Chen, Zoran Vojinovic, Weicheng Lo and Jhe-Wei Lee
Water 2023, 15(17), 3118; https://doi.org/10.3390/w15173118 - 30 Aug 2023
Cited by 12 | Viewed by 5658
Abstract
The development of civilization and the preservation of environmental ecosystems are strongly dependent on water resources. Typically, an insufficient supply of surface water resources for domestic, industrial, and agricultural needs is supplemented with groundwater resources. However, groundwater is a natural resource that must [...] Read more.
The development of civilization and the preservation of environmental ecosystems are strongly dependent on water resources. Typically, an insufficient supply of surface water resources for domestic, industrial, and agricultural needs is supplemented with groundwater resources. However, groundwater is a natural resource that must accumulate over many years and cannot be recovered after a short period of recharge. Therefore, the long-term management of groundwater resources is an important issue for sustainable development. The accurate prediction of groundwater levels is the first step in evaluating total water resources and their allocation. However, in the process of data collection, data may be lost due to various factors. Filling in missing data is a main problem that any research field must address. It is well known that to maintain data integrity, one effective approach is missing value imputation (MVI). In addition, it has been demonstrated that machine learning may be a better tool. Therefore, the main purpose of this study was to utilize a generative adversarial network (GAN) that consists of a generative model and a discriminative model for imputation. Although the GAN could not capture the groundwater level endpoints in every section, the overall simulation performance was still excellent to some extent. Our results show that the GAN can improve the accuracy of water resource evaluations. In the current study, two interdisciplinary deep learning methods, univariate and Seq2val (sequence-to-value), were used for groundwater level estimation. In addition to addressing the significance of the parameter conditions, the advantages and disadvantages of these two models in hydrological simulations were also discussed and compared. Regarding parameter selection, the simulation results for univariate analysis were better than those for Seq2val analysis. Finally, univariate was employed to examine the limits of the models in long-term water level simulations. Our results suggest that the accuracy of CNNs is better, while LSTM is better for the simulation of multistep prediction. Therefore, the interdisciplinary deep learning approach may be beneficial for providing a better evaluation of water resources. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

30 pages, 841 KiB  
Review
Are Indicator Microorganisms Predictive of Pathogens in Water?
by Lisa Richiardi, Cristina Pignata, Elisabetta Fea, Silvia Bonetta and Elisabetta Carraro
Water 2023, 15(16), 2964; https://doi.org/10.3390/w15162964 - 17 Aug 2023
Cited by 16 | Viewed by 6949
Abstract
The microbiological quality assessment of drinking water (DW) and drinking water sources (DWSs) is based on the detection of indicator microorganisms (IMs). However, the relationship between IMs and pathogens has been questioned, as pathogens have been detected even in the absence of IMs, [...] Read more.
The microbiological quality assessment of drinking water (DW) and drinking water sources (DWSs) is based on the detection of indicator microorganisms (IMs). However, the relationship between IMs and pathogens has been questioned, as pathogens have been detected even in the absence of IMs, and vice versa. Therefore, the aim of this review was to evaluate the reliability of IMs by analysing the correlation between the presence of IMs and pathogens in water. This review focused on studies that reported statistical analyses of the relationship between traditional and alternative IMs and enteric pathogens in DWSs (groundwater, surface water, and rainwater) and in DW. Additionally, the main DW guidelines and regulations, along with a focus on the application of Quantitative Microbial Risk Assessment (QMRA), were also reported. The overall analysis of publications revealed a controversial correlation, characterised by high spatiotemporal variability, indicating the impossibility of identifying a reliable IM for any specific pathogen or water type. The association was also influenced by numerous factors, such as intrinsic characteristics of microorganisms, seasonal variations, sample number, water sample volume, and the detection method used. In conclusion, the detection of IMs should be considered complementary to, rather than a substitute for, the detection of pathogens. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

13 pages, 2116 KiB  
Article
Analysis of the Coupling Relationship between Water Quality and Economic Development in Hongjiannao Basin, China
by Xiaoping Liu, Shengdong Cheng, Ziyao Miao, Zhanbin Li, Peng Li, Tong Liu, Hegang Zhi, Shen Zhang, Yifan Wang and Xing Zheng
Water 2023, 15(16), 2965; https://doi.org/10.3390/w15162965 - 17 Aug 2023
Cited by 6 | Viewed by 1902
Abstract
Hongjiannao is the largest inland lake in China’s deserts. In recent years, the water quality and area of the Hongjiannao Lake have continued to decline, which is closely associated with the economic development in the Hongjiannao basin. To explore the coupling relationship between [...] Read more.
Hongjiannao is the largest inland lake in China’s deserts. In recent years, the water quality and area of the Hongjiannao Lake have continued to decline, which is closely associated with the economic development in the Hongjiannao basin. To explore the coupling relationship between the water quality and economic development in the Hongjiannao basin, the water quality and economic development index of the basin has been analyzed in terms of the monthly water quality and socio-economic development from 2013 to 2020. The coupling relationship and interaction mechanism between water quality and regional economic development has been studied by coupling coordination degree model. The results show that the water pollution increased and then decreased with the seasons, while the water quality was the worst in the summer. The coordinated degree between the water quality and economic development in Hongjiannao shows an upward trend from 2013 to 2020, which has transformed from the process of lagging economic development to the process of primary coordination, finally to the process of lagging water environment. The coupling relationship between water quality and economic development changed from a state of nearly un-coordination to primary coordination from 2013 to 2016, with economic development lagging behind. The coupling relationship between the two systems changed from barely coordinated to the primary coordinated from 2017 to 2018, with the rapid development of economy and slight decline in water quality. After 2018, those two systems gradually stepped into a virtuous cycle during 2019–2020, but the phenomenon of lagging water quality still existed. Therefore, in order to maintain the stable economic development of resource-based cities, it is necessary to keep improving the current situation of water environment and water shortage in Hongjiannao, which will promote the coordinated and sustainable development of water environment and economy. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Conservation)
Show Figures

Figure 1

15 pages, 3830 KiB  
Article
Rapid Urbanization Has Changed the Driving Factors of Groundwater Chemical Evolution in the Large Groundwater Depression Funnel Area of Northern China
by Long Wang, Qianqian Zhang and Huiwei Wang
Water 2023, 15(16), 2917; https://doi.org/10.3390/w15162917 - 12 Aug 2023
Cited by 9 | Viewed by 1721
Abstract
With the rapid development of urbanization, the chemical evolution of groundwater has been significantly affected by human activities. However, the driving mechanisms of groundwater chemical evolution at different stages of urbanization are still unclear, which severely affects the implementation of groundwater protection. This [...] Read more.
With the rapid development of urbanization, the chemical evolution of groundwater has been significantly affected by human activities. However, the driving mechanisms of groundwater chemical evolution at different stages of urbanization are still unclear, which severely affects the implementation of groundwater protection. This study investigated the driving mechanisms of groundwater chemical evolution based on the long-term series (from 1985 to 2015) of hydrochemical data from 19 groundwater monitoring sites in rapidly urbanizing areas (Shijiazhuang, Hebei Province, China). The results show that the concentrations of various chemical components in groundwater gradually increase with the acceleration of the urbanization process, especially NO3, which has increased from 13.7 mg/L in the primary stage of urbanization (PSU) to 65.1 mg/Lin the advanced stage of urbanization (ASU), exceeding the World Health Organization (WHO) drinking water standard (50 mg/L), indicating that the groundwater chemistry has been significantly affected by human activities. The main hydrochemical types have changed from the HCO3•SO4-Ca•Mg-type water in the primary stage of urbanization (PSU) to the SO4•HCO3-Ca•Mg-type water in the advanced stage of urbanization (ASU). It is worth noting that there are obvious differences in driving factors of groundwater chemical evolution at different urbanization stages. In the primary stage of urbanization (PSU), the driving factors were carbonate and rock salt dissolution, cation exchange, and industrial activities. However, in the intermediate stage and advanced stage, the driving factors were changed to carbonate and gypsum dissolution, groundwater over-exploitation, agricultural fertilization, and domestic sewage. Based on the above conclusions, it is suggested that future groundwater management should control the amount of agricultural fertilizers, apply scientific fertilization, and prohibit the discharge of various types of non-compliant sewage, while strengthening the supervision of groundwater extraction to reduce the impact of urbanization development on the groundwater chemical evolution process. Full article
Show Figures

