water-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4116 KiB  
Review
Innovations in Solar-Powered Desalination: A Comprehensive Review of Sustainable Solutions for Water Scarcity in the Middle East and North Africa (MENA) Region
by Mohammad Al-Addous, Mathhar Bdour, Shatha Rabaiah, Ali Boubakri, Norman Schweimanns, Nesrine Barbana and Johannes Wellmann
Water 2024, 16(13), 1877; https://doi.org/10.3390/w16131877 - 30 Jun 2024
Cited by 27 | Viewed by 11471
Abstract
Water scarcity poses significant challenges in arid regions like the Middle East and North Africa (MENA) due to constant population growth, considering the effects of climate change and water management aspects. The desalination technologies face problems like high energy consumption, high investment costs, [...] Read more.
Water scarcity poses significant challenges in arid regions like the Middle East and North Africa (MENA) due to constant population growth, considering the effects of climate change and water management aspects. The desalination technologies face problems like high energy consumption, high investment costs, and significant environmental impacts by brine discharge. This paper researches the relationships among water scarcity, energy-intensive desalination, and the development of renewable energy in MENA, with a particular focus on the Gulf Cooperation Council (GCC) countries. It examines innovations in solar-powered desalination, considering both solar photovoltaic (PV) and solar thermal technologies, in combination with traditional thermal desalination methods such as multi-effect distillation (MED) and multi-stage flash (MSF). The environmental impacts associated with desalination by brine discharge are also discussed, analyzing innovative technological solutions and avoidance strategies. Utilizing bibliometrics, this report provides a comprehensive analysis of scientific literature for the assessment of the research landscape in order to recognize trends in desalination technologies in the MENA region, providing valuable insights into emerging technologies and research priorities. Despite challenges such as high initial investment costs, technical complexities, and limited funding for research and development, the convergence of water scarcity and renewable energy presents significant opportunities for integrated desalination systems in GCC countries. Summarizing, this paper emphasizes the importance of interdisciplinary approaches and international collaboration by addressing the complex challenges of water scarcity and energy sustainability in the MENA region. By leveraging renewable energy sources and advancing desalination technologies, the region can achieve water security while mitigating environmental impacts and promoting economic development. Full article
(This article belongs to the Special Issue Water Sustainability and High-Quality Economic Development)
Show Figures

Figure 1

13 pages, 14176 KiB  
Article
A CFD Study on Optimization of Mass Transfer and Light Distribution in a Photocatalytic Reactor with Immobilized Photocatalyst on Spheres
by Qasim Jamil, Khush Bakhat Rana and Lev Matoh
Water 2024, 16(13), 1828; https://doi.org/10.3390/w16131828 - 27 Jun 2024
Cited by 6 | Viewed by 1973
Abstract
This study explores the influence of flow velocity, sphere size, and inter-sphere distance on hydrodynamics and mass transfer in a photocatalytic reactor. The effects of two different light configurations on light distribution and degradation were also evaluated. A 2D computational fluid dynamics (CFD) [...] Read more.
This study explores the influence of flow velocity, sphere size, and inter-sphere distance on hydrodynamics and mass transfer in a photocatalytic reactor. The effects of two different light configurations on light distribution and degradation were also evaluated. A 2D computational fluid dynamics (CFD) model was developed to simulate the continuous flow photocatalytic reactor with TiO2-coated spheres and validated with experimental measurements by observing the degradation of methyl orange. The experimental setup consists of a tube containing an equal number of TiO2-coated glass spheres. The case with radiation from one wall shows a non-uniform light distribution compared with the case with radiation from both walls. The CFD simulations focused on analyzing the velocity streamlines and turbulence characteristics (turbulent kinetic energy (TKE) and turbulence dissipation rate (TDR)). These parameters showed significant variations in each studied case. The case with larger spheres reached the highest velocity of 38 m/s of the pollutant solution. The highest TKE and TDR values of 0.47 m2/s2 and 12.2 m2/s2, respectively, were also observed in the same case, indicating enhanced mixing and mass transfer to the catalyst surfaces, ultimately leading to a more efficient degradation process. The results show that an optimized design of photocatalytic reactors can significantly improve mass transfer and, thus, degradation efficiency. Full article
Show Figures

Figure 1

14 pages, 1877 KiB  
Article
Graph Neural Networks for Sensor Placement: A Proof of Concept towards a Digital Twin of Water Distribution Systems
by Andrea Menapace, Ariele Zanfei, Manuel Herrera and Bruno Brentan
Water 2024, 16(13), 1835; https://doi.org/10.3390/w16131835 - 27 Jun 2024
Cited by 5 | Viewed by 2942
Abstract
Urban water management faces new challenges due to the rise of digital solutions and abundant data, leading to the development of data-centric tools for decision-making in global water utilities, with AI technologies poised to become a key trend in the sector. This paper [...] Read more.
Urban water management faces new challenges due to the rise of digital solutions and abundant data, leading to the development of data-centric tools for decision-making in global water utilities, with AI technologies poised to become a key trend in the sector. This paper proposes a novel methodology for optimal sensor placement aimed at supporting the creation of a digital twin for water infrastructure. A significant innovation in this study is the creation of a metamodel to estimate pressure at consumption nodes in a water supply system. This metamodel guides the optimal sensor configuration by minimizing the difference between estimated and observed pressures. Our methodology was tested on a synthetic case study, showing accurate results. The estimated pressures at each network node exhibited low error and high accuracy across all sensor configurations tested, highlighting the potential for future development of a digital twin for water distribution systems. Full article
Show Figures

Figure 1

16 pages, 2517 KiB  
Article
Enhancing Water Management: A Comparative Analysis of Time Series Prediction Models for Distributed Water Flow in Supply Networks
by Carlos Pires and Mónica V. Martins
Water 2024, 16(13), 1827; https://doi.org/10.3390/w16131827 - 27 Jun 2024
Cited by 9 | Viewed by 2909
Abstract
Water scarcity poses a significant challenge to social integration and economic development, necessitating efficient water management strategies. This study compares time series forecasting models, both classical, Holt–Winters and ARIMA, and modern, LSTM and Prophet, to determine the most accurate model for predicting water [...] Read more.
Water scarcity poses a significant challenge to social integration and economic development, necessitating efficient water management strategies. This study compares time series forecasting models, both classical, Holt–Winters and ARIMA, and modern, LSTM and Prophet, to determine the most accurate model for predicting water flow in public supply networks. Data from four rural Portuguese locations were used, with preprocessing ensuring quality and uniformity. Performance metrics were evaluated for both medium-term (10 days) and long-term (3 months) forecasts. Results indicate that classical models like Holt–Winters and ARIMA perform better for medium-term predictions, while modern models, particularly LSTM, excel in long-term forecasts by effectively capturing seasonal patterns. Future research should integrate additional variables and explore hybrid models to enhance forecasting accuracy. Full article
Show Figures

Figure 1

17 pages, 2841 KiB  
Article
Enhancing Oil–Water Separation Efficiency with WO3/MXene Composite Membrane
by Abdelfattah Amari, Haitham Osman, Mohamed Boujelbene, Maha Khalid Abdulameer, Miklas Scholz and Saad Sh. Sammen
Water 2024, 16(13), 1767; https://doi.org/10.3390/w16131767 - 21 Jun 2024
Cited by 3 | Viewed by 2039
Abstract
In this study, a novel method for the high-performance treatment of oily wastewater was introduced using a tungsten (VI) oxide (WO3)/MXene composite membrane based on poly (arylene ether sulfone) (PAES). Composite membranes were fabricated with superhydrophilic (SH) and superoleophobic (SO) characteristics, [...] Read more.
In this study, a novel method for the high-performance treatment of oily wastewater was introduced using a tungsten (VI) oxide (WO3)/MXene composite membrane based on poly (arylene ether sulfone) (PAES). Composite membranes were fabricated with superhydrophilic (SH) and superoleophobic (SO) characteristics, which allow for the high-performance treatment of oily wastewater. The fabricated composite membrane can also photodegrade organic types of pollutants with just a short period of UV, enabling self-cleaning and anti-fouling properties. Moreover, the comprehensive characterization of the composite membrane through FTIR, SEM, and XRD analyses yielded valuable insights. The FTIR analysis revealed the characteristic peaks of WO3, MXene, PAES, and the synthesized composite membrane, providing essential information on the chemical composition and properties of the materials. The XRD results demonstrated the crystal structures of WO3, MXene, PAES, and the synthesized composite membrane, further enhancing our understanding of the composite membrane. Additionally, the SEM images illustrated the surface and cross-section of the fabricated membranes, highlighting the differences in pore size and porosity between the PAES membrane and the WO3–MXene composite membrane, which directly impact permeate flux. The study showed that the composite membrane had a remarkable recovery time of only 0.25 h, and the efficiency of the separation process and water flux recovered to 99.98% and 6.4 L/m2.h, respectively. The joint influence of WO3 and MXene on composite membranes degraded contaminants into non-polluting substances after sunlight irradiation. This process effectively solves the treatment performance and decrease in permeate flux caused by contamination. The technology is membrane-based filtration, which is a simple and advanced method for treating polluted water. This innovative work offers promising solutions to address water pollution challenges and holds potential for practical applications from a self-cleaning and anti-fouling point of view. Full article
(This article belongs to the Special Issue Wastewater Treatment by Membrane)
Show Figures

Figure 1

13 pages, 20407 KiB  
Article
Flood Risk Assessment Using Multi-Criteria Spatial Analysis Case Study: Gilort River between Bălcești and Bolbocești
by Alexandru Giurea, Laura Comănescu, Robert Dobre, Alexandru Nedelea and Ioana Mirea
Water 2024, 16(13), 1760; https://doi.org/10.3390/w16131760 - 21 Jun 2024
Cited by 3 | Viewed by 1766
Abstract
Floods are the most widespread hazard globally and have a significant impact on local communities in terms of material damage and loss of life. Flood risk analysis is a complex process that needs to be addressed both physically and socially. This study provides [...] Read more.
Floods are the most widespread hazard globally and have a significant impact on local communities in terms of material damage and loss of life. Flood risk analysis is a complex process that needs to be addressed both physically and socially. This study provides a method for identifying the risk using Geographical Informational Systems techniques. Each indicator taken into account was analyzed, standardized, and weighted to obtain the final results. The case study was represented by the River Gilort (a tributary to Jiu River) in a hilly area (Getic Subcarpathians) between Bălcești and Bolbocești). In order to achieve reliable results, a series of natural and anthropic factors were used, such as elevation, slopes, geology, riparian vegetation, bank erosion, land use, groundwater depth, population density, vulnerable classes of the population, and density of houses. The flood risk assessment results show the distribution of flood risk in the study area, with a more significant impact on land use and only a few towns in the area presenting a significant flood risk. These results can be used by the competent local authorities to effectively manage flood risk. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management)
Show Figures

