Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Temporal Resolution
2.3. Calculation of Exported Loads and Export Metrics
- L = period loading (kg time−1);
- ci = concentration on dayi (g m−3);
- Qi = mean daily discharge on dayi (m3 s−1);
- = mean period discharge (m3 s−1);
- k = temporal factor to calculate period L.
2.4. Statistical Analyses
3. Results
3.1. Temporal Variability of Precipitation, Hydrology and Nutrient Concentration
3.2. Temporal Variability of Nutrient Loadings
3.3. Loading Responses to Precipitation
3.4. Concentration–Water Discharge Metrics
4. Discussion
4.1. Decreasing Load Trends Are Driven by Changes in Hydrology and Seasonality
4.2. Hydrology Controls Load Export
5. Synthesis and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lheureux, A.; David, V.; Del Amo, Y.; Soudant, D.; Auby, I.; Bozec, Y.; Conan, P.; Ganthy, F.; Grégori, G.; Lefebvre, A.; et al. Trajectories of Nutrients Concentrations and Ratios in the French Coastal Ecosystems: 20 Years of Changes in Relation with Large-Scale and Local Drivers. Sci. Total Environ. 2023, 857, 159619. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Garnier, J.; Lassaletta, L.; Billen, G.; Le Gendre, R.; Riou, P.; Cugier, P. Large-Scale Patterns of River Inputs in Southwestern Europe: Seasonal and Interannual Variations and Potential Eutrophication Effects at the Coastal Zone. Biogeochemistry 2013, 113, 481–505. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication Science: Where Do We Go from Here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Chowdhury, S.; Byrnes, D.K.; Basu, N.B. Biogeochemical Asynchrony: Ecosystem Drivers of Seasonal Concentration Regimes across the Great Lakes Basin. Limnol. Oceanogr. 2020, 65, 848–862. [Google Scholar] [CrossRef]
- Grizzetti, B.; Bouraoui, F.; Aloe, A. Changes of Nitrogen and Phosphorus Loads to European Seas. Glob. Change Biol. 2012, 18, 769–782. [Google Scholar] [CrossRef]
- Hilton, J.; O’Hare, M.; Bowes, M.J.; Jones, J.I. How Green Is My River? A New Paradigm of Eutrophication in Rivers. Sci. Total Environ. 2006, 365, 66–83. [Google Scholar] [CrossRef]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A New Wine in an Old Bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of Excess Nutrient Inputs on Freshwater, Marine, and Terrestrial Ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Goyette, J.O.; Bennett, E.M.; Maranger, R. Differential Influence of Landscape Features and Climate on Nitrogen and Phosphorus Transport throughout the Watershed. Biogeochemistry 2019, 142, 155–174. [Google Scholar] [CrossRef]
- Howarth, R.; Swaney, D.; Billen, G.; Garnier, J.; Hong, B.; Humborg, C.; Johnes, P.; Mörth, C.M.; Marino, R. Nitrogen Fluxes from the Landscape Are Controlled by Net Anthropogenic Nitrogen Inputs and by Climate. Front. Ecol. Environ. 2012, 10, 37–43. [Google Scholar] [CrossRef]
- Lassaletta, L.; Romero, E.; Billen, G.; Garnier, J.; García-Gómez, H.; Rovira, J.V. Spatialized N Budgets in a Large Agricultural Mediterranean Watershed: High Loading and Low Transfer. Biogeosciences 2012, 9, 57–70. [Google Scholar] [CrossRef]