Figure 1

22 pages, 2302 KiB  
Review
Greenhouse Gases Emissions of Constructed Wetlands: Mechanisms and Affecting Factors
by Xiaoxue Yin, Cancan Jiang, Shengjun Xu, Xiaojuan Yu, Xiaolin Yin, Jinglin Wang, Mairemu Maihaiti, Cong Wang, Xiaoxu Zheng and Xuliang Zhuang
Water 2023, 15(16), 2871; https://doi.org/10.3390/w15162871 - 9 Aug 2023
Cited by 15 | Viewed by 5702
Abstract
Constructed wetlands (CWs) widely applied for wastewater treatment release significant greenhouse gases (GHGs), contributing to global warming. It is essential to characterize the comprehensive source-sink effects and affecting factors of GHGs in CWs, offering references and guidance for designing and operating CWs to [...] Read more.
Constructed wetlands (CWs) widely applied for wastewater treatment release significant greenhouse gases (GHGs), contributing to global warming. It is essential to characterize the comprehensive source-sink effects and affecting factors of GHGs in CWs, offering references and guidance for designing and operating CWs to better control GHG emissions. However, current reviews focus on individual GHG emission mechanisms. With the aid of the Web of Science Core Collection database, the relevant literature on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions in CWs after 2010 was collected and organized. As highlighted in the review, CWs can produce and transmit these GHGs into the atmosphere, forming sources of GHGs and sequestration CO2 through plants photosynthesis, forming sinks of GHGs. Their overall performance depends on many factors. Hybrid CWs, Cyperus papyrus, Cyperus alternifolius, and Iris pseudacorus, adsorption substrates like Fe-C, low temperatures, and a C/N ratio of five are beneficial for GHG mitigation in CWs. Future studies should focus on in-depth research into the mechanisms and overall source-sink benefits of plants and microorganisms in relation to GHGs. This review provided a comprehensive understanding of the emission mechanisms and affecting factors of the major GHGs in CWs, bridging the research gap in this field, helping researchers to clarify the context, and providing valuable in-sights for further scientific investigations. Full article
Show Figures

Figure 1

15 pages, 4159 KiB  
Article
Scour Development Around an Oblong Bridge Pier: A Numerical and Experimental Study
by Ana Margarida Bento, João Pedro Pêgo, Teresa Viseu and Lúcia Couto
Water 2023, 15(16), 2867; https://doi.org/10.3390/w15162867 - 8 Aug 2023
Cited by 12 | Viewed by 2902
Abstract
The complex flow structure around bridge piers is challenging for both experimental and numerical studies. Therefore, investigating the capabilities of Computational Fluid Dynamics (CFD) tools in resolving the flow structure and the mechanism of sediment entrainment into and out of the scour hole [...] Read more.
The complex flow structure around bridge piers is challenging for both experimental and numerical studies. Therefore, investigating the capabilities of Computational Fluid Dynamics (CFD) tools in resolving the flow structure and the mechanism of sediment entrainment into and out of the scour hole remains a challenging task. In this study, the scour depth around an oblong bridge pier and the bed shear stress distributions in time and space were numerically investigated using the Computational Fluid Dynamics (CFD) tool Sediment Simulation In Intakes with Multiblock option (SSIIM). Clear water scour conditions and sand of known granulometric composition were considered in accordance with the experimental study carried out. Laboratory data and the results of a scour characterization around a 0.11 m wide oblong bridge pier were considered to calibrate and validate the numerical model. The averaged form of the Navier–Stokes equations was considered to simulate the turbulent flow fields in anticipation of long time scales. The results show that calibrated numerical models can reproduce measured scour depths in the laboratory environment with considerable accuracy, with an average relative error of less than 3%, especially around oblong bridge piers. Full article
Show Figures

Figure 1

34 pages, 1680 KiB  
Article
Parameterization for Modeling Blue–Green Infrastructures in Urban Settings Using SWMM-UrbanEVA
by Birgitta Hörnschemeyer, Malte Henrichs, Ulrich Dittmer and Mathias Uhl
Water 2023, 15(15), 2840; https://doi.org/10.3390/w15152840 - 6 Aug 2023
Cited by 10 | Viewed by 3197
Abstract
Blue–green infrastructures (BGI) play an important role in addressing contemporary challenges posed by urbanization, climate change, and demographic shifts. This study focuses on the parameterization of BGI within hydrological models, specifically emphasizing the Low Impact Development (LID) module of the Storm Water Management [...] Read more.
Blue–green infrastructures (BGI) play an important role in addressing contemporary challenges posed by urbanization, climate change, and demographic shifts. This study focuses on the parameterization of BGI within hydrological models, specifically emphasizing the Low Impact Development (LID) module of the Storm Water Management Model (SWMM), supplemented by the SWMM-UrbanEVA evapotranspiration model. Employing a systematic approach, a transferable framework is developed to categorize BGI types, leading to a comprehensive parameterization toolset. This toolset includes parameter estimates for predefined BGI types, encompassing both natural and technical systems with a specific emphasis on plant-specific parameterization. The justification of these parameter estimates is supported by an extensive literature review. Sensitivity analyses reveal the influence of plant-specific parameters, such as the crop factor (KC), and soil storage capacity, on water balance and peak runoff. Additionally, this study presents practical guidelines to enhance the comprehension of model behavior and ensure the highest possible quality in model parameterization. While further research on validity and transferability of the toolset is required, the findings of this study provide useful support for the differentiated representation and analysis of hydrological processes in urban environments. As a result, this study serves as a valuable resource for researchers, practitioners, and decision makers, facilitating the implementation of sustainable water management practices in urban settings. Full article
(This article belongs to the Special Issue Challenges and Sustainability of Water Sensitive Cities)
Show Figures

Figure 1

15 pages, 2692 KiB  
Article
Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland)
by Mariusz Kluska and Joanna Jabłońska
Water 2023, 15(15), 2833; https://doi.org/10.3390/w15152833 - 5 Aug 2023
Cited by 14 | Viewed by 2784
Abstract
In recent years, human impact on the Earth’s ecological environment has become increasingly visible, with serious negative consequences. One of the most important pollutants are heavy metals which can easily bind to sediments. Due to their toxic behavior, persistence, lack of biodegradability and [...] Read more.
In recent years, human impact on the Earth’s ecological environment has become increasingly visible, with serious negative consequences. One of the most important pollutants are heavy metals which can easily bind to sediments. Due to their toxic behavior, persistence, lack of biodegradability and bioaccumulation, they are considered key river pollutants that need to be controlled. This study examined two rivers: the Liwiec and Muchawka rivers located in south-eastern Poland. The mouth of the Liwiec River is the Bug River, which is partly the border between Poland and Belarus. In turn, the mouth of the Muchawka River is the Liwiec River. The objectives of the study were the following: (1) To complete a qualitative analysis of heavy metals (Cd, Pb, Cu, Ni, Zn) in the waters and bottom sediments of the Liwiec and Muchawka rivers; (2) To assess the degree of heavy metal contamination; (3) To identify the sources of contamination. The analysis included samples of surface water and bottom sediments collected (16 water and 16 bottom sediment samples were taken from the Muchawka River and 32 water and 32 bottom sediment samples were taken from the Liwiec River) in June and September 2022. The variability of characteristics, such as temperature, precipitation and humidity, contributes to seasonal changes in the distribution characteristics and sources of heavy metals. The study showed that only a small part of the heavy metals entering rivers are present in the water depth in the dissolved state, and most of them enrich the sediment, resulting in much higher concentrations of heavy metals in the sediment than in the water column. The differences in the distribution of some elements in water and sediment are due to the fact that surface sediments retain long-term records. Therefore, sediment can be considered a potential source of heavy metals in the aquatic environment. In general, the content of heavy metals determined in bottom sediments was not high but indicative of anthropogenic human activity. There is a possibility of re-release of heavy metals from the sediment into the water when hydrodynamic conditions or environmental factors (pH, redox potential, etc.) change, which could lead to secondary water pollution. The data obtained will be of great importance to both researchers studying river systems and the population living in the area. Full article
(This article belongs to the Special Issue Water and Sediment Quality Assessment)
Show Figures