Figure 1

28 pages, 4868 KiB  
Review
Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges
by Guoqing Liu, Qing Xu, Salah F. Abou-Elwafa, Mohammed Ali Alshehri and Tao Zhang
Water 2024, 16(12), 1749; https://doi.org/10.3390/w16121749 - 20 Jun 2024
Cited by 11 | Viewed by 3950
Abstract
Hydrothermal carbonization (HTC) technology transforms organic biomass components, such as cellulose and lignin, into valuable carbon materials, gases and inorganic salts through hydrolysis, degradation and polymerization, with significant advantages over traditional methods by reducing energy consumption, lowering pollutant emissions and enhancing carbonization efficiency. [...] Read more.
Hydrothermal carbonization (HTC) technology transforms organic biomass components, such as cellulose and lignin, into valuable carbon materials, gases and inorganic salts through hydrolysis, degradation and polymerization, with significant advantages over traditional methods by reducing energy consumption, lowering pollutant emissions and enhancing carbonization efficiency. In the context of global climate change, HTC plays a critical role in water environment management by addressing industrial, agricultural, and domestic wastewater challenges. The application of HTC extends to wastewater treatment, where hydrochar effectively adsorbs heavy metals, organic compounds, and anions, thereby improving water quality. However, challenges remain, such as optimizing the process for diverse raw materials, managing economic costs, and addressing environmental and social impacts. Future research and policy support are essential for advancing HTC technology. By enhancing reaction mechanisms, developing catalysts, and promoting international cooperation, HTC can significantly contribute towards achieving carbon neutrality goals and fostering sustainable development. Full article
(This article belongs to the Special Issue Sustainable Wastewater Treatment and the Circular Economy)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Optimizing Flow Conditions and Fish Passage Success in Vertical Slot Fishways: Lessons from Fish Behavior Observations
by Damien Calluaud, Vincent Cornu, Philippe Baran, Gérard Pineau, Pierre Sagnes and Laurent David
Water 2024, 16(12), 1718; https://doi.org/10.3390/w16121718 - 17 Jun 2024
Cited by 3 | Viewed by 1373
Abstract
This study investigates the behavior of chubs (Squalius cephalus) of mid-body length (9.7–15.6 cm) with respect to turbulent flow conditions in a pool representing an experimental vertical slot fishway. Velocity and turbulence were characterized using PIV data. The influence of turbulent [...] Read more.
This study investigates the behavior of chubs (Squalius cephalus) of mid-body length (9.7–15.6 cm) with respect to turbulent flow conditions in a pool representing an experimental vertical slot fishway. Velocity and turbulence were characterized using PIV data. The influence of turbulent flow on fish behavior was assessed through the number of successful fish passage attempts, the associated passage times, and the spatial distribution of fish in the pool. Turbulence conditions were modified by the addition of one or three vertical rigid cylinders inside the pool. The results show that these adaptations may facilitate the passage of chubs. Results provide valuable insights and information to understand the relationship between fish behavior and hydraulic conditions, especially in the context of improving the design of fishways. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

19 pages, 4468 KiB  
Article
Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis
by Dominik Wisser, Danielle S. Grogan, Lydia Lanzoni, Giuseppe Tempio, Giuseppina Cinardi, Alex Prusevich and Stanley Glidden
Water 2024, 16(12), 1681; https://doi.org/10.3390/w16121681 - 13 Jun 2024
Cited by 9 | Viewed by 8100
Abstract
There is a growing concern about limited water supply and water scarcity in many river basins across the world. The agricultural sector is the largest user of freshwater on the planet, with a growing amount of water extracted for livestock systems. Here, we [...] Read more.
There is a growing concern about limited water supply and water scarcity in many river basins across the world. The agricultural sector is the largest user of freshwater on the planet, with a growing amount of water extracted for livestock systems. Here, we use data from the GLEAM model to advance previous studies that estimated livestock water footprints by quantifying water use for feed production, animal drinking water, and animal service water. We additionally account for the role of trade in accounting for feed water allocations to different animals in different countries and make use of a hydrologic model to estimate feed irrigation water requirements for individual crops at a high spatial resolution. Lastly, we estimate the contribution of livestock water abstractions to water stress at a small river basin scale for the entire globe. We find that feed production water accounts for the majority (>90%) of global livestock water withdrawals, though there is regional variation. Similarly, we find large regional variation in the water consumption per head by livestock species. Despite consuming >200 km3 of water per year, we find that reducing water use in the livestock system alone will rarely reduce water stress in high-stress basins. This study highlights the need for quantifying locally relevant water use and water stress metrics for individual livestock systems. Full article
Show Figures

Figure 1

14 pages, 3348 KiB  
Article
Enhanced Electricity Generation in Solar-Driven Photo-Bioelectrochemical Cells Equipped with Co3(PO4)2/Mg(OH)2 Photoanode
by Razieh Rafieenia, Mohamed Mahmoud, Mahmoud S. Abdel-Wahed, Tarek A. Gad-Allah, Anna Salvian, Daniel Farkas, Fatma El-Gohary and Claudio Avignone Rossa
Water 2024, 16(12), 1683; https://doi.org/10.3390/w16121683 - 13 Jun 2024
Cited by 5 | Viewed by 1714
Abstract
We developed a solar-driven photo-bioelectrochemical cell (s-PBEC) employing a novel anode photocatalyst material (Co3(PO4)2/Mg(OH)2) intimately coupled with electrochemically active bacteria for synergic electricity generation from wastewater. An s-PBEC was inoculated with a natural microbial community [...] Read more.
We developed a solar-driven photo-bioelectrochemical cell (s-PBEC) employing a novel anode photocatalyst material (Co3(PO4)2/Mg(OH)2) intimately coupled with electrochemically active bacteria for synergic electricity generation from wastewater. An s-PBEC was inoculated with a natural microbial community and fed with synthetic wastewater to analyze the performance of the system for electricity generation. Linear sweep voltammetry indicated an increase in power output upon light illumination of the s-PBEC after 1 h, rising from 66.0 to 91.5 mW/m2. The current density in the illuminated s-PBEC exhibited a rapid increase, reaching 0.32 A/m2 within 1 h, which was significantly higher than the current density in dark conditions (0.15 A/m2). Shotgun metagenomic analysis revealed a significant shift in the microbial community composition with a more diverse anodic biofilm upon illumination compared to the microbial communities in dark conditions. Three unclassified genera correlated with the enhanced current generation in illuminated s-PBEC, including Neisseriales (16.31%), Betaproteobacteria (7.37%), and Alphaproteobacteria (5.77%). This study opens avenues for further exploration and optimization of the solar-driven photo-bioelectrochemical cells, paving the way for integrative approaches for sustainable energy generation and wastewater treatment. Full article
(This article belongs to the Special Issue Application of Biotechnology in Water Purification)
Show Figures

Graphical abstract

17 pages, 5704 KiB  
Article
Nutrient Recovery via Struvite Precipitation from Wastewater Treatment Plants: Influence of Operating Parameters, Coexisting Ions, and Seeding
by Andreia F. Santos, Luísa S. Mendes, Paula Alvarenga, Licínio M. Gando-Ferreira and Margarida J. Quina
Water 2024, 16(12), 1675; https://doi.org/10.3390/w16121675 - 12 Jun 2024
Cited by 9 | Viewed by 4953
Abstract
Phosphorus (P) is a critical element for life, and wastewater treatment systems can be strategic points for its recovery, thereby avoiding eutrophication pollution in nature. The aim of this research was to investigate P recovery via struvite, namely in terms of the influence [...] Read more.
Phosphorus (P) is a critical element for life, and wastewater treatment systems can be strategic points for its recovery, thereby avoiding eutrophication pollution in nature. The aim of this research was to investigate P recovery via struvite, namely in terms of the influence of operating parameters, coexisting interfering ions, and seeding. This paper focuses on synthetic solutions, although an assessment was performed on wastewater. The results of the assessment indicated that, in the synthetic solution, the minimum concentration for struvite precipitation is about 30 mg P/L, and that the Mg/P molar ratio of 1 promotes P removal efficiency with less contribution from other minerals. In order to assess the results in terms of real-world scenarios, the influence of coexisting ions (calcium and sodium) was investigated. Calcium was shown to have the greatest impact on the process, as 80% was removed for an initial concentration of 200 mg Ca/L. Indeed, these experiments generated an amorphous precipitate that did not contain struvite. The utilization of biomass ash (size < 63 µm) as seeding in crystallization increased the P removal efficiency compared to the sample without seed and helped to control the pH. The precipitation experiments with wastewater demonstrated good P removal efficiencies (over 90%) but indicated a reduction in the purity of the final product (struvite was a minor crystalline phase identified in XRD—15%wt). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 4937 KiB  
Article
Mechanism of Crude Oil Biodegradation in Bioreactors: A Model Approach
by Carlos Costa and Nicolás Millán
Water 2024, 16(12), 1653; https://doi.org/10.3390/w16121653 - 10 Jun 2024
Cited by 3 | Viewed by 2211
Abstract
Oil-degrading bacteria have the ability to degrade alkanes present in crude oil because of a special enzymatic system, the alkane hydroxylase complex (AlkH). The mechanism for the transport and degradation of alkanes present in crude oil remains unclear, especially related to the first [...] Read more.
Oil-degrading bacteria have the ability to degrade alkanes present in crude oil because of a special enzymatic system, the alkane hydroxylase complex (AlkH). The mechanism for the transport and degradation of alkanes present in crude oil remains unclear, especially related to the first step in hydrocarbons oxidation. In this work, we present a novel model of the crude oil biodegradation mechanism by considering the contact between the oil drop and the cell and calculating the mass transfer coefficients in three oleophilic bacteria (B. licheniformis, P. putida and P. glucanolyticus). The mass transfer coefficients are evaluated under critical time conditions, when the kinetics and mass transport are in balance, and the difference in the values obtained (kL α = 1.60 × 10−3, 5.25 × 10−4 and 6.19 × 10−4 m/d, respectively) shows the higher value of the mass transfer coefficient and higher biodegradation potential for B. licheniformis. Because the morphology of the cells has been analyzed by optical and electron microscopy, in the proposed model, the increase in the size of the cells in P. glucanolyticus compared to P. putida exhibits higher values of the mass transfer coefficients and this is attributed, as a novel statement, to a bigger window for alkanes transport (contact area) when the external area of the cell is bigger. Full article
(This article belongs to the Special Issue Biological Treatment of Water Contaminants: A New Insight)
Show Figures

Graphical abstract

60 pages, 6757 KiB  
Review
Recent Advances in Ball-Milled Materials and Their Applications for Adsorptive Removal of Aqueous Pollutants
by Pei Gao, Xuanhao Fan, Da Sun, Guoming Zeng, Quanfeng Wang and Qihui Wang
Water 2024, 16(12), 1639; https://doi.org/10.3390/w16121639 - 7 Jun 2024
Cited by 8 | Viewed by 4626
Abstract
Ball milling, as a cost-effective and eco-friendly approach, has been popular in materials synthesis to solve problems involving toxic reagents, high temperatures, or high pressure, which has the potential for large-scale production. However, there are few reviews specifically concentrating on the latest progress [...] Read more.
Ball milling, as a cost-effective and eco-friendly approach, has been popular in materials synthesis to solve problems involving toxic reagents, high temperatures, or high pressure, which has the potential for large-scale production. However, there are few reviews specifically concentrating on the latest progress in materials characteristics before and after ball milling as well as the adsorptive application for aqueous pollutants. Hence, this paper summarized the principle and classification of ball milling and reviewed the advances of mechanochemical materials in categories as well as their adsorption performance of organic and inorganic pollutants. Ball milling has the capacity to change materials’ crystal structure, specific surface areas, pore volumes, and particle sizes and even promote grafting reactions to obtain functional groups to surfaces. This improved the adsorption amount, changed the equilibrium time, and strengthened the adsorption force for contaminants. Most studies showed that the Langmuir model and pseudo-second-order model fitted experimental data well. The regeneration methods include ball milling and thermal and solvent methods. The potential future developments in this field were also proposed. This work tries to review the latest advances in ball-milled materials and their application for pollutant adsorption and provides a comprehensive understanding of the physicochemical properties of materials before and after ball milling, as well as their effects on pollutants’ adsorption behavior. This is conducive to laying a foundation for further research on water decontamination by ball-milled materials. Full article
(This article belongs to the Topic Sustainable Technologies for Water Purification)
Show Figures

Figure 1

27 pages, 32827 KiB  
Article
Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China
by Ke Yang, Ruiqing Niu, Yingxu Song, Jiahui Dong, Huaidan Zhang and Jie Chen
Water 2024, 16(12), 1638; https://doi.org/10.3390/w16121638 - 7 Jun 2024
Cited by 6 | Viewed by 1851
Abstract
Rainfall-induced landslides are a major hazard in the Three Gorges Reservoir area (TGRA) of China, encompassing 19 districts and counties with extensive coverage and significant spatial variation in terrain. This study introduces the Gradient Boosting Decision Tree (GBDT) model, implemented on the Google [...] Read more.
Rainfall-induced landslides are a major hazard in the Three Gorges Reservoir area (TGRA) of China, encompassing 19 districts and counties with extensive coverage and significant spatial variation in terrain. This study introduces the Gradient Boosting Decision Tree (GBDT) model, implemented on the Google Earth Engine (GEE) cloud platform, to dynamically assess landslide risks within the TGRA. Utilizing the GBDT model for landslide susceptibility analysis, the results show high accuracy with a prediction precision of 86.2% and a recall rate of 95.7%. Furthermore, leveraging GEE’s powerful computational capabilities and real-time updated rainfall data, we dynamically mapped landslide hazards across the TGRA. The integration of the GBDT with GEE enabled near-real-time processing of remote sensing and meteorological radar data from the significant “8–31” 2014 rainstorm event, achieving dynamic and accurate hazard assessments. This study provides a scalable solution applicable globally to similar regions, making a significant contribution to the field of geohazard analysis by improving real-time landslide hazard assessment and mitigation strategies. Full article
Show Figures