- Viaroli, P.; Soana, E.; Pecora, S.; Laini, A.; Naldi, M.; Fano, E.A.; Nizzoli, D. Space and Time Variations of Watershed N and P Budgets and Their Relationships with Reactive N and P Loadings in a Heavily Impacted River Basin (Po River, Northern Italy). Sci. Total Environ. 2018, 639, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M. Eutrophication, Harmful Algae and Biodiversity—Challenging Paradigms in a World of Complex Nutrient Changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef]
- Houser, J.N.; Richardson, W.B. Nitrogen and Phosphorus in the Upper Mississippi River: Transport, Processing, and Effects on the River Ecosystem. Hydrobiologia 2010, 640, 71–88. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Pallett, D.W.; Schäfer, S.M.; Macrae, M.L.; Bowes, M.J.; Farrand, P.; Warwick, A.C.; King, S.M.; Williams, R.J.; Armstrong, L.; et al. Biogeochemical and Climate Drivers of Wetland Phosphorus and Nitrogen Release: Implications for Nutrient Legacies and Eutrophication Risk. J. Environ. Qual. 2020, 49, 1703–1716. [Google Scholar] [CrossRef] [PubMed]
- Racchetti, E.; Bartoli, M.; Soana, E.; Longhi, D.; Christian, R.R.; Pinardi, M.; Viaroli, P. Influence of Hydrological Connectivity of Riverine Wetlands on Nitrogen Removal via Denitrification. Biogeochemistry 2011, 103, 335–354. [Google Scholar] [CrossRef]
- Wolf, K.L.; Noe, G.B.; Ahn, C. Hydrologic Connectivity to Streams Increases Nitrogen and Phosphorus Inputs and Cycling in Soils of Created and Natural Floodplain Wetlands. J. Environ. Qual. 2013, 42, 1245–1255. [Google Scholar] [CrossRef]
- Tockner, K.; Malard, F.; Ward, J.V. An Extension of the Flood Pulse Concept. Hydrol. Process. 2000, 14, 2861–2883. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Kanae, S.; Emori, S.; Oki, T.; Kimoto, M. Global Projections of Changing Risks of Floods and Droughts in a Changing Climate. Hydrol. Sci. J. 2008, 53, 754–772. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pin’skwar, I.; Brakenridge, G.R. Changes in River Flood Hazard in Europe: A Review. Hydrol. Res. 2018, 49, 294–302. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal Variations of Extreme Precipitation Events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30, 1895–2000. [Google Scholar] [CrossRef]
- Satoh, Y.; Yoshimura, K.; Pokhrel, Y.; Kim, H.; Shiogama, H.; Yokohata, T.; Hanasaki, N.; Wada, Y.; Burek, P.; Byers, E.; et al. The Timing of Unprecedented Hydrological Drought under Climate Change. Nat. Commun. 2022, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
- Attygalla, N.W.; Baldwin, D.S.; Silvester, E.; Kappen, P.; Whitworth, K.L. The Severity of Sediment Desiccation Affects the Adsorption Characteristics and Speciation of Phosphorus. Environ. Sci. Process. Impacts 2016, 18, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Homyak, P.M.; Allison, S.D.; Huxman, T.E.; Goulden, M.L.; Treseder, K.K. Effects of Drought Manipulation on Soil Nitrogen Cycling: A Meta-Analysis. J. Geophys. Res. Biogeosci. 2017, 122, 3260–3272. [Google Scholar] [CrossRef]
- Merbt, S.N.; Proia, L.; Prosser, J.I.; Marti, E.; Casamayor, E.O.; Von Schiller, D. Stream Drying Drives Microbial Ammonia Oxidation and First-Flush Nitrate Export. Ecology 2016, 97, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Quijano, L.; Navas, A. Effects of Rainfall Intensity and Slope on Sediment, Nitrogen and Phosphorous Losses in Soils with Different Use and Soil Hydrological Properties. Agric. Water Manag. 2019, 226, 105789. [Google Scholar] [CrossRef]