Figure 1

15 pages, 5229 KiB  
Article
HYPER: Computer-Assisted Optimal Pump-as-Turbine (PAT) Selection for Microhydropower Generation and Pressure Regulation in a Water Distribution Network (WDN)
by Gustavo Marini, Francesco Di Menna, Marco Maio and Nicola Fontana
Water 2023, 15(15), 2807; https://doi.org/10.3390/w15152807 - 3 Aug 2023
Cited by 7 | Viewed by 1346
Abstract
Although pressure reducing valves (PRVs) have traditionally been employed to regulate pressure and reducer water leakage, researchers have been increasingly investigating the strategy of micro-hydropower generation using pumps as turbines (PATs) to enable both pressure reduction and energy production as an alternative strategy [...] Read more.
Although pressure reducing valves (PRVs) have traditionally been employed to regulate pressure and reducer water leakage, researchers have been increasingly investigating the strategy of micro-hydropower generation using pumps as turbines (PATs) to enable both pressure reduction and energy production as an alternative strategy in water distribution networks (WDNs). However, due to the continuous variability of flow discharge during the day, selecting the optimal PAT remains a challenging issue. To address this, the authors have developed HYPER, a freely available software app that implements an innovative approach for selecting the most suitable PAT in systems that involve both hydraulic and/or electrical regulation. In enabling the identification of the PAT parameters that maximize energy production, HYPER thus provides a fast and effective PAT selection tool. The effectiveness of the proposed approach was further demonstrated with application to a real WDN. Four operational patterns varying in terms of available flow and head drop were considered, showing that the most efficient pumps consistently tended to be located in close proximity to the maximum produced energy. Furthermore, the results confirmed that hydraulic regulation and coupled hydraulic/electric regulation-based installation layouts represent the best solutions in terms of energy produced. The solely electrical regulation option, given its poor flexibility, returns in all cases lower energy production with the lower adaptability of commercial pumps. Full article
(This article belongs to the Special Issue Integrated Management of Water Distribution Systems)
Show Figures

Figure 1

40 pages, 5612 KiB  
Review
Toxic Algae in Inland Waters of the Conterminous United States—A Review and Synthesis
by Reynaldo Patiño, Victoria G. Christensen, Jennifer L. Graham, Jane S. Rogosch and Barry H. Rosen
Water 2023, 15(15), 2808; https://doi.org/10.3390/w15152808 - 3 Aug 2023
Cited by 19 | Viewed by 9719
Abstract
Cyanobacteria are the most common toxigenic algae in inland waters. Their toxins can affect the health of aquatic and terrestrial organisms, including humans. Other algal groups, such as haptophytes (e.g., Prymnesium parvum) and euglenoids (e.g., Euglena sanguinea), can also form harmful [...] Read more.
Cyanobacteria are the most common toxigenic algae in inland waters. Their toxins can affect the health of aquatic and terrestrial organisms, including humans. Other algal groups, such as haptophytes (e.g., Prymnesium parvum) and euglenoids (e.g., Euglena sanguinea), can also form harmful algal blooms (HABs) whose toxins cause injury to aquatic biota but currently have no known effects on human health. Prymnesium parvum, however, is responsible for some of the worst HAB-related ecological disasters recorded in inland waters. Here, we provide an overview of the primary toxigenic algae found in U.S. inland waters: cyanobacteria (planktonic forms), P. parvum, and E. sanguinea with the objective of describing their similarities and differences in the areas of HAB ecology, algal toxins, and the potential for future range expansion of HABs. A detailed account of bloom habitats and their known associations with land cover and use is provided from the perspective of water quality. This review revealed that salinity may have an influence on inland cyanobacterial blooms and cyanotoxins that had not been fully recognized previously. Full article
Show Figures

Figure 1

17 pages, 3876 KiB  
Article
Long-Term Performance of Blue-Green Roof Systems—Results of a Building-Scale Monitoring Study in Hamburg, Germany
by Michael Richter and Wolfgang Dickhaut
Water 2023, 15(15), 2806; https://doi.org/10.3390/w15152806 - 3 Aug 2023
Cited by 9 | Viewed by 3117
Abstract
For the first time, a long-term monitoring study with different full-scale blue-green roof (BGR) types was conducted. Within a pilot project from Hamburg’s Rainwater InfraStructure Adaptation (RISA) framework, four different BGR types were built in 2015 for long-term evaluation and comparison with each [...] Read more.
For the first time, a long-term monitoring study with different full-scale blue-green roof (BGR) types was conducted. Within a pilot project from Hamburg’s Rainwater InfraStructure Adaptation (RISA) framework, four different BGR types were built in 2015 for long-term evaluation and comparison with each other. The test site was created to find out to what extent BGRs are able to improve hydrological performance and if increased water supply affects vegetation development and species diversity. Therefore, the roofs were equipped with hydrologic monitoring systems, their retention performance was evaluated, and vegetation analysis was conducted. During 2017–2023, between 64 and 74% of the precipitation was retained on the roofs, and in the summer months there was hardly any outflow from the roofs. For single (heavy) rain events, high retention capacities, low outflow intensities, and high detention times were demonstrated. On the BGRs where rainwater is permanently stored on the roof, the vegetation species’ composition changed in the long term, resulting in an increase in biodiversity. The studied BGRs are effective in reducing flood risk from heavy rain events and can increase evaporative cooling and biodiversity. Therefore, such BGRs are a blue-green infrastructure with far-reaching positive effects. Full article
(This article belongs to the Special Issue Challenges and Sustainability of Water Sensitive Cities)
Show Figures

Figure 1

51 pages, 6085 KiB  
Review
Selection Frameworks for Potential Rainwater Harvesting Sites in Arid and Semi-Arid Regions: A Systematic Literature Review
by Safaa Ahmed, Mike Jesson and Soroosh Sharifi
Water 2023, 15(15), 2782; https://doi.org/10.3390/w15152782 - 31 Jul 2023
Cited by 9 | Viewed by 4718
Abstract
Water shortage is a concern in arid and semi-arid regions across the globe due to their lack of precipitation and unpredictable rainfall patterns. In the past few decades, many frameworks, each with their own criteria, have been used to identify and rank sites [...] Read more.
Water shortage is a concern in arid and semi-arid regions across the globe due to their lack of precipitation and unpredictable rainfall patterns. In the past few decades, many frameworks, each with their own criteria, have been used to identify and rank sites for rainwater harvesting (RWH), a process which is critical for the improvement and maintenance of water resources, particularly in arid and semi-arid regions. This study reviews the present state of the art in rainwater harvesting site selection for such regions and identifies areas for additional research. The results of a systematic review performed based on two major databases of engineering research, Scopus and Engineering Village, are presented. Sixty-eight relevant studies were found and critically analysed to identify patterns and unique features in the frameworks used. The results of this study show that 41% of the frameworks consider both biophysical and socioeconomic criteria, whereas the remaining 59% of the frameworks depend on biophysical criteria alone. The importance of each criterion is encapsulated through a suitability score, with 21% of the frameworks using a binary (0 or 1) indicator of whether the site matches a criterion or not and the other frameworks using graded scales of differing granularities, with 52% using a low-resolution scale of 1 to 3, 4, or 5, 7% using a medium-resolution scale of 1 to 10, and a further 7% using a high-resolution scale of 1 to 100. The remaining 13% of the frameworks did not specify the scale used. Importantly, this paper concludes that all existing frameworks for selecting RWH sites are solely based on biophysical and/or socioeconomic criteria; ecological impacts, the consideration of which is vital for building RWH systems sustainably, are currently ignored. Full article
Show Figures