Figure 1

15 pages, 2842 KiB  
Article
Denitrification Mechanism of Heterotrophic Aerobic Denitrifying Pseudomonas hunanensis Strain DC-2 and Its Application in Aquaculture Wastewater
by Xinya Sui, Xingqiang Wu, Bangding Xiao, Chunbo Wang and Cuicui Tian
Water 2024, 16(11), 1625; https://doi.org/10.3390/w16111625 - 6 Jun 2024
Cited by 11 | Viewed by 2679
Abstract
A novel heterotrophic aerobic denitrifying Pseudomonas hunanensis strain DC-2 was screened from the sediments of Lake Dianchi and identified with high nitrification/denitrification ability. Within 30 h, the removal efficiency of ammonium-N and nitrate-N could reach 98.8% and 88.4%, respectively. The results of the [...] Read more.
A novel heterotrophic aerobic denitrifying Pseudomonas hunanensis strain DC-2 was screened from the sediments of Lake Dianchi and identified with high nitrification/denitrification ability. Within 30 h, the removal efficiency of ammonium-N and nitrate-N could reach 98.8% and 88.4%, respectively. The results of the single-factor experiments indicated that strain DC-2 exhibited excellent denitrification ability under the conditions of using sodium citrate as the nitrogen source, with an initial pH of 7, a C/N ratio of 10, and a temperature of 30 °C. Nitrogen balance experiments suggested that this strain removed N mainly via assimilation. Moreover, the N removal pathway was explored by genome and enzymatic assays, and a complex nitrogen metabolism pathway was established, including heterotrophic nitrification-aerobic denitrification (HN-AD), assimilatory reduction of nitrate (ANRA), and ammonia assimilation. Additionally, strain DC-2 was immobilized into particles for denitrification, demonstrating excellent efficacy in continuous total nitrogen removal (84.8% for TN). Hence, strain DC-2 demonstrated significant potential in treating real aquaculture wastewater. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Numerical Investigation of Different Stepped Spillway Geometries over a Mild Slope for Safe Operation Using Multi-Phase Model
by Binaya Raj Pandey, Megh Raj K C, Brian Crookston and Gerald Zenz
Water 2024, 16(11), 1635; https://doi.org/10.3390/w16111635 - 6 Jun 2024
Cited by 5 | Viewed by 2496
Abstract
The appropriate design and operation of spillways are critical for dam safety. To enhance design practices and gain insights into flow hydraulics, both experimental and numerical modeling are commonly employed. In this study, we conducted a numerical investigation of flow over a mildly [...] Read more.
The appropriate design and operation of spillways are critical for dam safety. To enhance design practices and gain insights into flow hydraulics, both experimental and numerical modeling are commonly employed. In this study, we conducted a numerical investigation of flow over a mildly sloping (1V:3H) stepped spillway with various step geometries using a multi-phase mixture model with dispersed interface tracking in ANSYS Fluent. The model was validated against experimental data from Utah State University, focusing on water surface profiles over the crest, velocities, and air concentrations. The validated numerical model was used to simulate flow over different step geometries (i.e., 0.2 m H uniform Step, 0.1 m H uniform step, non-uniform steps, adverse slope steps, and stepped pool) for a range of discharges from 0.285 m3/s/m to 1.265 m3/s/m. While flow depths over the crest and velocities in the chute compared well with experimental results, air concentrations exhibited some deviation, indicating numerical limitations of the solver. The shift in the location of the inception point was found to be mainly influenced by a higher flow rate than the different design configurations over an identical mild slope. The downstream non-linear flow velocity curve with different flow rates indicated less effectiveness of the step roughness over a high flow rate as a result of the reduction in relative roughness. The theoretical velocity ratio indicated the least reduction in downstream velocity with the stepped pooled spillway due to the formation of a “stagnant pool”. A higher negative-pressure region due to flow separation at the vertical face of the steps was obtained by adverse slope steps, which shows that the risk of cavitation is higher over the adverse slope step spillway. Turbulent kinetic energy (TKE) was found to be higher for uniform 0.2 m H steps due to the strong mixing of flow over the steps. The least TKE was found at the steps of the stepped pool spillway due to the formation of a “stagnant pool”. Uniform 0.2 m H steps achieved the maximum energy dissipation efficiency, whereas the stepped pool spillway obtained the least energy dissipation efficiency, introducing higher flow velocity at the stilling basin with a higher residual head. The adverse slope and non-uniform steps were found to be more effective than the uniform 0.1 m H steps and stepped pool spillway. The application of uniform steps of higher drop height and length could achieve higher TKE over the steps, reducing the directional flow velocity, which reduces the risk of potential damage. Full article
(This article belongs to the Special Issue CFD Modelling of Turbulent Free Surface Flows)
Show Figures

Figure 1

59 pages, 2880 KiB  
Review
Use of Zero-Valent Iron Nanoparticles (nZVIs) from Environmentally Friendly Synthesis for the Removal of Dyes from Water—A Review
by Cristina Rodríguez-Rasero, Vicente Montes-Jimenez, María F. Alexandre-Franco, Carmen Fernández-González, Jesús Píriz-Tercero and Eduardo Manuel Cuerda-Correa
Water 2024, 16(11), 1607; https://doi.org/10.3390/w16111607 - 4 Jun 2024
Cited by 14 | Viewed by 4590
Abstract
This review article addresses the increasing environmental concerns posed by synthetic dyes in water, exploring innovative approaches for their removal with a focus on zero-valent iron nanoparticles (nZVIs) synthesized through environmentally friendly methods. The article begins by highlighting the persistent nature of synthetic [...] Read more.
This review article addresses the increasing environmental concerns posed by synthetic dyes in water, exploring innovative approaches for their removal with a focus on zero-valent iron nanoparticles (nZVIs) synthesized through environmentally friendly methods. The article begins by highlighting the persistent nature of synthetic dyes and the limitations of conventional degradation processes. The role of nanoparticles in environmental applications is then discussed, covering diverse methods for metallic nanoparticle production aligned with green chemistry principles. Various methods, including the incorporation of secondary metals, surface coating, emulsification, fixed support, encapsulation, and electrostatic stabilization, are detailed in relation to the stabilization of nZVIs. A novel aspect is introduced in the use of plant extract or biomimetic approaches for chemical reduction during nZVI synthesis. The review investigates the specific challenges posed by dye pollution in wastewater from industrial sources, particularly in the context of garment coloring. Current approaches for dye removal in aqueous environments are discussed, with an emphasis on the effectiveness of green-synthesized nZVIs. The article concludes by offering insights into future perspectives and challenges in the field. The intricate landscape of environmentally friendly nZVI synthesis has been presented, showcasing its potential as a sustainable solution for addressing dye pollution in water. Full article
Show Figures

Graphical abstract

20 pages, 7466 KiB  
Review
Critical Review on Two-Stage Anaerobic Digestion with H2 and CH4 Production from Various Wastes
by Xinyi Zheng and Ruying Li
Water 2024, 16(11), 1608; https://doi.org/10.3390/w16111608 - 4 Jun 2024
Cited by 14 | Viewed by 4878
Abstract
Anaerobic digestion (AD) is a promising method for resource recovery from various wastes. Compared to the conventional single-stage AD process, a two-stage AD process with separate H2 and CH4 production provides higher energy recovery efficiency and enhanced operation stability. The stage [...] Read more.
Anaerobic digestion (AD) is a promising method for resource recovery from various wastes. Compared to the conventional single-stage AD process, a two-stage AD process with separate H2 and CH4 production provides higher energy recovery efficiency and enhanced operation stability. The stage separation makes it possible to apply optimal conditions for different functional microorganisms in their respective stages. This review elaborates the mechanisms of the two-stage AD process and evaluates recent research trends on this topic. A comprehensive comparison between single- and two-stage AD processes is made from the perspective of biogas production, organics degradation, energy recovery, and operation stability. The main influence factors on the two-stage AD process are discussed, including substrates, inoculum, and operation parameters, such as pH, temperature, etc. Upgrading technologies for the two-stage AD process are assessed. The microbial communities in the two-stage AD process for treating different substrates and the influence factors on microbial systems are also summarized. Furthermore, future research opportunities for enhancing the application of this technology are highlighted. Full article
Show Figures

Graphical abstract

20 pages, 20471 KiB  
Article
Rainfall-Triggered Landslides and Numerical Modeling of Subsequent Debris Flows at Kalli Village of Suntar Formation in the Lesser Himalayas in Nepal
by Diwakar KC, Mohammad Wasif Naqvi, Harish Dangi and Liangbo Hu
Water 2024, 16(11), 1594; https://doi.org/10.3390/w16111594 - 2 Jun 2024
Cited by 4 | Viewed by 1960
Abstract
Hazardous debris flows are common in the tectonically active young Himalayas. The present study is focused on the recurrent, almost seasonal, landslides and debris flows initiated from Kalli village in Achham District of Nepal, located in the Lesser Himalayas. Such geological hazards pose [...] Read more.
Hazardous debris flows are common in the tectonically active young Himalayas. The present study is focused on the recurrent, almost seasonal, landslides and debris flows initiated from Kalli village in Achham District of Nepal, located in the Lesser Himalayas. Such geological hazards pose a significant threat to the neighboring communities. The field survey reveals vulnerable engineering geological conditions and adverse environmental factors in the study area. It is found that a typical complete debris transport process may consist of two stages depending on the rainfall intensity. In the first stage, debris flows mobilized from a landslide have low mobility and their runout distance is quite modest; in the second stage, with an increase in water content they are able to travel a longer distance. Numerical simulations based on a multi-phase flow model are conducted to analyze the characteristics of the debris flows in motion, including the debris deposition profiles and runout distances in both stages. Overall, the numerical results are reasonably consistent with relevant field observations. Future debris flows may likely occur again in this area due to the presence of large soil blocks separated by tension cracks, rampant in the field; numerical simulations predict that these potential debris flows may exhibit similar characteristics to past events. Full article
Show Figures

Figure 1

27 pages, 9190 KiB  
Article
Isotope Hydrology and Hydrogeochemical Signatures in the Lake Malawi Basin: A Multi-Tracer Approach for Groundwater Resource Conceptualisation
by Limbikani C. Banda, Robert M. Kalin and Vernon Phoenix
Water 2024, 16(11), 1587; https://doi.org/10.3390/w16111587 - 31 May 2024
Cited by 8 | Viewed by 2117
Abstract
Reliance on groundwater is outpacing natural replenishment, a growing imbalance that requires detailed and multi-faceted water resource understanding. This study integrated water-stable isotopes and hydrogeochemical species to examine hydrogeochemical processes during groundwater recharge and evolution in the Lake Malawi basin aquifer systems. The [...] Read more.
Reliance on groundwater is outpacing natural replenishment, a growing imbalance that requires detailed and multi-faceted water resource understanding. This study integrated water-stable isotopes and hydrogeochemical species to examine hydrogeochemical processes during groundwater recharge and evolution in the Lake Malawi basin aquifer systems. The findings provide insights into groundwater source provenance, with non-evaporated modern precipitation dominating recharge inputs. Grouped hydrochemical facies exhibit five groundwater water types, prominently featuring Ca-Mg-HCO3. Modelled hydrogeochemical data underscore dominant silicate dissolution reactions with the likely precipitation of calcite and/or high-Mg dolomitic carbonate constrained by ion exchange. Isotope hydrology reinforces water resource system conceptualisation. Coupled isotopic-hydrogeochemical lines of evidence reveal a discernible spatial-seasonal inhomogeneity in groundwater chemical character, revealing a complex interplay of meteoric water input, evaporative effects, recharge processes, and mixing dynamics. Findings show that measurable nitrate across Malawi highlights a widespread human impact on groundwater quality and an urgent need for detailed modelling to predict future trends of nitrate in groundwater with respect to extensive fertiliser use and an ever-increasing number of pit latrines and septic systems arising from rapid population growth. This study not only refined the Lake Malawi basin aquifer systems conceptualisation but also provided isotopic evidence of groundwater and lake water mixing. This study sets a base for groundwater management and policy decisions in support of the Integrated Water Resources Management principles and Sustainable Development Goal 6 objectives for groundwater sustainability in the transboundary Lake Malawi basin. Full article
Show Figures