- Lucas, E.; Kennedy, B.; Roswall, T.; Burgis, C.; Toor, G.S. Climate Change Effects on Phosphorus Loss from Agricultural Land to Water: A Review. Curr. Pollut. Rep. 2023, 9, 623–645. [Google Scholar] [CrossRef]
- Kreiling, R.M.; Richardson, W.B.; Bartsch, L.A.; Thoms, M.C.; Christensen, V.G. Denitrification in the River Network of a Mixed Land Use Watershed: Unpacking the Complexities. Biogeochemistry 2019, 143, 327–346. [Google Scholar] [CrossRef]
- Shrestha, J.; Niklaus, P.A.; Pasquale, N.; Huber, B.; Barnard, R.L.; Frossard, E.; Schleppi, P.; Tockner, K.; Luster, J. Flood Pulses Control Soil Nitrogen Cycling in a Dynamic River Floodplain. Geoderma 2014, 228–229, 14–24. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Withers, P.J.A.; Scott, J.T.; Haggard, B.E.; Neal, C. Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and “Postnormal” Science. J. Environ. Qual. 2013, 42, 295–304. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Jarvie, H.P. Delivery and Cycling of Phosphorus in Rivers: A Review. Sci. Total Environ. 2008, 400, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.W.; Moatar, F.; Gauthier, O.; Fovet, O.; Antoine, V.; Ragueneau, O. Trends and Seasonality of River Nutrients in Agricultural Catchments: 18 Years of Weekly Citizen Science in France. Sci. Total Environ. 2018, 624, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, P.; Dupas, R.; Abbott, B.; Kumar, R.; Ehrhardt, S.; Fleckenstein, J.H.; Musolff, A. Long-Term Nitrate Trajectories Vary by Season in Western European Catchments. Glob. Biogeochem. Cycles 2021, 35, e2021GB007050. [Google Scholar] [CrossRef]
- Carrer, M.; Dibona, R.; Prendin, A.L.; Brunetti, M. Recent Waning Snowpack in the Alps Is Unprecedented in the Last Six Centuries. Nat. Clim. Change 2023, 13, 155–160. [Google Scholar] [CrossRef]
- Chiarle, M.; Geertsema, M.; Mortara, G.; Clague, J.J. Relations between Climate Change and Mass Movement: Perspectives from the Canadian Cordillera and the European Alps. Glob. Planet. Change 2021, 202, 103499. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Heathwaite, L.; Haygarth, P.; Matthews, R.; Preedy, N.; Butler, P. Evaluating Colloidal Phosphorus Delivery to Surface Waters from Diffuse Agricultural Sources. J. Environ. Qual. 2005, 34, 287–298. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R. Nitrogen as the Limiting Nutrient for Eutrophication in Coastal Marine Ecosystems: Evolving Views over Three Decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Deasy, C.E.; Benskin, C.M.W.H.; Beven, K.J.; Burke, S.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; et al. Changing Climate and Nutrient Transfers: Evidence from High Temporal Resolution Concentration-Flow Dynamics in Headwater Catchments. Sci. Total Environ. 2016, 548–549, 325–339. [Google Scholar] [CrossRef]
- Galloway, N.J. The Global Nitrogen Cycle. TrGeo 2003, 8, 682. [Google Scholar] [CrossRef]
- Matiatos, I.; Wassenaar, L.I.; Monteiro, L.R.; Venkiteswaran, J.J.; Gooddy, D.C.; Boeckx, P.; Sacchi, E.; Yue, F.J.; Michalski, G.; Alonso-Hernández, C.; et al. Global Patterns of Nitrate Isotope Composition in Rivers and Adjacent Aquifers Reveal Reactive Nitrogen Cascading. Commun. Earth Environ. 2021, 2, 52. [Google Scholar] [CrossRef]