Figure 1

28 pages, 7266 KiB  
Article
Photodegradation of Rhodamine B and Phenol Using TiO2/SiO2 Composite Nanoparticles: A Comparative Study
by Maria-Anna Gatou, Evangelos Fiorentis, Nefeli Lagopati and Evangelia A. Pavlatou
Water 2023, 15(15), 2773; https://doi.org/10.3390/w15152773 - 31 Jul 2023
Cited by 18 | Viewed by 3339
Abstract
Organic pollutants found in industrial effluents contribute to significant environmental risks. Degradation of these pollutants, particularly through photocatalysis, is a promising strategy ensuring water purification and supporting wastewater treatment. Thus, photodegradation of rhodamine B and phenol under visible-light irradiation using TiO2/SiO [...] Read more.
Organic pollutants found in industrial effluents contribute to significant environmental risks. Degradation of these pollutants, particularly through photocatalysis, is a promising strategy ensuring water purification and supporting wastewater treatment. Thus, photodegradation of rhodamine B and phenol under visible-light irradiation using TiO2/SiO2 composite nanoparticles was within the main scopes of this study. The nanocomposite was synthesized through a wet impregnation method using TiO2 and SiO2 nanopowders previously prepared via a facile sol–gel approach and was fully characterized. The obtained results indicated a pure anatase phase, coupled with increased crystallinity (85.22%) and a relative smaller crystallite size (1.82 nm) in relation to pure TiO2 and SiO2 and an enhanced specific surface area (50 m2/g) and a reduced energy band gap (3.18 eV). Photodegradation of rhodamine B upon visible-light irradiation was studied, showing that the TiO2/SiO2 composite reached total (100%) degradation within 210 min compared to pure TiO2 and SiO2 analogues, which achieved a ≈45% and ≈43% degradation rate, respectively. Similarly, the composite catalyst presented enhanced photocatalytic performance under the same irradiation conditions towards the degradation of phenol, leading to 43.19% degradation within 210 min and verifying the composite catalyst’s selectivity towards degradation of rhodamine B dye as well as its enhanced photocatalytic efficiency towards both organic compounds compared to pure TiO2 and SiO2. Additionally, based on the acquired experimental results, ●O2, h+ and e were found to be the major reactive oxygen species involved in rhodamine B’s photocatalytic degradation, while ●OH radicals were pivotal in the photodegradation of phenol under visible irradiation. Finally, after the TiO2/SiO2 composite catalyst was reused five times, it indicated negligible photodegradation efficiency decrease towards both organic compounds. Full article
(This article belongs to the Special Issue Advanced Applications of Nanoparticles in Water and Wastewater)
Show Figures

Figure 1

14 pages, 8931 KiB  
Article
Spatiotemporal Evolution and Nowcasting of the 2022 Yangtze River Mega-Flash Drought
by Miaoling Liang, Xing Yuan, Shiyu Zhou and Zhanshan Ma
Water 2023, 15(15), 2744; https://doi.org/10.3390/w15152744 - 29 Jul 2023
Cited by 17 | Viewed by 2327
Abstract
Flash droughts challenge early warnings due to their rapid onset, which requires a proper drought index and skillful nowcasting system. A few studies have assessed the nowcast skill for flash droughts using a one-dimensional index, but whether the models can capture their spatiotemporal [...] Read more.
Flash droughts challenge early warnings due to their rapid onset, which requires a proper drought index and skillful nowcasting system. A few studies have assessed the nowcast skill for flash droughts using a one-dimensional index, but whether the models can capture their spatiotemporal evolution remains unclear. In this study, a three-dimensional meteorological flash drought index based on the percentile of 15-day moving average precipitation minus evapotranspiration (P-ET) is developed. The index is then used to investigate the spatiotemporal evolution of a mega-flash drought that occurred in the Yangtze River basin during the summer of 2022. The results show that the mega-flash drought started at the beginning of July in the upper reaches of the river and expanded to the middle and lower reaches at the beginning of August due to the spread of the high-pressure system. The evolution is well captured by the proposed three-dimensional index. The spatial correlations between the China Meteorological Administration global medium-range ensemble forecast system (CMA-GFS)’s nowcast and reanalysis ranged from 0.58 to 0.85, and the hit rate and equitable threat score are 0.54 and 0.26, respectively. This study shows that the CMA-GFS nowcast of the P-ET index roughly captured the drought’s evolution, which can be used for flash drought early warnings and water resource management. Full article
(This article belongs to the Special Issue Challenges of Hydrological Drought Monitoring and Prediction)
Show Figures

Graphical abstract

17 pages, 4010 KiB  
Article
Advancing Water Quality Research: K-Nearest Neighbor Coupled with the Improved Grey Wolf Optimizer Algorithm Model Unveils New Possibilities for Dry Residue Prediction
by Hichem Tahraoui, Selma Toumi, Amel Hind Hassein-Bey, Abla Bousselma, Asma Nour El Houda Sid, Abd-Elmouneïm Belhadj, Zakaria Triki, Mohammed Kebir, Abdeltif Amrane, Jie Zhang, Amin Aymen Assadi, Derradji Chebli, Abdallah Bouguettoucha and Lotfi Mouni
Water 2023, 15(14), 2631; https://doi.org/10.3390/w15142631 - 20 Jul 2023
Cited by 23 | Viewed by 2591
Abstract
Monitoring stations have been established to combat water pollution, improve the ecosystem, promote human health, and facilitate drinking water production. However, continuous and extensive monitoring of water is costly and time-consuming, resulting in limited datasets and hindering water management research. This study focuses [...] Read more.
Monitoring stations have been established to combat water pollution, improve the ecosystem, promote human health, and facilitate drinking water production. However, continuous and extensive monitoring of water is costly and time-consuming, resulting in limited datasets and hindering water management research. This study focuses on developing an optimized K-nearest neighbor (KNN) model using the improved grey wolf optimization (I-GWO) algorithm to predict dry residue quantities. The model incorporates 20 physical and chemical parameters derived from a dataset of 400 samples. Cross-validation is employed to assess model performance, optimize parameters, and mitigate the risk of overfitting. Four folds are created, and each fold is optimized using 11 distance metrics and their corresponding weighting functions to determine the best model configuration. Among the evaluated models, the Jaccard distance metric with inverse squared weighting function consistently demonstrates the best performance in terms of statistical errors and coefficients for each fold. By averaging predictions from the models in the four folds, an estimation of the overall model performance is obtained. The resulting model exhibits high efficiency, with remarkably low errors reflected in the values of R, R2, R2ADJ, RMSE, and EPM, which are reported as 0.9979, 0.9958, 0.9956, 41.2639, and 3.1061, respectively. This study reveals a compelling non-linear correlation between physico-chemical water attributes and the content of dry tailings, indicating the ability to accurately predict dry tailing quantities. By employing the proposed methodology to enhance water quality models, it becomes possible to overcome limitations in water quality management and significantly improve the precision of predictions regarding critical water parameters. Full article
(This article belongs to the Special Issue Water Treatment Modeling and Nutrient Recovery Processes)
Show Figures

Figure 1

18 pages, 8410 KiB  
Article
Representation of Hydrological Components under a Changing Climate—A Case Study of the Uruguay River Basin Using the New Version of the Soil and Water Assessment Tool Model (SWAT+)
by Osvaldo Luis Barresi Armoa, Sabine Sauvage, Tobias Houska, Katrin Bieger, Christoph Schürz and José Miguel Sánchez Pérez
Water 2023, 15(14), 2604; https://doi.org/10.3390/w15142604 - 18 Jul 2023
Cited by 8 | Viewed by 3183
Abstract
SWAT+ is a revised version of the SWAT model that has the capability to route flow across landscape units in the catchment, which is expected to improve the spatial representation of processes in watersheds. We applied the SWAT+ model in the Uruguay River [...] Read more.
SWAT+ is a revised version of the SWAT model that has the capability to route flow across landscape units in the catchment, which is expected to improve the spatial representation of processes in watersheds. We applied the SWAT+ model in the Uruguay River Basin, an international river basin in South America with a total surface area of 370,000 km2, in order to (1) assess the water balance components, (2) represent their spatial distribution, and (3) examine their changes over time. The catchment was divided into uplands and floodplains and a decision table rule was developed based on streamflow data. The SPOTPY Python library was linked to SWAT+ and used as a tool to perform sensitivity analyses and calibration. The model represented the fluctuations of discharge well, although there was a general tendency to underestimate peak flows. Blue (precipitation and runoff) and green (evapotranspiration and soil water content) hydrological components were spatially plotted. Overall, SWAT+ simulated a realistic spatial distribution of the water cycle components. A seasonal Mann–Kendall test suggests a positive increasing trend in the average temperature (p-value = 0.007; Sen’s slope = 0.09), the soil water content (p-value = 0.02; Sen’s slope = 1.29), and evapotranspiration (p-value: 0.03; Sen’s slope = 1.97), indicating that the ecosystem experienced a changing climate during the simulation period. The findings presented in this study are of significant value for the impacts of sustainable management and the evaluation of climate change on water resources in the Uruguay River Basin. Full article
Show Figures