Graphical abstract

22 pages, 13590 KiB  
Article
Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development
by Ahmed Shalby, Bakenaz A. Zeidan, Katarzyna Pietrucha-Urbanik, Abdelazim M. Negm and Asaad M. Armanuos
Water 2024, 16(11), 1562; https://doi.org/10.3390/w16111562 - 29 May 2024
Cited by 4 | Viewed by 2633
Abstract
Groundwater-dependent cultivation is imperative to meet the ever-increasing food demands in Egypt. To explore the Moghra aquifer’s potential, where a large-scale rural community is being established, a finite element groundwater flow (i.e., FEFLOW®) model was invoked. The developed model was calibrated [...] Read more.
Groundwater-dependent cultivation is imperative to meet the ever-increasing food demands in Egypt. To explore the Moghra aquifer’s potential, where a large-scale rural community is being established, a finite element groundwater flow (i.e., FEFLOW®) model was invoked. The developed model was calibrated against the observed water levels. GRACE-based groundwater storage was incorporated into the tuning procedure of the developed model. Eight abstraction rates from 1000 wells, changing from 800 to 1500 m3/day/well, were simulated for a 100-year test period. The maximum resulting drawdown values, respectively, ranged from 59 to 112 m equating to about 20–40% of the aquifer’s saturated thickness. The implications of the climate change from gradual sea level rise and an increase in crop consumptive water use were investigated. Extending seawater invasion into the aquifer caused a slight increase in the piezometric levels within a narrow strip along the seaside. Applying a chronologically increasing withdrawal rate to meet the projected increment in crop water requirements raised the maximum resulting drawdown by about 7.5%. The sustainable exploitation regime was defined as a time-increasing withdrawal rate adequate to reclaim 85,715 acres (34,688 ha). The recommended development scheme is compatible with the withdrawal rationing rule, aiming to maintain that the resulting drawdown does not exceed one meter a year. Full article
Show Figures

Figure 1

20 pages, 32280 KiB  
Article
Groundwater Depletion. Are Environmentally Friendly Energy Recharge Dams a Solution?
by Nerantzis Kazakis, Diamantis Karakatsanis, Maria Margarita Ntona, Konstantinos Polydoropoulos, Efthymia Zavridou, Kalliopi Artemis Voudouri, Gianluigi Busico, Kyriaki Kalaitzidou, Thomas Patsialis, Martha Perdikaki, Panagiotis Tsourlos, Andreas Kallioras, Nicolaos Theodossiou, Fotios-Konstantinos Pliakas, Panagiotis Angelidis, Theodoros Mavromatis, Olga Patrikaki and Konstantinos Voudouris
Water 2024, 16(11), 1541; https://doi.org/10.3390/w16111541 - 27 May 2024
Cited by 13 | Viewed by 2436
Abstract
Groundwater is a primary source of drinking water; however, groundwater depletion constitutes a common phenomenon worldwide. The present research aims to quantify groundwater depletion in three aquifers in Greece, including the porous aquifers in the Eastern Thermaikos Gulf, Mouriki, and the Marathonas basin. [...] Read more.
Groundwater is a primary source of drinking water; however, groundwater depletion constitutes a common phenomenon worldwide. The present research aims to quantify groundwater depletion in three aquifers in Greece, including the porous aquifers in the Eastern Thermaikos Gulf, Mouriki, and the Marathonas basin. The hypothesis is to reverse the phenomenon by adopting an environmentally acceptable methodology. The core of the suggested methodology was the simulation of groundwater using MODFLOW-NWT and the application of managed aquifer recharge (MAR) by using water from small dams after the generation of hydropower. Surface run-off and groundwater recharge values were obtained from the ArcSWAT simulation. The predicted future climatic data were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX), considering the Representative Concentration Pathway (RCP) 4.5 and the climate model REMO2009. Groundwater flow simulations from 2010 to 2020 determined the existing status of the aquifers. The simulation was extended to the year 2030 to forecast the groundwater regime. In all three sites, groundwater depletion occurred in 2020, while the phenomenon will be exacerbated in 2030, as depicted in the GIS maps. During 2020, the depletion zones extended 11%, 28%, and 23% of the aquifers in Mouriki, the Eastern Thermaikos Gulf, and the Marathonas basin, respectively. During 2030, the depletion zones will increase to 50%, 42%, and 44% of the aquifers in Mouriki, the Eastern Thermaikos Gulf, and the Marathonas basin, respectively. The simulation was extended to 2040 by applying MAR with the water from the existing dams as well as from additional dams. In all sites, the application of MAR contributed to the reversal of groundwater depletion, with a significant amount of hydropower generated. Until 2040, the application of MAR will reduce the depletion zones to 0.5%, 9%, and 12% of the aquifers in Mouriki, the Eastern Thermaikos Gulf, and the Marathonas basin, respectively. Apart from over-pumping, climatic factors such as long periods of drought have exacerbated groundwater depletion. The transformation of dams to mini-scale hydropower facilities combined with MAR will benefit clean energy production, save CO2 emissions, and lead to an economically feasible strategy against groundwater depletion. Full article
Show Figures

Figure 1

24 pages, 1285 KiB  
Review
Leakages in Water Distribution Networks: Estimation Methods, Influential Factors, and Mitigation Strategies—A Comprehensive Review
by Athanasios V. Serafeim, Nikolaos Th. Fourniotis, Roberto Deidda, George Kokosalakis and Andreas Langousis
Water 2024, 16(11), 1534; https://doi.org/10.3390/w16111534 - 27 May 2024
Cited by 8 | Viewed by 8412
Abstract
While only a minimal fraction of global water resources is accessible for drinking water production, their uneven distribution combined with the climate crisis impacts leads to challenges in water availability. Leakage in water distribution networks compounds these issues, resulting in significant economic losses [...] Read more.
While only a minimal fraction of global water resources is accessible for drinking water production, their uneven distribution combined with the climate crisis impacts leads to challenges in water availability. Leakage in water distribution networks compounds these issues, resulting in significant economic losses and environmental risks. A coherent review of (a) the most widely applied water loss estimation techniques, (b) factors influencing them, and (c) strategies for their resilient reduction provides a comprehensive understanding of the current state of knowledge and practices in leakage management. This work aims towards covering the most important leakage estimation methodologies, while also unveiling the factors that critically affect them, both internally and externally. Finally, a thorough discussion is provided regarding the current state-of-the-art technics for leakage reduction at the municipal-wide level. Full article
Show Figures

Figure 1

19 pages, 6270 KiB  
Article
Application of RNN-LSTM in Predicting Drought Patterns in Pakistan: A Pathway to Sustainable Water Resource Management
by Wilayat Shah, Junfei Chen, Irfan Ullah, Muhammad Haroon Shah and Irfan Ullah
Water 2024, 16(11), 1492; https://doi.org/10.3390/w16111492 - 23 May 2024
Cited by 11 | Viewed by 2672
Abstract
Water is a fundamental and crucial natural resource for human survival. However, the global demand for water is increasing, leading to a subsequent decrease in water availability. This study addresses the critical need for improved water resource forecasting models amidst global water scarcity [...] Read more.
Water is a fundamental and crucial natural resource for human survival. However, the global demand for water is increasing, leading to a subsequent decrease in water availability. This study addresses the critical need for improved water resource forecasting models amidst global water scarcity concerns exacerbated by climate change. This study uses the best weather and water resource forecasting model for sustainable development. Employing a Recurrent Neural Network–Long Short-Term Memory (RNN-LSTM) approach, the research enhances drought prediction capabilities by integrating secondary data of the rainfall, temperature, and ground and surface water supplies. The primary objective is to forecast water resources under changing climatic conditions, facilitating the development of early warning systems for vulnerable regions. The results from the LSTM model show an increased trend in temperature and rainfall patterns. However, a relatively unstable decrease in rainfall is observed. The best statistical analysis result was observed with the LSTM model; the model’s accuracy was 99%, showing that it was quite good at presenting the obtained precipitation, temperature, and water data. Meanwhile, the value of the root mean squared error (RMSE) was about 13, 15, and 20, respectively. Therefore, the study’s results highlight that the LSTM model was the most suitable among the artificial neural networks for forecasting the weather, rainfall, and water resources. This study will help weather forecasting, agriculture, and meteorological departments be effective for water resource forecasting. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 2852 KiB  
Article
On the Optimized Management of Activated Distributed Storage Systems: A Novel Approach to Flood Mitigation
by Riley Post, Felipe Quintero and Witold F. Krajewski
Water 2024, 16(11), 1476; https://doi.org/10.3390/w16111476 - 22 May 2024
Cited by 5 | Viewed by 1426
Abstract
New flood records are being set across the world as precipitation patterns change due to a warming climate. Despite the presence of longstanding water management infrastructure like levees and reservoirs, this rise in flooding has been met with property damage, loss of life, [...] Read more.
New flood records are being set across the world as precipitation patterns change due to a warming climate. Despite the presence of longstanding water management infrastructure like levees and reservoirs, this rise in flooding has been met with property damage, loss of life, and hundreds of billions in economic impact, suggesting the need for new solutions. In this work, the authors suggest the active management of distributed networks of ponds, wetlands and retention basins that already exist across watersheds for the mitigation of flood damages. As an example of this approach, we investigate optimal control of the gated outlets of 130 such locations within a small watershed using linear programming, genetic algorithms, and particle swarm optimization, with the objective of reducing downstream flow and maximizing basin storage. When compared with passive operation (i.e., no gated outlets) and a uniformly applied active management scheme designed to store water during heavy rainfall, the optimal control techniques (1) reduce the magnitudes of peak flow events by up to 10%, (2) reduce the duration of flood crests for up to several days, and (3) preserve additional storage across the watershed for future rainfall events when compared with active management. Combined, these findings provide both a better understanding of dynamically controlled distributed storage as a flood fighting technique and a springboard for future work aimed at its use for reducing flood impacts. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

18 pages, 5035 KiB  
Article
A Novel GIS-SWMM-ABM Approach for Flood Risk Assessment in Data-Scarce Urban Drainage Systems
by Shakeel Ahmad, Haifeng Jia, Anam Ashraf, Dingkun Yin, Zhengxia Chen, Rasheed Ahmed and Muhammad Israr
Water 2024, 16(11), 1464; https://doi.org/10.3390/w16111464 - 21 May 2024
Cited by 8 | Viewed by 4881
Abstract
Urbanization and climate change pose a critical challenge to stormwater management, particularly in rapidly developing cities. These cities experience increasingly impervious surfaces and more intense rainfall events. This study investigates the effectiveness of the existing drainage system in Lahore, Pakistan, a megacity challenged [...] Read more.
Urbanization and climate change pose a critical challenge to stormwater management, particularly in rapidly developing cities. These cities experience increasingly impervious surfaces and more intense rainfall events. This study investigates the effectiveness of the existing drainage system in Lahore, Pakistan, a megacity challenged by rapid urbanization and the impacts of climate change. To address the lack of predefined storm patterns and limited historical rainfall records, we employed a well-established yet adaptable methodology. This methodology utilizes the log-Pearson type III (LPT-III) distribution and alternating block method (ABM) to create design hyetographs for various return periods. This study applied the stormwater management model (SWMM) to a representative community of 2.71 km2 to assess its drainage system capacity. Additionally, geographic information systems (GISs) were used for spatial analysis of flood risk mapping to identify flood-prone zones. The results indicate that the current drainage system, designed for a 2-year return period, is inadequate. For example, a 2-year storm produced a total flood volume of 0.07 million gallons, inundating approximately 60% of the study area. This study identified flood risk zones and highlighted the limitations of the system in handling future, more intense rainfall events. This study emphasizes the urgent need for infrastructure improvements to handle increased runoff volumes such as the integration of low-impact development practices. These nature-based solutions enhance infiltration, reduce runoff, and improve water quality, offering a sustainable approach to mitigating flood risks. Importantly, this study demonstrates that integrating LPT-III and ABM provides a robust and adaptable methodology for flood risk assessment. This approach is particularly effective in developing countries where data scarcity and diverse rainfall patterns may hinder traditional storm modeling techniques. Our findings reveal that the current drainage system is overwhelmed, with a 2-year storm exceeding its capacity resulting in extensive flooding, affecting over half of the area. The application of LPT-III and ABM improved the flood risk assessment by enabling the creation of more realistic design hyetographs for data-scarce regions, leading to more accurate identification of flood-prone areas. Full article
(This article belongs to the Special Issue Urban Flood Mitigation and Sustainable Stormwater Management)
Show Figures