- Kincaid, D.W.; Seybold, E.C.; Adair, E.C.; Bowden, W.B.; Perdrial, J.N.; Vaughan, M.C.H.; Schroth, A.W. Land Use and Season Influence Event-Scale Nitrate and Soluble Reactive Phosphorus Exports and Export Stoichiometry from Headwater Catchments. Water Resour. Res. 2020, 56, e2020WR027361. [Google Scholar] [CrossRef]
- Shousha, S.; Maranger, R.; Lapierre, J.F. Different Forms of Carbon, Nitrogen, and Phosphorus Influence Ecosystem Stoichiometry in a North Temperate River across Seasons and Land Uses. Limnol. Oceanogr. 2021, 66, 4285–4298. [Google Scholar] [CrossRef]
- Strohmenger, L.; Fovet, O.; Akkal-Corfini, N.; Dupas, R.; Durand, P.; Faucheux, M.; Gruau, G.; Hamon, Y.; Jaffrezic, A.; Minaudo, C.; et al. Multitemporal Relationships Between the Hydroclimate and Exports of Carbon, Nitrogen, and Phosphorus in a Small Agricultural Watershed. Water Resour. Res. 2020, 56, e2019WR026323. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Leng, G.; Wei, G. Synergistic Effect of Drought and Rainfall Events of Different Patterns on Watershed Systems. Sci. Rep. 2021, 11, 18957. [Google Scholar] [CrossRef]
- Seybold, E.C.; Dwivedi, R.; Musselman, K.N.; Kincaid, D.W.; Schroth, A.W.; Classen, A.T.; Perdrial, J.N.; Adair, E.C. Winter Runoff Events Pose an Unquantified Continental-Scale Risk of High Wintertime Nutrient Export. Environ. Res. Lett. 2022, 17, 104044. [Google Scholar] [CrossRef]
- Karimi, K.; Miller, J.W.; Sankarasubramanian, A.; Obenour, D.R. Contrasting Annual and Summer Phosphorus Export Using a Hybrid Bayesian Watershed Model. Water Resour. Res. 2023, 59, e2022WR033088. [Google Scholar] [CrossRef]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; del Mar Sánchez-Montoya, M.; Bonada, N.; Kalogianni, E.; et al. Non-Perennial Mediterranean Rivers in Europe: Status, Pressures, and Challenges for Research and Management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef]
- Costa, D.; Sutter, C.; Shepherd, A.; Jarvie, H.; Wilson, H.; Elliott, J.; Liu, J.; Macrae, M. Impact of Climate Change on Catchment Nutrient Dynamics: Insights from around the World. Environ. Rev. 2022, 31, 4–25. [Google Scholar] [CrossRef]
- Speir, S.L.; Rose, L.A.; Blaszczak, J.R.; Kincaid, D.W.; Fazekas, H.M.; Webster, A.J.; Wolford, M.A.; Shogren, A.J.; Wymore, A.S. Catchment Concentration–Discharge Relationships across Temporal Scales: A Review. Wiley Interdiscip. Rev. Water 2024, 11, e1702. [Google Scholar] [CrossRef]
- Montanari, A.; Nguyen, H.; Rubinetti, S.; Ceola, S.; Galelli, S.; Rubino, A.; Zanchettin, D. Why the 2022 Po River Drought Is the Worst in the Past Two Centuries. Sci. Adv. 2023, 9, eadg8304. [Google Scholar] [CrossRef] [PubMed]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a Warming World: Assessing Projected Hydro-Climate Changes in California and Other Mediterranean Climate Regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Valt, M.; Romano, E.; Salerno, F.; Godone, D.; Cianfarra, P.; Freppaz, M.; Maugeri, M.; Guyennon, N. Long-Term Trend of Snow Water Equivalent in the Italian Alps. J. Hydrol. 2022, 614, 128532. [Google Scholar] [CrossRef]
- Piano, E.; Doretto, A.; Falasco, E.; Gruppuso, L.; Fenoglio, S.; Bona, F. The Role of Recurrent Dewatering Events in Shaping Ecological Niches of Scrapers in Intermittent Alpine Streams. Hydrobiologia 2019, 841, 177–189. [Google Scholar] [CrossRef]