Figure 1

13 pages, 2585 KiB  
Article
Comparative Analysis of Composition and Porosity of the Biogenic Powder Obtained from Wasted Crustacean Exoskeletonsafter Carotenoids Extraction for the Blue Bioeconomy
by Fran Nekvapil, Maria Mihet, Geza Lazar, Simona Cîntă Pinzaru, Ana Gavrilović, Alexandra Ciorîță, Erika Levei, Tudor Tamaș and Maria-Loredana Soran
Water 2023, 15(14), 2591; https://doi.org/10.3390/w15142591 - 16 Jul 2023
Cited by 5 | Viewed by 2378
Abstract
The recovery and recycling of wasted resources are at the forefront of contemporary global issues. Methods of addressing several different issues may go hand-in-hand with each other, such as linking food waste recycling into bio-based adsorbent materials and wastewater treatment. Crustacean exoskeletons are [...] Read more.
The recovery and recycling of wasted resources are at the forefront of contemporary global issues. Methods of addressing several different issues may go hand-in-hand with each other, such as linking food waste recycling into bio-based adsorbent materials and wastewater treatment. Crustacean exoskeletons are promising candidates for bio-friendly adsorbents; however, maximizing their efficiency requires the optimization of processing technology. Crustacean meat offers an (often luxury) culinary delicacy, while their waste exoskeletons offer opportunities for smart recycling of the magnesian calcite nanoporous biocomposite. Here, we conduct a structural characterization of the exoskeletons of three crustacean species to assess how the extraction of valuable carotenoids affects prospects for the further valorization of their porous powder. The exoskeleton powder’s composition and morphology were investigated by SEM, Raman spectroscopy, FTIR and XRD. The biomineral component magnesian calcite was recorded both in native and in post-extraction exoskeleton powder. Acetone extraction, however, partially removed organic matter from the exoskeletons, resulting in the porosity of the respective powder increasing significantly from below 10 m2 g−1 in the native powder to over 32 m2 g−1 in post-extraction samples of blue crab and spider crab exoskeletons—while the spiny lobster exoskeleton exhibited low porosity, as measured by the BET method. This new insight could improve exoskeleton processing in the sustainable circular economy and applied blue bioeconomy—most notably for adsorbent materials for pollutants dissolved in water or as ordered, nature-derived nanostructured templates. Full article
Show Figures

Figure 1

17 pages, 1446 KiB  
Article
Exploring the Viability of Utilizing Treated Wastewater as a Sustainable Water Resource for Green Hydrogen Generation Using Solid Oxide Electrolysis Cells (SOECs)
by Marina Maddaloni, Matteo Marchionni, Alessandro Abbá, Michele Mascia, Vittorio Tola, Maria Paola Carpanese, Giorgio Bertanza and Nancy Artioli
Water 2023, 15(14), 2569; https://doi.org/10.3390/w15142569 - 13 Jul 2023
Cited by 14 | Viewed by 5730
Abstract
In response to the European Union’s initiative toward achieving carbon neutrality, the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches, Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution, [...] Read more.
In response to the European Union’s initiative toward achieving carbon neutrality, the utilization of water electrolysis for hydrogen production has emerged as a promising avenue for decarbonizing current energy systems. Among the various approaches, Solid Oxide Electrolysis Cell (SOEC) presents an attractive solution, especially due to its potential to utilize impure water sources. This study focuses on modeling a SOEC supplied with four distinct streams of treated municipal wastewaters, using the Aspen Plus software. Through the simulation analysis, it was determined that two of the wastewater streams could be effectively evaporated and treated within the cell, without generating waste liquids containing excessive pollutant concentrations. Specifically, by evaporating 27% of the first current and 10% of the second, it was estimated that 26.2 kg/m3 and 9.7 kg/m3 of green hydrogen could be produced, respectively. Considering the EU’s target for Italy is to have 5 GW of installed power capacity by 2030 and the mass flowrate of the analyzed wastewater streams, this hydrogen production could meet anywhere from 0.4% to 20% of Italy’s projected electricity demand. Full article
Show Figures

Figure 1

19 pages, 2900 KiB  
Article
Utopian River Planning and Hydrosocial Territory Transformations in Colombia and Spain
by Bibiana Duarte-Abadía
Water 2023, 15(14), 2545; https://doi.org/10.3390/w15142545 - 11 Jul 2023
Cited by 8 | Viewed by 2422
Abstract
This paper examines how utopian river planning has arisen in Colombia and Spain since the late nineteenth century. Specifically, the paper contributes to understanding how particular ideologies of modernism and development present in territorial planning connect both countries. Taking Thomas More’s classic work [...] Read more.
This paper examines how utopian river planning has arisen in Colombia and Spain since the late nineteenth century. Specifically, the paper contributes to understanding how particular ideologies of modernism and development present in territorial planning connect both countries. Taking Thomas More’s classic work ‘Utopia’ as the analytical reference, I analyze how utopian tendencies have traveled through time and space to shape territorial planning and water governance. In both countries, this was evident in the late nineteenth century through the political project to strengthen the nation state. For Spain, I describe the regenerationist movement and the hydraulic utopia led by the Spanish intellectual Joaquín Costa, who forged the dream of a water nationhood. By contrast, in Colombia, several political intellectuals looked at Europe and North America as a source of inspiration to achieve progress by controlling rivers. Through the method of disjunctive comparison, I show how the same utopian notions are expressed in similar ways in distinct contexts: violently governing the flows of rivers, standardizing minds and ordering territories towards capital growth. This paper contributes to grasping the notions and roots of the discourses that have colonized the political water agendas in both countries. Full article
Show Figures

Figure 1

20 pages, 1135 KiB  
Review
Sustainability of High-Density Olive Orchards: Hints for Irrigation Management and Agroecological Approaches
by Justino Sobreiro, Maria Isabel Patanita, Manuel Patanita and Alexandra Tomaz
Water 2023, 15(13), 2486; https://doi.org/10.3390/w15132486 - 6 Jul 2023
Cited by 13 | Viewed by 5478
Abstract
The production of olive oil in Portugal and other countries of the Mediterranean region has greatly increased in recent years. Intensification efforts have focused on the growth of the planted area, but also on the increase of the orchards density and the implementation [...] Read more.
The production of olive oil in Portugal and other countries of the Mediterranean region has greatly increased in recent years. Intensification efforts have focused on the growth of the planted area, but also on the increase of the orchards density and the implementation of irrigation systems. Concerns about possible negative impacts of modern olive orchard production have arisen in the last years, questioning the trade-offs between the production benefits and the environmental costs. Therefore, it is of great importance to review the research progress made regarding agronomic options that preserve ecosystem services in high-density irrigated olive orchards. In this literature review, a keywords-based search of academic databases was performed using, as primary keywords, irrigated olive orchards, high density/intensive/hedgerow olive orchards/groves, irrigation strategies, and soil management. Aside from 42 general databases, disseminated research, and concept-framing publications, 112 specific studies were retrieved. The olive orchards were classified as either traditional (TD) (50–200 trees ha−1), medium-density (MD) (201–400 trees ha−1), high-density (HD) (401–1500 trees ha−1), or super-high-density (SHD) orchards (1501–2500 trees ha−1). For olive crops, the ETc ranged from 0.65 to 0.70, and could fall as low as 0.45 in the summer without a significant decrease in oil productivity. Several studies have reported that intermediate irrigation levels linked with the adoption of deficit irrigation strategies, like regulated deficit irrigation (RDI) or partial rootzone drying (PRD), can be effective options. With irrigation, it is possible to implement agroecosystems with cover crops, non-tillage, and recycling of pruning residues. These practices reduce the soil erosion and nutrient leaching and improve the soil organic carbon by 2 to 3 t C ha−1 year−1. In this situation, in general, the biodiversity of plants and animals also increases. We expect that this work will provide a reference for research works and resource planning focused on the improvement of the productive and environmental performance of dense irrigated olive orchards, thereby contributing to the overall enhancement of the sustainability of these expanding agroecosystems. Full article
(This article belongs to the Special Issue Agricultural Practices to Improve Irrigation Sustainability)
Show Figures