Graphical abstract

24 pages, 8090 KiB  
Article
Karenia brevis and Pyrodinium bahamense Utilization of Dissolved Organic Matter in Urban Stormwater Runoff and Rainfall Entering Tampa Bay, Florida
by Amanda L. Muni-Morgan, Mary G. Lusk and Cynthia A. Heil
Water 2024, 16(10), 1448; https://doi.org/10.3390/w16101448 - 19 May 2024
Cited by 4 | Viewed by 2122
Abstract
This study investigated how nitrogen and dissolved organic matter (DOM) from stormwater runoff and rainfall support the growth of Karenia brevis and Pyrodinium bahamense. Excitation–emission matrix spectroscopy coupled with parallel factor analysis tracked changes in the optical properties of DOM in each [...] Read more.
This study investigated how nitrogen and dissolved organic matter (DOM) from stormwater runoff and rainfall support the growth of Karenia brevis and Pyrodinium bahamense. Excitation–emission matrix spectroscopy coupled with parallel factor analysis tracked changes in the optical properties of DOM in each bioassay, revealing greater reactivity of terrestrial humic-like DOM. Significant increases in cell yield and specific growth rates were observed upon additions of runoff for both species, with significant increases in specific growth rates upon the addition of a 2 in simulated rain event for P. bahamense only. By hour 48, 100% of the dissolved organic nitrogen (DON) in each treatment was utilized by P. bahamense, and by hour 72, over 50% of the DON was utilized by K. brevis. The percentage of bioavailable dissolved organic carbon (DOC) was greater for P. bahamense compared to K. brevis, suggesting a greater affinity for DOC compounds by P. bahamense. However, the bioavailability of DOM for each species could be owed to distinct chemical characteristics of labile DOM conveyed from each site. This study demonstrates that stormwater runoff and rainfall are both sources of labile DOM and DON for K. brevis and P. bahamense, which has implications for blooms of these species in Tampa Bay waters. Full article
(This article belongs to the Special Issue Eutrophication and Harmful Algae in Aquatic Ecosystems)
Show Figures

Graphical abstract

24 pages, 15036 KiB  
Article
A Combined Seasonal Mann–Kendall and Innovative Approach for the Trend Analysis of Streamflow Rate in Two Croatian Rivers
by Mehmet Berkant Yıldız, Fabio Di Nunno, Bojan Đurin, Quoc Bao Pham, Giovanni de Marinis and Francesco Granata
Water 2024, 16(10), 1422; https://doi.org/10.3390/w16101422 - 16 May 2024
Cited by 15 | Viewed by 2332
Abstract
Climate change profoundly impacts hydrological systems, particularly in regions such as Croatia, which is renowned for its diverse geography and climatic variability. This study examined the effect of climate change on streamflow rates in two Croatian rivers: Bednja and Gornja Dobra. Using seasonal [...] Read more.
Climate change profoundly impacts hydrological systems, particularly in regions such as Croatia, which is renowned for its diverse geography and climatic variability. This study examined the effect of climate change on streamflow rates in two Croatian rivers: Bednja and Gornja Dobra. Using seasonal Mann–Kendall (MK) tests, overall streamflow trends were evaluated. Additionally, innovative polygon trend analysis (IPTA), innovative visualization for innovative trend analysis (IV-ITA), and Bayesian changepoint detection and time series decomposition (BEAST) algorithms were used to assess the trends’ magnitudes and transitions. The seasonal MK analysis identified significant decreasing trends, primarily during summer. The results of IPTA and IV-ITA revealed consistent decreasing trends throughout most months, with a notable increase in September, especially at high flow values. The rivers’ behavior differed between the first and second halves of the month. BEAST analysis detected abrupt changes, including earlier shifts (1951–1968) in the Bednja and more recent ones (2013–2015) in both the Bednja and, to a lesser extent, the Gornja Dobra rivers. This comprehensive approach enhances our understanding of long-term streamflow trends and short-term fluctuations induced by climate change. Full article
(This article belongs to the Special Issue Advances in Hydrology: Flow and Velocity Analysis in Rivers)
Show Figures

Figure 1

22 pages, 1980 KiB  
Review
Enhancing Flood Risk Management: A Comprehensive Review on Flood Early Warning Systems with Emphasis on Numerical Modeling
by Diego Fernández-Nóvoa, José González-Cao and Orlando García-Feal
Water 2024, 16(10), 1408; https://doi.org/10.3390/w16101408 - 15 May 2024
Cited by 11 | Viewed by 7787
Abstract
During recent decades there has been an increase in extreme flood events and their intensity in most regions, mainly driven by climate change. Furthermore, these critical events are expected to intensify in the future. Therefore, the improvement of preparedness, mitigation, and adaptation counterparts [...] Read more.
During recent decades there has been an increase in extreme flood events and their intensity in most regions, mainly driven by climate change. Furthermore, these critical events are expected to intensify in the future. Therefore, the improvement of preparedness, mitigation, and adaptation counterparts is mandatory. Many scientific fields are involved in this task, but from a meteorological and hydrological perspective, one of the main tools that can contribute to mitigating the impact of floods is the development of Early Warning Systems. In this sense, this paper presents a scientific literature review of some of the most representative Flood Early Warning Systems worldwide, many of which are currently fully operational, with a special focus on the numerical modeling component when it is developed and integrated into the system. Thus, from basic to technically complex, and from basin or regional to continental or global scales of application, these systems have been reviewed. In this sense, a brief description of their main features, operational procedures, and implemented numerical models is also depicted. Additionally, a series of indications regarding the key aspects of the newly developed FEWSs, based on recent trends and advancements in FEWSs development found in the literature, are also summarized. Thus, this work aims to provide a literature review useful to scientists and engineers involved in flood analysis to improve and develop supporting tools to assist in the implementation of mitigation measures to reduce flood damage for people, goods, and ecosystems and to improve the community resilience. Full article
(This article belongs to the Special Issue Numerical Simulations and Modelling of Extreme Flood Events)
Show Figures

Figure 1

18 pages, 5786 KiB  
Article
Removal of Dyes from Water Using Aluminum-Based Water Treatment Sludge as a Low-Cost Coagulant: Use of Response Surface Methodology
by Abderrezzaq Benalia, Kerroum Derbal, Ouiem Baatache, Cheima Lehchili, Amel Khalfaoui and Antonio Pizzi
Water 2024, 16(10), 1400; https://doi.org/10.3390/w16101400 - 14 May 2024
Cited by 13 | Viewed by 2547
Abstract
The aim of this research was to valorize waste (sludge) from a drinking water treatment plant as a coagulant in the removal of dyes (methylene blue and crystal violet) from water and to prevent environmental issues associated with sludge storage. To accomplish this [...] Read more.
The aim of this research was to valorize waste (sludge) from a drinking water treatment plant as a coagulant in the removal of dyes (methylene blue and crystal violet) from water and to prevent environmental issues associated with sludge storage. To accomplish this purpose, the response surface methodology based on a central composite design with five levels was implemented. In order to enhance the efficacy of the coagulation–flocculation process, three key operational variables were considered for optimization: the pH, coagulant dosage (mg/L), and initial dye concentration (mg/L). To achieve this, a quadratic polynomial model was established. According to the mathematical model that has been developed, it is predicted that the highest efficiency for removing dyes is 94.44%. This maximum effectiveness is reached when the pH is adjusted to 12.04, the coagulant dose is set at 87.044 mg/L, and the dye concentration of MB is maintained at 2.955 mg/L. Conversely, the best dye removal of CV was attained at 100% under the following conditions: pH = 12.045, a coagulant dosage of 2.955 mg/L, and a dye concentration of 2.955 mg/L. The R2 (98.44% and 95.80% for MB and CV, respectively) validated both models. In this work, the coagulant was characterized by the surface charge, FTIR, BET, and SEM analysis. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 1514 KiB  
Article
Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks
by Ileana Federigi, Roberto Salvadori, Giulia Lauretani, Anna Leone, Simone Lippi, Francesca Marvulli, Alessandra Pagani, Marco Verani and Annalaura Carducci
Water 2024, 16(10), 1399; https://doi.org/10.3390/w16101399 - 14 May 2024
Cited by 7 | Viewed by 3735
Abstract
Reusing reclaimed water is of paramount importance to achieve the 2030 Agenda for Sustainable Development Goals 6 and 13. In Europe, a recent Regulation set minimum requirements for water reuse in agriculture. However, some challenges remain considering microbial risks and their prevention. In [...] Read more.
Reusing reclaimed water is of paramount importance to achieve the 2030 Agenda for Sustainable Development Goals 6 and 13. In Europe, a recent Regulation set minimum requirements for water reuse in agriculture. However, some challenges remain considering microbial risks and their prevention. In this study, two urban wastewater treatment plants (WWTPs) were investigated from the perspective of reuse. A five-year investigation was performed on routine monitoring parameters collected under different weather conditions (wet/dry) and treatments (chlorination/non-chlorination) in inlet and outlet samples. Moreover, a three-month investigation focused on microbial parameters, including indicators, index pathogens (Human Adenovirus—HAdV, Salmonella spp.), and other viral pathogens (norovirus, enterovirus, and SARS-CoV-2). The long-term study revealed the compliance of both WWTPs for chemical parameters (organic substances and solids) in more than 90% of samples, whereas for Escherichia coli, the compliance ranged from 96.1% with chlorination under dry weather to 16.7% without chlorination in wet days. E. coli was positively associated with chemical oxygen demand (COD), which could be a promising and online measurable proxy of E. coli. The study on microbial performance demonstrated sound reliability in detecting E. coli as a suitable surrogate for Salmonella in chlorinated effluents, but neither bacterial nor viral indicators are able to represent HAdV. Although chlorination was able to remove most of the pathogens considered, the compliance with microbial indicators seems insufficient to represent viral water safety. Full article
Show Figures

Figure 1

34 pages, 8943 KiB  
Article
Toward Decontamination in Coastal Regions: Groundwater Quality, Fluoride, Nitrate, and Human Health Risk Assessments within Multi-Aquifer Al-Hassa, Saudi Arabia
by Mohamed A. Yassin, Sani I. Abba, Syed Muzzamil Hussain Shah, Abdullahi G. Usman, Johnbosco C. Egbueri, Johnson C. Agbasi, Abid Khogali, Husam Musa Baalousha, Isam H. Aljundi, Saad Sha. Sammen and Miklas Scholz
Water 2024, 16(10), 1401; https://doi.org/10.3390/w16101401 - 14 May 2024
Cited by 48 | Viewed by 5116
Abstract
Contamination in coastal regions attributed to fluoride and nitrate cannot be disregarded, given the substantial environmental and public health issues they present worldwide. For effective decontamination, it is pivotal to identify regional pollution hotspots. This comprehensive study was performed to assess the spatial [...] Read more.
Contamination in coastal regions attributed to fluoride and nitrate cannot be disregarded, given the substantial environmental and public health issues they present worldwide. For effective decontamination, it is pivotal to identify regional pollution hotspots. This comprehensive study was performed to assess the spatial as well as indexical water quality, identify contamination sources, hotspots, and evaluate associated health risks pertaining to nitrate and fluoride in the Al-Hassa region, KSA. The physicochemical results revealed a pervasive pollution of the overall groundwater. The dominant water type was Na-Cl, indicating saltwater intrusion and reverse ion exchange impact. Spatiotemporal variations in physicochemical properties suggest diverse hydrochemical mechanisms, with geogenic factors primarily influencing groundwater chemistry. The groundwater pollution index varied between 0.8426 and 4.7172, classifying samples as moderately to very highly polluted. Similarly, the synthetic pollution index (in the range of 0.5021–4.0715) revealed that none of the samples had excellent water quality, with various degrees of pollution categories. Nitrate health quotient (HQ) values indicated chronic human health risks ranging from low to severe, with infants being the most vulnerable. Household use of nitrate-rich groundwater for showering and cleaning did not pose significant health risks. Fluoride HQ decreased with age, and children faced the highest risk of fluorosis. The hazard index (HI) yielded moderate- to high-risk values. Nitrate risks were 1.21 times higher than fluoride risks, as per average HI assessment. All samples fell into the vulnerable category based on the total hazard index (THI), with 88.89% classified as very high risk. This research provides valuable insights into groundwater quality, guiding water authorities, inhabitants, and researchers in identifying safe water sources, vulnerable regions, and human populations. The results highlight the need for appropriate treatment techniques and long-term coastal groundwater management plans. Full article
(This article belongs to the Special Issue Research on Coastal Water Quality Modelling)
Show Figures