- Marchetti, R.; Provini, A.; Crosa, G. Nutrient Load Carried by the River Po into the Adriatic Sea, 1968–1987. Mar. Pollut. Bull. 1989, 20, 168–172. [Google Scholar] [CrossRef]
- Cozzi, S.; Ibáñez, C.; Lazar, L.; Raimbault, P.; Giani, M. Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas. Water 2018, 11, 1. [Google Scholar] [CrossRef]
- Cozzi, S.; Giani, M. River Water and Nutrient Discharges in the Northern Adriatic Sea: Current Importance and Long Term Changes. Cont. Shelf Res. 2011, 31, 1881–1893. [Google Scholar] [CrossRef]
- Soana, E.; Gervasio, M.P.; Granata, T.; Colombo, D.; Castaldelli, G. Climate Change Impacts on Eutrophication in the Po River (Italy): Temperature-Mediated Reduction in Nitrogen Export but No Effect on Phosphorus. J. Environ. Sci. 2024, 143, 148–163. [Google Scholar] [CrossRef]
- Bieroza, M.Z.; Heathwaite, A.L.; Bechmann, M.; Kyllmar, K.; Jordan, P. The Concentration-Discharge Slope as a Tool for Water Quality Management. Sci. Total Environ. 2018, 630, 738–749. [Google Scholar] [CrossRef]
- Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G. Elemental Properties, Hydrology, and Biology Interact to Shape Concentration-Discharge Curves for Carbon, Nutrients, Sediment, and Major Ions. Water Resour. Res. 2017, 53, 1270–1287. [Google Scholar] [CrossRef]
- Musolff, A.; Schmidt, C.; Selle, B.; Fleckenstein, J.H. Catchment Controls on Solute Export. Adv. Water Resour. 2015, 86, 133–146. [Google Scholar] [CrossRef]
- Ludwig, W.; Bouwman, A.F.; Dumont, E.; Lespinas, F. Water and Nutrient Fluxes from Major Mediterranean and Black Sea Rivers: Past and Future Trends and Their Implications for the Basin-Scale Budgets. Glob. Biogeochem. Cycles 2010, 24, 13. [Google Scholar] [CrossRef]
- Viaroli, P.; Puma, F.; Ferrari, I. Aggiornamento Delle Conoscenze Ecologiche Sul Bacino Idrografico Padano: Una Sintesi. Biol. Ambient. 2010, 24, 7–19. [Google Scholar]
- Autorità di Bacino del fiume Po Piano Del Bilancio Idrico per Il Distretto Del Fiume Po. Parma, Italy. 2016. Available online: https://pianobilancioidrico.adbpo.it/progetto-di-piano-di-bilancio-idrico/ (accessed on 15 January 2024).
- Turco, M.; Vezzoli, R.; Da Ronco, P.; Mercogliano, P. Variation in Discharge, Precipitation and Temperature in Po River and Tributaries Basins. CMCC Research Paper 2013, 185. [Google Scholar] [CrossRef]
- Montanari, A. Hydrology of the Po River: Looking for Changing Patterns in River Discharge. Hydrol. Earth Syst. Sci. 2012, 16, 3739–3747. [Google Scholar] [CrossRef]
- APAT-IRSA/CNR. Metodi Analitici per Le Acque; Manuali e Linee Guida; APAT: Roma, Italy, 2003; Volume 29, ISBN 88-448-0083-7. [Google Scholar]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Quilbé, R.; Rousseau, A.N.; Duchemin, M.; Poulin, A.; Gangbazo, G.; Villeneuve, J.P. Selecting a Calculation Method to Estimate Sediment and Nutrient Loads in Streams: Application to the Beaurivage River (Québec, Canada). J. Hydrol. 2006, 326, 295–310. [Google Scholar] [CrossRef]