Graphical abstract

26 pages, 7218 KiB  
Article
A Machine Learning Approach for the Estimation of Total Dissolved Solids Concentration in Lake Mead Using Electrical Conductivity and Temperature
by Godson Ebenezer Adjovu, Haroon Stephen and Sajjad Ahmad
Water 2023, 15(13), 2439; https://doi.org/10.3390/w15132439 - 2 Jul 2023
Cited by 16 | Viewed by 4685
Abstract
Total dissolved solids (TDS) concentration determination in water bodies is sophisticated, time-consuming, and involves expensive field sampling and laboratory processes. TDS concentration has, however, been linked to electrical conductivity (EC) and temperature. Compared to monitoring TDS concentrations, monitoring EC and temperature is simpler, [...] Read more.
Total dissolved solids (TDS) concentration determination in water bodies is sophisticated, time-consuming, and involves expensive field sampling and laboratory processes. TDS concentration has, however, been linked to electrical conductivity (EC) and temperature. Compared to monitoring TDS concentrations, monitoring EC and temperature is simpler, inexpensive, and takes less time. This study, therefore, applied several machine learning (ML) approaches to estimate TDS concentration in Lake Mead using EC and temperature data. Standalone models including the support vector machine (SVM), linear regressors (LR), K-nearest neighbor model (KNN), the artificial neural network (ANN), and ensemble models such as bagging, gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), and extra trees (ET) models were used in this study. The models’ performance were evaluated using several performance metrics aimed at providing a holistic assessment of each model. Metrics used include the coefficient of determination (R2), mean absolute error (MAE), percent mean absolute relative error (PMARE), root mean square error (RMSE), the scatter index (SI), Nash–Sutcliffe model efficiency (NSE) coefficient, and percent bias (PBIAS). Results obtained showed varying model performance at the training, testing, and external validation stage of the models, with obtained R2 of 0.77–1.00, RMSE of 2.28–37.68 mg/L, an MAE of 0.14–22.67 mg/L, a PMARE of 0.02–3.42%, SI of 0.00–0.06, NSE of 0.77–1.00, and a PBIAS of 0.30–0.97 across all models for the three datasets. We utilized performance rankings to assess the model performance and found the LR to be the best-performing model on the external validation datasets among all the models (R2 of 0.82 and RMSE of 33.09 mg/L), possibly due to the established existence of a relationship between TDS and EC, although this may not always be linear. Similarly, we found the XGBoost to be the best-performing ensemble model based on the external validation with R2 of 0.81 and RMSE of 34.19 mg/L. Assessing the overall performance of the models across all the datasets, however, revealed GBM to produce a superior performance based on the ranks, possibly due to its ability to reduce overfitting and improve generalizations. The findings from this study could be employed in assisting water resources managers and stakeholders in effective monitoring and management of water resources to ensure their sustainability. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 8647 KiB  
Article
Harmful Algal Blooms: A Prolific Issue in Urban Stormwater Ponds
by Amy E. Grogan, Catharina Alves-de-Souza, Lawrence B. Cahoon and Michael A. Mallin
Water 2023, 15(13), 2436; https://doi.org/10.3390/w15132436 - 1 Jul 2023
Cited by 15 | Viewed by 8096
Abstract
Nutrient-driven cyanobacteria blooms are an increasingly common issue in freshwater environments, particularly in anthropogenically altered landscapes. As stormwater runoff is one of the largest sources of nutrients for freshwater bodies, stormwater retention ponds in urban and suburban areas are likely environments for harmful [...] Read more.
Nutrient-driven cyanobacteria blooms are an increasingly common issue in freshwater environments, particularly in anthropogenically altered landscapes. As stormwater runoff is one of the largest sources of nutrients for freshwater bodies, stormwater retention ponds in urban and suburban areas are likely environments for harmful cyanobacteria blooms and were thus targeted for an in-depth investigation assessing taxonomic composition, bloom morphological composition, toxicity, and impact of nutrients and other environmental drivers. Eighty-seven algal blooms were sampled from 2019 to 2022 in the greater Wilmington, North Carolina, area. Physicochemical parameters were recorded, and blooms were classified by type (defined as surface mat, surface scum, water column distribution, or benthic mat) and dominant taxa. Blooms of potentially toxic cyanobacteria genera in the water column of stormwater retention ponds were most prevalent. Dissolved inorganic phosphorus was significantly related to chlorophyll-α, Microcystis bloom formation, and the production of microcystin. Seventeen potentially toxic cyanobacteria genera were identified in retention ponds, some of whose blooms demonstrated detectable microcystin. Monoclonal cultures isolated from some blooms were found to produce anabaenopeptin and saxitoxin. The results demonstrate a higher incidence of potentially toxic cyanobacteria over other bloom-forming taxa (chlorophytes, euglenoids, chrysophytes, dinoflagellates, and diatoms) in the 39 water bodies sampled. The frequency of blooms occurring in stormwater ponds and the diversity of potentially toxic cyanobacteria identified suggest such harmful blooms are likely widespread in similar freshwater environments across multiple urbanizing areas. The blooms sampled in this study were all within residential, commercial, or recreational areas easily accessible to people, presenting serious hazards to both environmental and public health. Full article
(This article belongs to the Special Issue Eutrophication and Harmful Algae in Aquatic Ecosystems)
Show Figures

Graphical abstract

15 pages, 1930 KiB  
Article
Drought-Induced Salinity Intrusion Affects Nitrogen Removal in a Deltaic Ecosystem (Po River Delta, Northern Italy)
by Maria Pia Gervasio, Elisa Soana, Fabio Vincenzi, Monia Magri and Giuseppe Castaldelli
Water 2023, 15(13), 2405; https://doi.org/10.3390/w15132405 - 29 Jun 2023
Cited by 12 | Viewed by 2540
Abstract
In the summer of 2022, the Po River Delta (Northern Italy), a eutrophication hotspot, was severely affected by high temperatures, exceptional lack of rainfall and saline water intrusion. The effect of saline intrusion on benthic nitrogen dynamics, and in particular the N removal [...] Read more.
In the summer of 2022, the Po River Delta (Northern Italy), a eutrophication hotspot, was severely affected by high temperatures, exceptional lack of rainfall and saline water intrusion. The effect of saline intrusion on benthic nitrogen dynamics, and in particular the N removal capacity, was investigated during extreme drought conditions. Laboratory incubations of intact sediment cores were used to determine denitrification and DNRA rates at three sites along a salinity gradient in the Po di Goro, an arm of the Po River Delta. Denitrification was found to be the main process responsible for nitrate reduction in freshwater and slightly saline sites, whereas DNRA predominated in the most saline site, highlighting a switch in N cycling between removal and recycling. These results provide evidence that salinity is a key factor in regulating benthic N metabolism in transitional environments. In a climate change scenario, salinity intrusion, resulting from long periods of low river discharge, may become an unrecognized driver of coastal eutrophication by promoting the dissimilatory nitrate reduction to ammonium and N recycling of bioactive nitrogen within the ecosystem, rather than its permanent removal by denitrification. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 1850 KiB  
Article
Optimization of Adsorption Conditions Using Response Surface Methodology for Tetracycline Removal by MnFe2O4/Multi-Wall Carbon Nanotubes
by Weigao Zhao, Chenjie Hao, Yiping Guo, Wanfei Shao, Yimei Tian and Peng Zhao
Water 2023, 15(13), 2392; https://doi.org/10.3390/w15132392 - 28 Jun 2023
Cited by 21 | Viewed by 3889
Abstract
In this study, the optimal conditions and effects of external factors on tetracycline adsorption by magnetic multi-walled carbon nanotubes (MMWCNTs) were established by a response surface methodology for the first time. Batch adsorption experiments showed that increasing the dosage and contact time effectively [...] Read more.
In this study, the optimal conditions and effects of external factors on tetracycline adsorption by magnetic multi-walled carbon nanotubes (MMWCNTs) were established by a response surface methodology for the first time. Batch adsorption experiments showed that increasing the dosage and contact time effectively promoted the adsorption of tetracycline and maximum removal of 97.93–99.13% was achieved at pH 3–7. The pseudo-second-order model and Fourier-transform infrared spectroscopy spectra indicated that the mechanism of adsorption may be π–π electron interaction and cation–π electron bonding. Design Expert was utilized to develop a response surface methodology for the analysis and optimization of tetracycline adsorption by magnetic multi-walled carbon nanotubes. The Box–Behnken design (BBD) results showed that the optimization exhibited high significance and reliability. The main effect plots and Pareto chart indicated that pH exerted a significant individual effect on the regulation of adsorption, while 3D response surface plots and interaction effect plots exhibited a significant antagonistic interaction between pH and contact time. A maximum tetracycline removal of 99.16% was achieved under the optimal conditions of 12 mg adsorbent dosage at pH 5.43, with an adsorption time of 120 min. Mathematical and experimental results confirmed the accuracy of the established optimal conditions. Full article
(This article belongs to the Special Issue Green and Low Carbon Development of Water Treatment Technology)
Show Figures