Figure 1

17 pages, 4158 KiB  
Article
The Potential of AOP Pretreatment in the Biodegradation of PS and PVC Microplastics by Candida parapsilosis
by Kristina Bule Možar, Martina Miloloža, Viktorija Martinjak, Magdalena Ujević Bošnjak, Marinko Markić, Tomislav Bolanča, Matija Cvetnić, Dajana Kučić Grgić and Šime Ukić
Water 2024, 16(10), 1389; https://doi.org/10.3390/w16101389 - 13 May 2024
Cited by 7 | Viewed by 1910
Abstract
Microplastics are an emerging class of recalcitrant organic pollutants that are of general scientific and public interest nowadays. It would be ideal to remove microplastics from the environment through biodegradation, as biodegradation is a highly ecological and economically acceptable approach. Unfortunately, the efficiency [...] Read more.
Microplastics are an emerging class of recalcitrant organic pollutants that are of general scientific and public interest nowadays. It would be ideal to remove microplastics from the environment through biodegradation, as biodegradation is a highly ecological and economically acceptable approach. Unfortunately, the efficiency of biodegradation of conventional plastic polymers is low. The application of a suitable pretreatment could increase the efficiency of biodegradation. In this study, the applicability of UV-C/H2O2 and UV-C/S2O82− advanced oxidation processes as pretreatments for the biodegradation of polystyrene and poly(vinyl chloride) microplastics by the yeast Candida parapsilosis was investigated. For the investigated range (pH 4–10, peroxide concentration up to 20 mM and treatment duration up to 90 min), the UV-C/H2O2 process proved to be more effective in degrading polystyrene microplastics, while the UV-C/S2O82− process was more efficient at degrading poly(vinyl chloride) microplastics. Samples pretreated under optimal conditions (90 min treatment time at a pH of 5.7 and H2O2 concentration of 20.0 mM for polystyrene samples; 90 min treatment time at a pH of 8.6 and S2O82− concentration of 11.1 mM for poly(vinyl chloride) samples) were subjected to biodegradation by Candida parapsilosis. The biodegradation conditions included an agitation speed of 156 rpm and an initial pH of 5.7 for the experiments with the polystyrene samples, while an agitation speed of 136 rpm and an initial pH of 4.9 were used for the poly(vinyl chloride) experiments. The initial value of the optical density of the yeast suspension was 1.0 in both cases. The experiments showed a positive effect of the pretreatment on the number of yeast cells on the surface of the microplastics. Full article
(This article belongs to the Special Issue Science and Technology for Water Purification)
Show Figures

Graphical abstract

15 pages, 3706 KiB  
Article
Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices
by David Gutiérrez-Rial, Iria Villar, Romina Álvarez-Troncoso, Benedicto Soto, Salustiano Mato and Josefina Garrido
Water 2024, 16(10), 1369; https://doi.org/10.3390/w16101369 - 11 May 2024
Cited by 9 | Viewed by 4658
Abstract
The proximity of freshwater ecosystems to anthropogenic activities makes them one of the most threatened environments by plastic pollution in the form of microplastics (MPs). Therefore, it is crucial to identify the primary drivers of MP dynamics in rivers to enhance their management. [...] Read more.
The proximity of freshwater ecosystems to anthropogenic activities makes them one of the most threatened environments by plastic pollution in the form of microplastics (MPs). Therefore, it is crucial to identify the primary drivers of MP dynamics in rivers to enhance their management. This work analyzed the concentration of MPs in water and sediments and evaluated the influence of land use and its relationship with the main biotic indices employed to assess the water quality of rivers. This research was carried out in four different catchments, with three sampling points established in each river basin. The results revealed that MPs were ubiquitous across all locations, with concentrations ranging from 0.10 to 35.22 items m−3 in waters and from 26 to 643 items Kg−1 in sediments. The highest concentration of MPs both in water and sediments were found in the Lagares River (35.22 items m−3 and 643 items Kg−1), while the lowest concentrations were found in the Miñor River for water (0.10 items m−3) and Tea River for sediments (138 items Kg−1). Urbanization degree was identified as the primary driver of MP pollution in water, whereas population density correlated with sediment pollution levels. These findings explain the elevated MPs abundance in the more urbanized and populated Gafos and Lagares rivers compared to the relatively pristine Miñor and Tea rivers. Furthermore, the presence of MPs in sediments was found to negatively impact the most sensitive benthic macroinvertebrate taxa, as evidenced by lower values of the IASPT and EPT indices at sampling points with higher sediment MPs concentrations (Gafos and Lagares). Full article
(This article belongs to the Special Issue Water Quality Assessment of River Basins)
Show Figures

Figure 1

20 pages, 10968 KiB  
Article
Classification of Pollution Sources and Their Contributions to Surface Water Quality Using APCS-MLR and PMF Model in a Drinking Water Source Area in Southeastern China
by Ai Wang, Jiangyu Wang, Benjie Luan, Siru Wang, Dawen Yang and Zipeng Wei
Water 2024, 16(10), 1356; https://doi.org/10.3390/w16101356 - 10 May 2024
Cited by 6 | Viewed by 2564
Abstract
Identifying the potential pollution sources of surface water pollutants is essential for the management and protection of regional water environments in drinking water source areas. In this study, absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models were applied [...] Read more.
Identifying the potential pollution sources of surface water pollutants is essential for the management and protection of regional water environments in drinking water source areas. In this study, absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models were applied to assess water quality and identify the potential pollution sources affecting the surface water quality of Xin’an River Basin. For this purpose, a 10-year (2011–2020) dataset of eight water quality indicators (including pH, EC, DO, COD, NH3-N, TN, TP, and FC) covering eight monitoring stations and 7248 monthly observations was used. The results indicated that Pukou section had the worst water quality among the eight monitoring stations, and TN was the most serious water quality index. Both the APCS-MLR and PMF models identified agricultural nonpoint source pollution, urban nonpoint source pollution and rural domestic pollution, and meteorological factors. The sum of these three sources was very close, accounting for 60% and 58%, respectively. The APCS-MLR results demonstrated that for EC, COD, and NH3-N, the major pollution sources were urban nonpoint sources and rural domestic pollution. The major contamination source of TN was agricultural nonpoint source pollution (30.4%). Meanwhile, the major pollution sources of pH, DO, TP, and FC were unidentified factors. The PMF model identified five potential sources, and pH and DO were affected by meteorological factors. NH3-N and TP were influenced mainly by agricultural nonpoint source pollution. Atmospheric deposition was the major pollution source (87.9%) of TN. FC was mostly derived from livestock and poultry breeding (88.3%). EC and COD were mostly affected by urban nonpoint sources and rural domestic pollution. Therefore, receptor models can help managers identify the major sources of pollution in watersheds, but the major factors affecting different pollutants need to be supplemented by other methods. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

18 pages, 2236 KiB  
Article
Development and Applicability Evaluation of Damage Scale Analysis Techniques for Agricultural Drought
by Youngseok Song, Jingul Joo, Hayong Kim and Moojong Park
Water 2024, 16(10), 1342; https://doi.org/10.3390/w16101342 - 8 May 2024
Cited by 3 | Viewed by 1637
Abstract
In recent years, the intensity and frequency of droughts have been increasing with the advent of the climate crisis. Agricultural droughts have a significant economic and social impact. Agricultural drought is not only a natural disaster but also leads to food security threats [...] Read more.
In recent years, the intensity and frequency of droughts have been increasing with the advent of the climate crisis. Agricultural droughts have a significant economic and social impact. Agricultural drought is not only a natural disaster but also leads to food security threats and reduced economic activities, such as decreased productivity. Therefore, it is very important to specify the scale of agricultural drought and quantitatively estimate the economic damage. In this study, we developed an analytical methodology to quantitatively assess the economic damage of agricultural drought and estimated the damage of agricultural drought in 2018 and 2019 for the Republic of Korea. The 2018 agricultural drought was estimated to have caused USD 4.438 million in damage cost and USD 5.180 million in recovery cost. The 2019 drought was less damaging than the previous year, with an estimated damage cost of USD 286,000 and recovery costs of USD 218,000. The results suggest that the economic impact of agricultural drought varies by region depending on the frequency and intensity of the drought and confirm the importance of regional strategies for effective drought management and response. The impacts of agricultural drought go beyond short-term agricultural losses and lead to long-term economic burdens. Therefore, the results of this study are expected to be used as a basis for understanding the impacts of agricultural drought on national economies and for developing policies and strategies to minimize impacts. Full article
(This article belongs to the Special Issue Drought Monitoring and Risk Assessment)
Show Figures

Figure 1

20 pages, 4208 KiB  
Article
Effect of Humic Amendment on Selected Hydrophysical Properties of Sandy and Clayey Soils
by Branislav Kandra, Andrej Tall, Justína Vitková, Michal Procházka and Peter Šurda
Water 2024, 16(10), 1338; https://doi.org/10.3390/w16101338 - 8 May 2024
Cited by 5 | Viewed by 2377
Abstract
In recent years, products containing humic acids have been increasingly used in agriculture to improve soil parameters. Quantifying their impact on soil quality is, therefore, of key importance. This study seeks to evaluate the impact of the commercial humic acid product (HA) on [...] Read more.
In recent years, products containing humic acids have been increasingly used in agriculture to improve soil parameters. Quantifying their impact on soil quality is, therefore, of key importance. This study seeks to evaluate the impact of the commercial humic acid product (HA) on the hydrophysical parameters of sandy and clayey soils sampled from different sites in Slovakia. Specifically, the study hypothesizes that humic amendment will enhance particle density (ρs), dry bulk density (ρd), porosity (Φ), saturated hydraulic conductivity (Ks), soil water repellency (SWR), and water retention capacity in sandy and clayey soils. The results of the laboratory measurements were analyzed using NCSS statistical software at a statistical significance of p < 0.05. In sandy soil, there was a statistically significant decrease in ρd and Ks and an increase in Φ and a contact angle (CA) after the application of 1 g/100 cm3 HA. At a dose of 6 g/100 cm3 HA, the values of ρs, ρd, and Ks decreased, and the Φ and CA values increased. In clayey soil, the Ks value significantly decreased by −35.5% only after the application of 6 g/100 cm3 HA. The addition of HA increased the full water capacity (FWC) and available water capacity (AWC) of clayey and sandy soils. The positive influence of HA on the studied soil parameters was experimentally confirmed, which can be beneficial, especially for their use in agricultural production. Full article
Show Figures