- Thompson, S.E.; Basu, N.B.; Lascurain, J.; Aubeneau, A.; Rao, P.S.C. Relative Dominance of Hydrologic versus Biogeochemical Factors on Solute Export across Impact Gradients. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.W.; Clow, D.W. Concentration-Discharge Relationships Reflect Chemostatic Characteristics of US Catchments. Hydrol. Process. 2009, 23, 1844–1864. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical Generalized Additive Models in Ecology: An Introduction with Mgcv. PeerJ 2019, 7, e6876. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Wachholz, A.; Jawitz, J.W.; Büttner, O.; Jomaa, S.; Merz, R.; Yang, S.; Borchardt, D. Drivers of Multi-Decadal Nitrate Regime Shifts in a Large European Catchment. Environ. Res. Lett. 2022, 17, 064039. [Google Scholar] [CrossRef]
- Zoboli, O.; Viglione, A.; Rechberger, H.; Zessner, M. Impact of Reduced Anthropogenic Emissions and Century Flood on the Phosphorus Stock, Concentrations and Loads in the Upper Danube. Sci. Total Environ. 2015, 518–519, 117–129. [Google Scholar] [CrossRef] [PubMed]
- McCrackin, M.L.; Muller-Karulis, B.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C.; Svanbäck, A.; Swaney, D.P. A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Glob. Biogeochem. Cycles 2018, 32, 1107–1122. [Google Scholar] [CrossRef]
- Zanchettin, D.; Traverso, P.; Tomasino, M. Po River Discharges: A Preliminary Analysis of a 200-Year Time Series. Clim. Change 2008, 89, 411–433. [Google Scholar] [CrossRef]
- Djakovac, T.; Degobbis, D.; Supić, N.; Precali, R. Marked Reduction of Eutrophication Pressure in the Northeastern Adriatic in the Period 2000–2009. Estuar. Coast. Shelf Sci. 2012, 115, 25–32. [Google Scholar] [CrossRef]
- Giani, M.; Djakovac, T.; Degobbis, D.; Cozzi, S.; Solidoro, C.; Umani, S.F. Recent Changes in the Marine Ecosystems of the Northern Adriatic Sea. Estuar. Coast. Shelf Sci. 2012, 115, 1–13. [Google Scholar] [CrossRef]
- Marini, M.; Grilli, F. The Role of Nitrogen and Phosphorus in Eutrophication of the Northern Adriatic Sea: History and Future Scenarios. Appl. Sci. 2023, 13, 9267. [Google Scholar] [CrossRef]
- Neri, F.; Romagnoli, T.; Accoroni, S.; Campanelli, A.; Marini, M.; Grilli, F.; Totti, C. Phytoplankton and Environmental Drivers at a Long-Term Offshore Station in the Northern Adriatic Sea (1988–2018). Cont. Shelf Res. 2022, 242, 104746. [Google Scholar] [CrossRef]
- Grilli, F.; Accoroni, S.; Acri, F.; Aubry, F.B.; Bergami, C.; Cabrini, M.; Campanelli, A.; Giani, M.; Guicciardi, S.; Marini, M.; et al. Seasonal and Interannual Trends of Oceanographic Parameters over 40 Years in the Northern Adriatic Sea in Relation to Nutrient Loadings Using the EMODnet Chemistry Data Portal. Water 2020, 12, 2280. [Google Scholar] [CrossRef]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Tank, S.E.; Bulygina, E.; Eglinton, T.I.; Gordeev, V.V.; Gurtovaya, T.Y.; Raymond, P.A.; Repeta, D.J.; et al. Seasonal and Annual Fluxes of Nutrients and Organic Matter from Large Rivers to the Arctic Ocean and Surrounding Seas. Estuaries Coasts 2012, 35, 369–382. [Google Scholar] [CrossRef]
- Thomas, Z.; Abbott, B.W.; Troccaz, O.; Baudry, J.; Pinay, G. Proximate and Ultimate Controls on Carbon and Nutrient Dynamics of Small Agricultural Catchments. Biogeosciences 2016, 13, 1863–1875. [Google Scholar] [CrossRef]
- Romero, E.; Ludwig, W.; Sadaoui, M.; Lassaletta, L.; Bouwman, A.F.; Beusen, A.H.W.; van Apeldoorn, D.; Sardans, J.; Janssens, I.A.; Ciais, P.; et al. The Mediterranean Region as a Paradigm of the Global Decoupling of N and P Between Soils and Freshwaters. Glob. Biogeochem. Cycles 2021, 35, e2020GB006874. [Google Scholar] [CrossRef]