Graphical abstract

15 pages, 16280 KiB  
Article
Baseline Study on Microplastic Distribution in the Open Surface Waters of the Korean Southwest Sea
by Byeong Kyu Min, Hui Ho Jeong, Mi Jo Ju, Uni Ko, Keum Hyang Dae, Hyun Jung Kim, Chon Rae Cho, Ho Young Soh, Yasuhiro Ishibashi and Hyeon Seo Cho
Water 2023, 15(13), 2393; https://doi.org/10.3390/w15132393 - 28 Jun 2023
Cited by 9 | Viewed by 3364
Abstract
This study investigated microplastic distribution characteristics by collecting surface seawater from sea areas to the south of Jeju Island in August 2020. The average microplastic abundance was 0.46 ± 0.27 particles/L (n = 23), and PE had a high ratio, averaging 53%. The [...] Read more.
This study investigated microplastic distribution characteristics by collecting surface seawater from sea areas to the south of Jeju Island in August 2020. The average microplastic abundance was 0.46 ± 0.27 particles/L (n = 23), and PE had a high ratio, averaging 53%. The levels of fragments and fibers were observed to be 69% and 31% on average, respectively. The most common size of the microplastics was on average 0.02–0.30 mm at a level of 69%. We found a higher abundance of microplastics in the study area than in other open waters such as the Arctic Central Basin and the Atlantic Ocean, whereas the abundance was lower than that in previous studies on coastal areas. We studied an area of open sea connecting China, Japan, and the Pacific Ocean, and, in this region, the microplastic distribution varies depending on sea currents in the surrounding areas. In the summer, the western and central regions of the study sea area have low salinity levels due to discharge from China’s Yangtze River. This generally indicates that high-density plastic deposits are found in the Yangtze River estuary, and low-density plastics are found in the study area. Furthermore, this implies that low- and high-density plastics are transported in water for long periods of time due to the Taiwan Warm Current and because the eastern sea area has high salinity. Full article
Show Figures

Figure 1

13 pages, 1826 KiB  
Article
Ozonation Processes for Color Removal from Urban and Leather Tanning Wastewater
by Anna Lanzetta, Stefano Papirio, Armando Oliva, Alessandra Cesaro, Luca Pucci, Emanuele Mariano Capasso, Giovanni Esposito and Francesco Pirozzi
Water 2023, 15(13), 2362; https://doi.org/10.3390/w15132362 - 27 Jun 2023
Cited by 19 | Viewed by 3098
Abstract
The need to ensure adequate levels of both human and environmental health protection calls for the identification of efficient wastewater treatment processes that target the removal of conventional pollutants as well as emerging contaminants, including synthetic dyes. This study explores the potential of [...] Read more.
The need to ensure adequate levels of both human and environmental health protection calls for the identification of efficient wastewater treatment processes that target the removal of conventional pollutants as well as emerging contaminants, including synthetic dyes. This study explores the potential of ozone for use in the decolorization of both pretreated tannery wastewater and urban wastewater effluents. Different ozone contact times (15, 30, and 45 min) were applied to such wastewater samples at an uncontrolled (7.5–8.2) pH as well as at a pH adjusted to 10. The highest color removal efficiencies (REs) (>90%) were obtained with urban wastewater after a 45 min contact time and at pH 10. Under the same conditions, a COD RE from 31 to 51% was achieved. Even without pH adjustment, color and COD REs ranging from 81 to 92% and 39 to 41%, respectively, were obtained. A preliminary evaluation of the costs associated with the implementation of an ozonation stage within the wastewater treatment plant (WWTP) generating the urban wastewater used here was carried out. The energy cost of the ozone treatment would account for a 69% increase in the total energy cost of the WWTP, suggesting the need to identify proper strategies to enhance the cost-competitiveness of this technology. Full article
(This article belongs to the Special Issue Biological Technology for Wastewater Treatment)
Show Figures

Figure 1

18 pages, 10410 KiB  
Article
Projections of Global Drought and Their Climate Drivers Using CMIP6 Global Climate Models
by Feng Xu, Virgílio A. Bento, Yanping Qu and Qianfeng Wang
Water 2023, 15(12), 2272; https://doi.org/10.3390/w15122272 - 17 Jun 2023
Cited by 13 | Viewed by 4556
Abstract
Due to the complex coupling between drought and climatic factors, the future drought conditions that might occur under climate change is still unclear. In this research, we used the daily SPEI algorithm to project global drought conditions during 2016–2100 based on the data [...] Read more.
Due to the complex coupling between drought and climatic factors, the future drought conditions that might occur under climate change is still unclear. In this research, we used the daily SPEI algorithm to project global drought conditions during 2016–2100 based on the data from phase 6 of the Coupled Model Intercomparison Project (CMIP6). We also employed partial correlation analysis to explore the influence of climate factors on drought. Our analyses show the following: (1) Drought conditions projected by CMIP6 under different models are similar; however, they can vary widely across regions. (2) According to the MK trend test, drought conditions in most regions around the world are expected to become increasingly severe in the future, and this trend is significant. (3) Based on the results of the partial correlation analysis results, it is understood that drought events in most regions worldwide are primarily driven by precipitation. This study contributes to the discussion of projecting future drought conditions and expands the application by utilizing the state−of−the−art CMIP6 climate models and scenarios.Highlight Full article
Show Figures

Figure 1

24 pages, 2333 KiB  
Review
Practices for Eutrophic Shallow Lake Water Remediation and Restoration: A Critical Literature Review
by Antônio Cavalcante Pereira and Catherine N. Mulligan
Water 2023, 15(12), 2270; https://doi.org/10.3390/w15122270 - 17 Jun 2023
Cited by 20 | Viewed by 11291
Abstract
Lake water has been impaired with nutrients due to the synergic action of human-made activities and climate change. This situation is increasing eutrophication around the globe faster than before, causing water degradation, loss of its uses, and water-associated economic and health effects. Following [...] Read more.
Lake water has been impaired with nutrients due to the synergic action of human-made activities and climate change. This situation is increasing eutrophication around the globe faster than before, causing water degradation, loss of its uses, and water-associated economic and health effects. Following the Sustainable Development Goal 6, more precisely its target 6.6, nations are already behind schedule in protecting and restoring water-related ecosystems (i.e., rivers and lakes). As concerns with eutrophication are escalating, eutrophic water remediation practices are the keys for restoring those lake waters. Diverse methodologies have been investigated focusing on the nutrient that limit primary productivity (i.e., phosphorus), but few have been applied to in-lake eutrophic water remediation. Thus, the objective of this paper is to provide an overview and critical comments on approaches and practices for facing eutrophic lake water remediation. Information on the successful cases and possible challenges/difficulties in the peer-reviewed literature are presented. This should be useful for supporting further remediation project selection by the stakeholders involved. In summary, for a successful and durable restoration project, external nutrient inputs need to be managed, followed by holistic and region-specific methods to attenuate internal legacy nutrients that are continually released into the water column from the sediment. When aligned well with stakeholder participation and continuous monitoring, these tools are the keys to long-lasting water restoration. Full article
(This article belongs to the Topic Sustainable Environmental Technologies)
Show Figures

Figure 1

30 pages, 2014 KiB  
Review
Effects of Glyphosate or Glyphosate-Based Herbicide during the Zebrafish Life Cycle: A Review Addressing the Mechanisms of Toxicity
by Germano A. B. Lanzarin, Luís M. Félix, António Fontaínhas-Fernandes, Sandra Mariza Monteiro and Carlos Venâncio
Water 2023, 15(12), 2276; https://doi.org/10.3390/w15122276 - 17 Jun 2023
Cited by 12 | Viewed by 3903
Abstract
Herbicides with glyphosate (GLY) as an active ingredient (a.i.) are increasingly used, and GLY is currently the most used herbicide in the world. Consequently, its residues have often been found in aquatic ecosystems. Investigating how this substance affects aquatic species is a priority [...] Read more.
Herbicides with glyphosate (GLY) as an active ingredient (a.i.) are increasingly used, and GLY is currently the most used herbicide in the world. Consequently, its residues have often been found in aquatic ecosystems. Investigating how this substance affects aquatic species is a priority in ecotoxicology research, especially in fish, as they can absorb and concentrate toxins. In this sense, a critical review was performed, synthesizing data from the peer-reviewed bibliography, reporting on the toxicity of exposure to pure GLY and glyphosate-based herbicides (GBHs), using zebrafish as an animal model. The concentrations of this herbicide that induced toxic effects are highly variable, with some exceeding the limits determined by regulatory agencies. Globally, relevant toxic effects have been reported in zebrafish, namely, teratogenic effects incompatible with life, which translates directly into an increase in reported zebrafish mortality. Neurotoxicity, genotoxicity, changes in energy metabolism and oxidative stress, and immune and hormonal system dysfunction with an impact on fish reproduction were also described. In conclusion, both GLY and GBHs may induce damage to zebrafish, compromising their survival, reproduction, and maintenance. These results may be valid and applied to other fish species and aquatic ecosystems. Full article
(This article belongs to the Special Issue Aquatic Organisms in Relation to Toxic Environmental Pollutants)
Show Figures