Figure 1

16 pages, 6714 KiB  
Article
Improving Irrigation Management of Cotton with Small Unmanned Aerial Vehicle (UAV) in Texas High Plains
by Avay Risal, Haoyu Niu, Jose Luis Landivar-Scott, Murilo M. Maeda, Craig W. Bednarz, Juan Landivar-Bowles, Nick Duffield, Paxton Payton, Pankaj Pal, Robert J. Lascano, Timothy Goebel and Mahendra Bhandari
Water 2024, 16(9), 1300; https://doi.org/10.3390/w16091300 - 2 May 2024
Cited by 7 | Viewed by 2317
Abstract
The rapid decline in water availability for irrigation on the Texas High Plains (THP) is a significant problem affecting crop production and the viability of a large regional economy worth approximately USD 7 billion annually. This region is the largest continuous cotton-producing area [...] Read more.
The rapid decline in water availability for irrigation on the Texas High Plains (THP) is a significant problem affecting crop production and the viability of a large regional economy worth approximately USD 7 billion annually. This region is the largest continuous cotton-producing area in the United States, and the timely delivery and efficient use of irrigation water are critical to the sustainability and profitability of cotton production in this region. Current irrigation scheduling must be improved to reduce water consumption without compromising crop production. Presently, irrigation scheduling based on reference evapotranspiration (ETo) is limited due to the lack of reliable and readily available in-field weather data and updated crop coefficients. Additionally, in-field variability in crop water demand is often overlooked, leading to lower irrigation efficiency. To address these challenges, we explored the potential use of an unmanned aerial vehicle (UAV)-based crop monitoring system to support irrigation management decisions. This study was conducted in Lubbock, Texas, in 2022, where high temporal and spatial resolution images were acquired using a UAV from a cotton field experiment with four irrigation levels. Soil moisture and canopy temperature sensors were deployed to monitor crop response to irrigation and rainfall. The results indicated a significant effect of water stress on crop growth (revealed by UAV-based canopy cover (CC) measurements), yield, and fiber quality. Strong correlations between multi-temporal CC and lint yield (R2 = 0.68 to 0.88) emphasized a clear trend: rainfed treatments with lower yields exhibited reduced CC, while irrigated plots with higher CC displayed increased yields. Furthermore, irrigated plots produced more mature and uniform fibers. This study also explored various evapotranspiration calculation approaches indicating that site-specific CC measurements obtained from a UAV could significantly reduce irrigation application. A regression model linking evapotranspiration to canopy cover demonstrated promising potential for estimating water demand in crops with an R2 as high as 0.68. The findings highlight the efficacy of UAV-based canopy features in assessing drought effects and managing irrigation water in water-limited production regions like the THP. Full article
Show Figures

Figure 1

14 pages, 24885 KiB  
Article
A Case Study and Numerical Modeling of Post-Wildfire Debris Flows in Montecito, California
by Diwakar K. C., Mohammad Wasif Naqvi and Liangbo Hu
Water 2024, 16(9), 1285; https://doi.org/10.3390/w16091285 - 30 Apr 2024
Cited by 5 | Viewed by 2166
Abstract
Wildfires and their long-term impacts on the environment have become a major concern in the last few decades, in which climate change and enhanced anthropogenic activities have gradually led to increasingly frequent events of such hazards or disasters. Geological materials appear to become [...] Read more.
Wildfires and their long-term impacts on the environment have become a major concern in the last few decades, in which climate change and enhanced anthropogenic activities have gradually led to increasingly frequent events of such hazards or disasters. Geological materials appear to become more vulnerable to hazards including erosion, floods, landslides and debris flows. In the present study, the well-known 2017 wildfire and subsequent 2018 debris flows in the Montecito area of California are examined. It is found that the post-wildfire debris flows were initiated from erosion and entrainment processes and triggered by intense rainfall. The significant debris deposition in four major creeks in this area is investigated. Numerical modeling of the post-wildfire debris flows is performed by employing a multi-phase mass flow model to simulate the growth in the debris flows and eventual debris deposition. The debris-flow-affected areas estimated from the numerical simulations fairly represent those observed in the field. Overall, the simulated debris deposits are within 7% error of those estimated based on field observations. A similar simulation of the pre-wildfire scenario indicates that the debris would be much less significant. The present study shows that proper numerical simulations can be a promising tool for estimating post-wildfire erosion and the debris-affected areas for hazard assessment and mitigation. Full article
(This article belongs to the Special Issue Flowing Mechanism of Debris Flow and Engineering Mitigation)
Show Figures

Figure 1

19 pages, 8985 KiB  
Article
Flood Water Depth Prediction with Convolutional Temporal Attention Networks
by Priyanka Chaudhary, João P. Leitão, Konrad Schindler and Jan Dirk Wegner
Water 2024, 16(9), 1286; https://doi.org/10.3390/w16091286 - 30 Apr 2024
Cited by 8 | Viewed by 2712
Abstract
Robust and accurate flood hazard maps are essential for early warning systems and flood risk management. Although physically based models are effective in estimating pluvial flooding, the computational burden makes them difficult to use for real-time flood prediction. In contrast, data-driven models can [...] Read more.
Robust and accurate flood hazard maps are essential for early warning systems and flood risk management. Although physically based models are effective in estimating pluvial flooding, the computational burden makes them difficult to use for real-time flood prediction. In contrast, data-driven models can provide faster flood predictions if trained offline. While most studies have focused on predicting maximum water depth, in this study, we predict pixel-wise water depth maps for entire catchments at a lead time of 2 h. To that end, we propose a deep learning approach that uses a sequence encoding network with temporal self-attention. We also adapt the popular hydrological performance metric Nash–Sutcliffe efficiency (NSE) as our loss function. We test the effectiveness and generalizability of our method using a new dataset called SwissFlood, which consists of 100 catchments and 1500 rainfall events extracted from real observations in Switzerland. Our method produces 2 m spatial resolution flood maps with absolute error as low as 27 cm for water depth exceeding 1 m. Full article
Show Figures

Figure 1

22 pages, 14306 KiB  
Article
Daily Streamflow Forecasting Using Networks of Real-Time Monitoring Stations and Hybrid Machine Learning Methods
by Yue Zhang, Zimo Zhou, Ying Deng, Daiwei Pan, Jesse Van Griensven Thé, Simon X. Yang and Bahram Gharabaghi
Water 2024, 16(9), 1284; https://doi.org/10.3390/w16091284 - 30 Apr 2024
Cited by 8 | Viewed by 3491
Abstract
Considering the increased risk of urban flooding and drought due to global climate change and rapid urbanization, the imperative for more accurate methods for streamflow forecasting has intensified. This study introduces a pioneering approach leveraging the available network of real-time monitoring stations and [...] Read more.
Considering the increased risk of urban flooding and drought due to global climate change and rapid urbanization, the imperative for more accurate methods for streamflow forecasting has intensified. This study introduces a pioneering approach leveraging the available network of real-time monitoring stations and advanced machine learning algorithms that can accurately simulate spatial–temporal problems. The Spatio-Temporal Attention Gated Recurrent Unit (STA-GRU) model is renowned for its computational efficacy in forecasting streamflow events with a forecast horizon of 7 days. The novel integration of the groundwater level, precipitation, and river discharge as predictive variables offers a holistic view of the hydrological cycle, enhancing the model’s accuracy. Our findings reveal that for a 7-day forecasting period, the STA-GRU model demonstrates superior performance, with a notable improvement in mean absolute percentage error (MAPE) values and R-square (R2) alongside reductions in the root mean squared error (RMSE) and mean absolute error (MAE) metrics, underscoring the model’s generalizability and reliability. Comparative analysis with seven conventional deep learning models, including the Long Short-Term Memory (LSTM), the Convolutional Neural Network LSTM (CNNLSTM), the Convolutional LSTM (ConvLSTM), the Spatio-Temporal Attention LSTM (STA-LSTM), the Gated Recurrent Unit (GRU), the Convolutional Neural Network GRU (CNNGRU), and the STA-GRU, confirms the superior predictive power of the STA-LSTM and STA-GRU models when faced with long-term prediction. This research marks a significant shift towards an integrated network of real-time monitoring stations with advanced deep-learning algorithms for streamflow forecasting, emphasizing the importance of spatially and temporally encompassing streamflow variability within an urban watershed’s stream network. Full article
Show Figures

Figure 1

18 pages, 1803 KiB  
Article
A Novel Method for Anomaly Detection and Signal Calibration in Water Quality Monitoring of an Urban Water Supply System
by Jincheng Liu, Di Wu, Hadi Mohammed and Razak Seidu
Water 2024, 16(9), 1238; https://doi.org/10.3390/w16091238 - 26 Apr 2024
Cited by 4 | Viewed by 1969
Abstract
Water quality monitoring plays a crucial role in urban water supply systems for the production of safe drinking water. However, the traditional approach to water monitoring in Norway relies on a periodic (weekly/biweekly/monthly) sampling and analysis of biological indicators, which fails to provide [...] Read more.
Water quality monitoring plays a crucial role in urban water supply systems for the production of safe drinking water. However, the traditional approach to water monitoring in Norway relies on a periodic (weekly/biweekly/monthly) sampling and analysis of biological indicators, which fails to provide a timely response to changes in water quality. This research addresses this issue by proposing a data-driven solution that enhances the timeliness of water quality monitoring. Our research team applied a case study in Ålesund Kommune. A sensor platform has been deployed at Lake Brusdalsvatnet, the water source reservoir in Ålesund. This sensor module is capable of collecting data for 10 different physico-chemical indicators of water quality. Leveraging this sensor platform, we developed a CNN-AutoEncoder-SOM solution to automatically monitor, process, and evaluate water quality evolution in the lake. There are three components in this solution. The first one focuses on anomaly detection. We employed a recurrence map to encode the temporal dynamics and sensor correlations, which were then fed into a convolutional neural network (CNN) for classification. It is noted that this network achieved an impressive accuracy of up to 99.6%. Once an anomaly is detected, the data are calibrated in the second component using an AutoEncoder-based network. Since true values for calibration are unavailable, the results are evaluated through data analysis. With high-quality calibrated data in hand, we proceeded to cluster the data into different categories to establish water quality standards in the third component, where a self-organizing map (SOM) is applied. The results revealed that this solution demonstrated significant performance, with a silhouette score of 0.73, which illustrates a small in-cluster distance and large intra-cluster distance when the water was clustered into three levels. This system not only achieved the objective of developing a comprehensive solution for continuous water quality monitoring but also offers the potential for integration with other cyber–physical systems (CPSs) in urban water management. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

19 pages, 3658 KiB  
Article
Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea
by Jian Liang, Chae-Woo Ma and Dae-Sun Son
Water 2024, 16(9), 1230; https://doi.org/10.3390/w16091230 - 25 Apr 2024
Cited by 9 | Viewed by 1980
Abstract
With the rapid development of the South Korean economy, human activities have extensively affected Korea’s coastal environment. A precise ecological quality assessment remains paramount despite the relatively lower impact of human activities on the East Sea compared to the West and South Seas [...] Read more.
With the rapid development of the South Korean economy, human activities have extensively affected Korea’s coastal environment. A precise ecological quality assessment remains paramount despite the relatively lower impact of human activities on the East Sea compared to the West and South Seas of South Korea. Accurate ecological quality assessments can provide valuable marine environmental protection and management references. In our study, we employed seven indices based on heavy metals and macrobenthos to comprehensively assess ecological quality. Our results indicated the final ecological quality in the central East Sea of South Korea was acceptable at most stations; however, the ecological quality in winter marginally falls short compared to that in spring. The concentration of heavy metals emerges as a significant determinant of the final ecological quality, underscoring the need for subsequent studies to investigate the origins of heavy metals in the central East Sea of South Korea and the influence of anthropogenic activities on heavy metal concentrations. Furthermore, employing a single biotic index proves challenging for accurately assessing ecological quality in the East Sea of South Korea. Full article
(This article belongs to the Special Issue Marine Ecological Monitoring, Assessment and Protection)
Show Figures