- Bauwe, A.; Kahle, P.; Tiemeyer, B.; Lennartz, B. Hydrology Is the Key Factor for Nitrogen Export from Tile-Drained Catchments under Consistent Land-Management. Environ. Res. Lett. 2020, 15, 094050. [Google Scholar] [CrossRef]
- Cuadra, P.E.; Vidon, P. Storm Nitrogen Dynamics in Tile-Drain Flow in the US Midwest. Biogeochemistry 2011, 104, 293–308. [Google Scholar] [CrossRef]
- Speir, S.L.; Tank, J.L.; Bieroza, M.; Mahl, U.H.; Royer, T.V. Storm Size and Hydrologic Modification Influence Nitrate Mobilization and Transport in Agricultural Watersheds. Biogeochemistry 2021, 156, 319–334. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Heffernan, J.B.; Grimm, N.B.; Stanley, E.H.; Harvey, J.W.; Arroita, M.; Appling, A.P.; Cohen, M.J.; McDowell, W.H.; Hall, R.O.; et al. The Metabolic Regimes of Flowing Waters. Limnol. Oceanogr. 2018, 63, S99–S118. [Google Scholar] [CrossRef]
- Tavernini, S.; Pierobon, E.; Viaroli, P. Physical Factors and Dissolved Reactive Silica Affect Phytoplankton Community Structure and Dynamics in a Lowland Eutrophic River (Po River, Italy). Hydrobiologia 2011, 669, 213–225. [Google Scholar] [CrossRef]
- Outram, F.N.; Cooper, R.J.; Sünnenberg, G.; Hiscock, K.M.; Lovett, A.A. Antecedent Conditions, Hydrological Connectivity and Anthropogenic Inputs: Factors Affecting Nitrate and Phosphorus Transfers to Agricultural Headwater Streams. Sci. Total Environ. 2016, 545–546, 184–199. [Google Scholar] [CrossRef]
- Zimmer, M.A.; Pellerin, B.; Burns, D.A.; Petrochenkov, G. Temporal Variability in Nitrate-Discharge Relationships in Large Rivers as Revealed by High-Frequency Data. Water Resour. Res. 2019, 55, 973–989. [Google Scholar] [CrossRef]
- Schulz, G.; van Beusekom, J.E.E.; Jacob, J.; Bold, S.; Schöl, A.; Ankele, M.; Sanders, T.; Dähnke, K. Low Discharge Intensifies Nitrogen Retention in Rivers—A Case Study in the Elbe River. Sci. Total Environ. 2023, 904, 166740. [Google Scholar] [CrossRef]
- Bieroza, M.Z.; Heathwaite, A.L. Seasonal Variation in Phosphorus Concentration–Discharge Hysteresis Inferred from High-Frequency in Situ Monitoring. J. Hydrol. 2015, 524, 333–347. [Google Scholar] [CrossRef]
- Dolph, C.L.; Boardman, E.; Danesh-Yazdi, M.; Finlay, J.C.; Hansen, A.T.; Baker, A.C.; Dalzell, B. Phosphorus Transport in Intensively Managed Watersheds. Water Resour. Res. 2019, 55, 9148–9172. [Google Scholar] [CrossRef]
- Tesi, T.; Miserocchi, S.; Acri, F.; Langone, L.; Boldrin, A.; Hatten, J.A.; Albertazzi, S. Flood-Driven Transport of Sediment, Particulate Organic Matter, and Nutrients from the Po River Watershed to the Mediterranean Sea. J. Hydrol. 2013, 498, 144–152. [Google Scholar] [CrossRef]
- Pilotti, M.; Barone, L.; Balistrocchi, M.; Valerio, G.; Milanesi, L.; Nizzoli, D. Nutrient Delivery Efficiency of a Combined Sewer along a Lake Challenged by Incipient Eutrophication. Water Res. 2021, 190, 116727. [Google Scholar] [CrossRef]
- Minaudo, C.; Dupas, R.; Gascuel-Odoux, C.; Roubeix, V.; Danis, P.A.; Moatar, F. Seasonal and Event-Based Concentration-Discharge Relationships to Identify Catchment Controls on Nutrient Export Regimes. Adv. Water Resour. 2019, 131, 103379. [Google Scholar] [CrossRef]