Figure 1

29 pages, 10391 KiB  
Article
Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model
by Ying Wang, Rui Li, Xiangchuan Wu, Yuting Yan, Changli Wei, Ming Luo, Yong Xiao and Yunhui Zhang
Water 2023, 15(12), 2233; https://doi.org/10.3390/w15122233 - 14 Jun 2023
Cited by 23 | Viewed by 5622
Abstract
Groundwater pollution has emerged as a significant water crisis in various regions around the globe. Groundwater serves as a crucial source of water for human consumption and agricultural activities in the Sichuan Basin where groundwater quality has yet to be concentrated. A total [...] Read more.
Groundwater pollution has emerged as a significant water crisis in various regions around the globe. Groundwater serves as a crucial source of water for human consumption and agricultural activities in the Sichuan Basin where groundwater quality has yet to be concentrated. A total of 41 groundwater samples were collected from domestic wells in Suining city of the Sichuan Basin, which were used for analyzing the hydrogeochemical processes and suitability for irrigation and drinking purposes. In the study area, groundwater samples belonged to the HCO3-Ca type. Hydrochemical compositions were dominated by carbonate and silicate mineral dissolution with positive cation exchange. Agricultural activities and urban sewage were the primary sources of NO3 pollution. The irrigation water quality index (IWQI) was calculated using electronic conductivity (EC), Na+, Cl, HCO3, and sodium adsorption ratio (SAR). The IWQI values showed that the suitability of groundwater irrigation was generally good and presented the decreasing trend southeastwardly. According to the entropy-weighted water quality index (EWQI), the groundwater quality for drinking purposes was generally good. However, there were some local areas with poor water quality concentrated in the southeast part. According to the human health risk (HHR) model, the groundwater was deemed safe for adults and children. However, for infants, the nitrate level in the groundwater remained high and posed potential health risks. The combined IWQI and EWQI evaluation served as a valuable reference for the utilization of the groundwater resource in the Sichuan Basin, as well as other comparable regions worldwide. Full article
(This article belongs to the Topic Groundwater Pollution Control and Groundwater Management)
Show Figures

Figure 1

22 pages, 6068 KiB  
Article
An Alternating, Current-Induced Electromagnetic Field for Membrane Fouling and Scaling Control during Desalination of Secondary Effluent from Municipal Wastewater
by Juliano Penteado de Almeida, Zachary Stoll and Pei Xu
Water 2023, 15(12), 2234; https://doi.org/10.3390/w15122234 - 14 Jun 2023
Cited by 6 | Viewed by 3110
Abstract
Membrane treatment of secondary effluent for reuse applications is a promising approach to expand water supplies and provide flexibility to water resources management. However, effective control of membrane fouling and scaling is crucial for cost-effective treatment and system resilience. This study compared the [...] Read more.
Membrane treatment of secondary effluent for reuse applications is a promising approach to expand water supplies and provide flexibility to water resources management. However, effective control of membrane fouling and scaling is crucial for cost-effective treatment and system resilience. This study compared the performance of antiscalants to an alternating, current-induced electromagnetic field (EMF) as an alternative pretreatment method to reverse osmosis. Compared to the no-EMF control experiments, the EMF device resulted in 13% higher water recovery and 366% lower flux decline at 60% of water recovery, along with 2–8 times lower precipitation of fouling and scaling, as evidenced by scanning electron microscope, energy dispersive X-ray spectroscopy, and chemical extraction analysis. The combination of the EMF with antiscalant was more effective for reducing membrane fouling and scaling, increasing water recoveries up to 89.3%, as compared to the EMF (67.5%) and antiscalant-only (73.6%) configurations. This is the first study to demonstrate synergistic effects of using an EMF in combination with antiscalants and could lead to lower pretreatment costs. Additional research is required to quantify the economics of this approach and to fully understand the fundamental mechanisms governing fouling and scaling control by an EMF. Full article
(This article belongs to the Special Issue Advanced Technologies for Water and Wastewater Treatment)
Show Figures

Graphical abstract

15 pages, 9512 KiB  
Article
Origin and Salinization Processes of Groundwater in the Semi-Arid Area of Zagora Graben, Southeast Morocco
by Anasse Ait Lemkademe, Mustapha El Ghorfi, Lahcen Zouhri, Ouissal Heddoun, Abdessamad Khalil and Lhou Maacha
Water 2023, 15(12), 2172; https://doi.org/10.3390/w15122172 - 8 Jun 2023
Cited by 9 | Viewed by 2433
Abstract
Located in the southeastern region of Morocco, the Zagora area mainly relies on groundwater as a source of water supply. However, this groundwater is often of concern, due to the limited recharge and unfavorable geological conditions for the development of the aquifer. Despite [...] Read more.
Located in the southeastern region of Morocco, the Zagora area mainly relies on groundwater as a source of water supply. However, this groundwater is often of concern, due to the limited recharge and unfavorable geological conditions for the development of the aquifer. Despite this, private wells in the Zagora ditch reveal relatively rich water resources. Geochemical and isotopic studies were conducted in the area to understand the origin of the groundwater and its salinity, aiding in informed water management strategies to assist in better planning and regulation of well construction, as well as in mitigating the impacts of high salinity on local water supply and agricultural systems. The results show that the water quality varies, with some wells having conductivity values in excess of 5 mS/cm. Most groundwater samples have high salinity and low pH due to the CO2 dissolved in groundwater. Geochemical analysis indicated two chemical facies: chloride–sulfate calcic/magnesic and bicarbonate calcic/magnesic. The presence of Na+ and Cl indicated that the origin of these two elements in these waters was the dissolution of halite, with some samples showing an enrichment of Na+ compared to Cl. This could be attributed to cation exchange. The concentration of Ca2+ and HCO3 suggested that their origin is the dissolution of calcite and the weathering of calcium silicate minerals such as plagioclase. The isotopic analysis showed that the δ18O values ranged from −10.98‰ to −8.54‰, and δ2H values ranged from −75.9‰ to −62.3‰. This indicated that the groundwater originated from the High Atlas with a recharge altitude between 2600 m and 2800 m. The groundwater flows into the graben through fissures and regional fault networks. Full article
(This article belongs to the Special Issue Impact of Mining Activities on the Groundwater Resources)
Show Figures

Figure 1

28 pages, 1556 KiB  
Review
The Fate and Occurrence of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes during Advanced Wastewater Treatment and Disinfection: A Review
by Maria Kalli, Constantinos Noutsopoulos and Daniel Mamais
Water 2023, 15(11), 2084; https://doi.org/10.3390/w15112084 - 31 May 2023
Cited by 30 | Viewed by 6759
Abstract
Antimicrobial resistance (AMR) is a serious problem for modern society, not only associated with clinical environments, but also the natural environment. Conventional wastewater treatment plants (WWTPs) are important nodes for the dissemination of antibiotic resistance to the aquatic environment since they are reservoirs [...] Read more.
Antimicrobial resistance (AMR) is a serious problem for modern society, not only associated with clinical environments, but also the natural environment. Conventional wastewater treatment plants (WWTPs) are important nodes for the dissemination of antibiotic resistance to the aquatic environment since they are reservoirs of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues. WWTPs are not designed to remove these antibiotic resistance determinants from wastewater, and as a result, they are present in treated effluent, leading to environmental and public health concerns regarding wastewater disposal and reuse. Additional treatments combined with conventional WWTPs can be barriers to the spread of AMR to the environment. In order to understand the effect of wastewater treatment methods on the removal of ARB and ARGs, an extensive bibliographic study was conducted. This review summarizes the efficiency of conventional disinfection methods, tertiary wastewater treatment, and advanced oxidation processes (AOPs) to remove ARB and ARGs from wastewater. In the context of the revised Urban Wastewater Treatment Directive 91/271/EEC, further studies are needed on the removal potential of AOPs on a full-scale, as they offer great potential for the removal of ARB and ARGs with a low formation of toxic by-products compared to conventional disinfection methods. Full article
Show Figures

Figure 1

Back to TopTop