Figure 1

22 pages, 731 KiB  
Review
Microplastics in Groundwater: Pathways, Occurrence, and Monitoring Challenges
by Elvira Colmenarejo Calero, Manca Kovač Viršek and Nina Mali
Water 2024, 16(9), 1228; https://doi.org/10.3390/w16091228 - 25 Apr 2024
Cited by 12 | Viewed by 5268
Abstract
Microplastics (MPs), defined as plastic particles measuring less than 5 mm, are considered an emerging pollutant. Their presence in the water cycle and their interaction with ecological processes pose a significant environmental threat. As groundwater (GW) represents the primary source of drinking water, [...] Read more.
Microplastics (MPs), defined as plastic particles measuring less than 5 mm, are considered an emerging pollutant. Their presence in the water cycle and their interaction with ecological processes pose a significant environmental threat. As groundwater (GW) represents the primary source of drinking water, monitoring MPs in GW and investigating their potential sources and pathways is of urgent importance. This article offers a comprehensive overview of the primary contamination pathways of MPs from surface water, seawater, and soil into the GW. Moreover, it presents an examination of the occurrence of MPs in GW and identifies the challenges associated with their monitoring in GW. This study also discusses the difficulties associated with comparing research results related to MPs in GW, as well as indicating the need for implementing standardised techniques for their sampling and detection. On the basis of our experience and the literature review, we highlight the importance of understanding the specific hydrogeological and hydrogeographic conditions, collecting representative samples, using sampling devices with comparable specifications and comparable laboratory techniques for MP identification, and preventing contamination at all stages of the monitoring process. This review offers valuable insights and practical guidelines on how to improve the reliability and comparability of results between studies monitoring MPs in GW. Full article
(This article belongs to the Topic Microplastics Pollution)
Show Figures

Figure 1

25 pages, 1717 KiB  
Review
Recent Issues and Challenges in the Study of Inland Waters
by Ryszard Staniszewski, Beata Messyasz, Piotr Dąbrowski, Pawel Burdziakowski and Marcin Spychała
Water 2024, 16(9), 1216; https://doi.org/10.3390/w16091216 - 24 Apr 2024
Cited by 6 | Viewed by 2595
Abstract
This paper addresses several important problems and methods related to studies of inland waters based on the existing scientific literature. The use of UAVs in freshwater monitoring is described, including recent contact and non-contact solutions. Due to a decline in biological diversity in [...] Read more.
This paper addresses several important problems and methods related to studies of inland waters based on the existing scientific literature. The use of UAVs in freshwater monitoring is described, including recent contact and non-contact solutions. Due to a decline in biological diversity in many parts of the globe, the main threats are described together with a modern method for algae and cyanobacteria monitoring utilizing chlorophyll a fluorescence. Observed disturbances in the functioning of river biocenoses related to mine waters’ discharge, causing changes in the physico-chemical parameters of waters and sediments, give rise to the need to develop more accurate methods for the assessment of this phenomenon. Important problems occurring in the context of microplastic detection, including the lack of unification, standardization and repeatability of the methods used, were described. In conclusion, accurate results in the monitoring of water quality parameters of inland waters can be achieved by combining modern methods and using non-contact solutions. Full article
Show Figures

Figure 1

15 pages, 5248 KiB  
Article
Determination of Heavy Metal Sources in an Agricultural Catchment (Poland) Using the Fingerprinting Method
by Damian Bojanowski
Water 2024, 16(9), 1209; https://doi.org/10.3390/w16091209 - 24 Apr 2024
Cited by 4 | Viewed by 1665
Abstract
This study investigates the heavy metal contamination of soils and suspended sediments in the Nurzec River catchment (Eastern Poland), focusing in particular on the effects of catchment land use. The fingerprinting technique has been combined with the classic, Igeo, and EF [...] Read more.
This study investigates the heavy metal contamination of soils and suspended sediments in the Nurzec River catchment (Eastern Poland), focusing in particular on the effects of catchment land use. The fingerprinting technique has been combined with the classic, Igeo, and EF index-supported contamination analysis to identify heavy metals sources. A wide range of elements (31 chemical elements including heavy metals) allowed the author to analyse the pathways and to identify the pressures of heavy metal contamination. The developed statistical models of heavy metal source distribution displayed results at a statistically significant level. The results have revealed the significant impact of land use connected with urban areas (URBAN) and pastures (PAST), which together constitute less than 20% of the river catchment area. These results are relevant to the local authorities and stakeholders, as they highlight the significant impact of low-density urban areas that are not locally considered as the major sources of heavy metal pollution. These results will contribute to sustainable decisions in the field of contaminated catchment area remediation. Full article
(This article belongs to the Special Issue Soil Dynamics and Water Resource Management)
Show Figures

Figure 1

40 pages, 9564 KiB  
Article
Groundwater Sustainability and Land Subsidence in California’s Central Valley
by Claudia C. Faunt, Jonathan A. Traum, Scott E. Boyce, Whitney A. Seymour, Elizabeth R. Jachens, Justin T. Brandt, Michelle Sneed, Sandra Bond and Marina F. Marcelli
Water 2024, 16(8), 1189; https://doi.org/10.3390/w16081189 - 22 Apr 2024
Cited by 10 | Viewed by 8513
Abstract
The Central Valley of California is one of the most prolific agricultural regions in the world. Agriculture is reliant on the conjunctive use of surface-water and groundwater. The lack of available surface-water and land-use changes have led to pumping-induced groundwater-level and storage declines, [...] Read more.
The Central Valley of California is one of the most prolific agricultural regions in the world. Agriculture is reliant on the conjunctive use of surface-water and groundwater. The lack of available surface-water and land-use changes have led to pumping-induced groundwater-level and storage declines, land subsidence, changes to streamflow and the environment, and the degradation of water quality. As a result, in part, the Sustainable Groundwater Management Act (SGMA) was developed. An examination of the components of SGMA and contextualizing regional model applications within the SGMA framework was undertaken to better understand and quantify many of the components of SGMA. Specifically, the U.S. Geological Survey (USGS) updated the Central Valley Hydrologic Model (CVHM) to assess hydrologic system responses to climatic variation, surface-water availability, land-use changes, and groundwater pumping. MODFLOW-OWHM has been enhanced to simulate the timing of land subsidence and attribute its inelastic and elastic portions. In addition to extending CVHM through 2019, the new version, CVHM2, includes several enhancements as follows: managed aquifer recharge (MAR), pumping with multi-aquifer wells, inflows from ungauged watersheds, and more detailed water-balance subregions, streamflow network, diversions, tile drains, land use, aquifer properties, and groundwater level and land subsidence observations. Combined with historical approximations, CVHM2 estimates approximately 158 km3 of storage loss in the Central Valley from pre-development to 2019. About 15% of the total storage loss is permanent loss of storage from subsidence that has caused damage to infrastructure. Climate extremes will likely complicate the efforts of water managers to store more water in the ground. CVHM2 can provide data in the form of aggregated input datasets, simulate climatic variations and changes, land-use changes or water management scenarios, and resulting changes in groundwater levels, storage, and land subsidence to assist decision-makers in the conjunctive management of water supplies. Full article
Show Figures

Figure 1

20 pages, 3557 KiB  
Article
Impact of Future Climate Scenarios and Bias Correction Methods on the Achibueno River Basin
by Héctor Moya, Ingrid Althoff, Juan L. Celis-Diez, Carlos Huenchuleo-Pedreros and Paolo Reggiani
Water 2024, 16(8), 1138; https://doi.org/10.3390/w16081138 - 17 Apr 2024
Cited by 5 | Viewed by 1692
Abstract
Future climate scenarios based on regional climate models (RCMs) have been evaluated widely. However, the use of RCMs without bias correction may increase the uncertainty in the assessment of climate change impacts, especially in mountain areas. Five quantile mapping methods (QMMs) were evaluated [...] Read more.
Future climate scenarios based on regional climate models (RCMs) have been evaluated widely. However, the use of RCMs without bias correction may increase the uncertainty in the assessment of climate change impacts, especially in mountain areas. Five quantile mapping methods (QMMs) were evaluated as bias correction methods for precipitation and temperature in the historical period (1979–2005) of one local climate model and three RCMs at the Achibueno River Basin, southcentral Chile. Additionally, bias-corrected climate scenarios from 2025 to 2050 under two Representative Concentration Pathways (RCPs) were evaluated on the hydrological response of the catchment with the Soil and Water Assessment Tool (SWAT+). The parametric transformation function and robust empirical quantile were the most promising bias correction methods for precipitation and temperature, respectively. Climate scenarios suggest changes in the frequency and amount of precipitation with fluctuations in temperatures. Under RCP 2.6, partial increases in precipitation, water yield, and evapotranspiration are projected, while for RCP 8.5, strong peaks of precipitation and water yield in short periods of time, together with increases in evapotranspiration, are expected. Consequently, flooding events and increasing irrigation demand are changes likely to take place. Therefore, considering adaptation of current and future management practices for the protection of water resources in southcentral Chile is mandatory. Full article
(This article belongs to the Special Issue Advances in Hydrology: Flow and Velocity Analysis in Rivers)
Show Figures

Figure 1

19 pages, 2702 KiB  
Article
Diversity of Macrophytes and Macroinvertebrates in Different Types of Standing Waters in the Drava Field
by Mateja Germ, Žiga Tertinek and Igor Zelnik
Water 2024, 16(8), 1130; https://doi.org/10.3390/w16081130 - 16 Apr 2024
Cited by 4 | Viewed by 2187
Abstract
The diversity of macrophytes and macroinvertebrates in small standing waters of different origins and characteristics was investigated. This survey covered 19 ponds in the Drava field in northeastern Slovenia. The influence of the macrophytes on the macroinvertebrates was investigated and the main environmental [...] Read more.
The diversity of macrophytes and macroinvertebrates in small standing waters of different origins and characteristics was investigated. This survey covered 19 ponds in the Drava field in northeastern Slovenia. The influence of the macrophytes on the macroinvertebrates was investigated and the main environmental factors that had the most significant influence on the composition of the two communities were identified. Sixty-seven taxa of macrophytes and seventy-three families of macroinvertebrates were identified. We found that a diverse macrophyte community has a positive effect on the macroinvertebrate community. In contrast, the dominance of a single macrophyte species has a strong negative influence on the richness of the macroinvertebrate community. The taxonomic richness and abundance of the macroinvertebrate community in the natural ponds was statistically significantly higher than that in artificial ponds. The significant differences in the environmental characteristics between the natural and artificial ponds, such as the macrophyte cover, conductivity, and riparian zone width, may account for these differences. Our study suggests that a greater diversity of macrophyte and macroinvertebrate communities in natural ponds is enabled by abundant but diverse macrophyte cover, low phosphorus content, and wide riparian zones, which require appropriate management of ponds and their catchments. Full article
(This article belongs to the Special Issue Biodiversity of Freshwater Ecosystems: Monitoring and Conservation)
Show Figures

Figure 1

21 pages, 5528 KiB  
Article
Modeling the Impact of Climate Change on Streamflow in the Meghna River Basin: An Analysis Using SWAT and CMIP6 Scenarios
by Wasif Bin Mamoon, Nasreen Jahan, Faruque Abdullah and Ataur Rahman
Water 2024, 16(8), 1117; https://doi.org/10.3390/w16081117 - 14 Apr 2024
Cited by 7 | Viewed by 3727
Abstract
This study assesses future climate change impacts on the hydrologic response of the Upper Meghna River Basin (UMRB), a major river system in Bangladesh. Separate SWAT (Soil and Water Assessment Tool) hydrologic models were developed for the three major sub-basins of the UMRB, [...] Read more.
This study assesses future climate change impacts on the hydrologic response of the Upper Meghna River Basin (UMRB), a major river system in Bangladesh. Separate SWAT (Soil and Water Assessment Tool) hydrologic models were developed for the three major sub-basins of the UMRB, i.e., Barak, Meghalaya, and Tripura, considering their unique geographical, hydrological, and land-use characteristics. To evaluate the efficiency of multi-site modeling in providing better model performance, the SWAT models were calibrated at both single and multiple locations. Those models were then simulated to estimate future flows using climate projection data from thirteen CMIP6 General Circulation Models (GCMs) under moderate and extreme emission scenarios, SSP2-4.5, and SSP5-8.5. The results revealed that the annual maximum flow will keep increasing gradually with time. The outlets of the Meghalaya sub-basin will experience a more significant rise in future flow in the upcoming decades compared to the Barak and Tripura sub-basins. Results showed that dry season flows with increases of up to 31–50% would be less affected compared to the wet periods, which could experience increases of up to 47–66%) across the sub-basins by the end of the 21st century under extreme emission projections. Besides an increasing trend in the mean flow, future flows at several outlets also exhibited an escalation in the intensity and frequency of extreme flood events. Full article
Show Figures

Figure 1

Back to TopTop