- Ebeling, P.; Kumar, R.; Weber, M.; Knoll, L.; Fleckenstein, J.H.; Musolff, A. Archetypes and Controls of Riverine Nutrient Export Across German Catchments. Water Resour. Res. 2021, 57, e2020WR028134. [Google Scholar] [CrossRef]
- Basu, N.B.; Thompson, S.E.; Rao, P.S.C. Hydrologic and Biogeochemical Functioning of Intensively Managed Catchments: A Synthesis of Top-down Analyses. Water Resour. Res. 2011, 47, e2011WR010800. [Google Scholar] [CrossRef]
- Musolff, A.; Schmidt, C.; Rode, M.; Lischeid, G.; Weise, S.M.; Fleckenstein, J.H. Groundwater Head Controls Nitrate Export from an Agricultural Lowland Catchment. Adv. Water Resour. 2016, 96, 95–107. [Google Scholar] [CrossRef]
- Winter, C.; Lutz, S.R.; Musolff, A.; Kumar, R.; Weber, M.; Fleckenstein, J.H. Disentangling the Impact of Catchment Heterogeneity on Nitrate Export Dynamics From Event to Long-Term Time Scales. Water Resour. Res. 2021, 57, e2020WR027992. [Google Scholar] [CrossRef]
- Casquin, A.; Dupas, R.; Gu, S.; Couic, E.; Gruau, G.; Durand, P. The Influence of Landscape Spatial Configuration on Nitrogen and Phosphorus Exports in Agricultural Catchments. Landsc. Ecol. 2021, 36, 3383–3399. [Google Scholar] [CrossRef]
- Lassaletta, L.; Sanz-Cobena, A.; Aguilera, E.; Quemada, M.; Billen, G.; Bondeau, A.; Cayuela, M.L.; Cramer, W.; Eekhout, J.P.C.; Garnier, J.; et al. Nitrogen Dynamics in Cropping Systems under Mediterranean Climate: A Systemic Analysis. Environ. Res. Lett. 2021, 16, 073002. [Google Scholar] [CrossRef]
- Metre, P.C.V.; Frey, J.W.; Musgrove, M.; Nakagaki, N.; Qi, S.; Mahler, B.J.; Wieczorek, M.E.; Button, D.T. High Nitrate Concentrations in Some Midwest United States Streams in 2013 after the 2012 Drought. J. Environ. Qual. 2016, 45, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
Years | PPT (km3 yr−1) | Q (km3 yr−1) |
---|---|---|
Wettest (2014) | 93.6 | 72.0 |
Mean (1992–2022) | 68.0 | 45.7 |
Driest (2022) | 51.0 | 17.3 |
Relationships | Parameter | Slope | St. Error | R2 |
---|---|---|---|---|
ln(L) − ln(PPT) annual data | N-NO3− | 1.20 *** | 0.24 | 0.47 |
N-NH4+ | 1.73 *** | 0.48 | 0.31 | |
SRP | 0.93 *** | 0.20 | 0.42 | |
TP | 2.02 *** | 0.35 | 0.53 | |
ln(c) − ln(Q) monthly data | N-NO3− | 0.18 *** | 0.03 | 0.06 |
N-NH4+ | 0.15 * | 0.08 | 0.01 | |
SRP | 0.08 * | 0.04 | 0.01 | |
TP | 0.29 ** | 0.04 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallini, E.; Viaroli, P.; Naldi, M.; Saccò, M.; Scibona, A.; Barbieri, E.; Franceschini, S.; Nizzoli, D. Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po. Water 2024, 16, 2628. https://doi.org/10.3390/w16182628
Cavallini E, Viaroli P, Naldi M, Saccò M, Scibona A, Barbieri E, Franceschini S, Nizzoli D. Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po. Water. 2024; 16(18):2628. https://doi.org/10.3390/w16182628
Chicago/Turabian StyleCavallini, Edoardo, Pierluigi Viaroli, Mariachiara Naldi, Mattia Saccò, Alessandro Scibona, Elena Barbieri, Silvia Franceschini, and Daniele Nizzoli. 2024. "Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po" Water 16, no. 18: 2628. https://doi.org/10.3390/w16182628
APA StyleCavallini, E., Viaroli, P., Naldi, M., Saccò, M., Scibona, A., Barbieri, E., Franceschini, S., & Nizzoli, D. (2024). Seasonal Variability and Hydrological Patterns Influence the Long-Term Trends of Nutrient Loads in the River Po. Water, 16(18), 2628. https://doi.org/10.3390/w16182628