A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy)
Abstract
:1. Introduction
2. Geographical, Geological and Hydrogeological Framework
3. Materials and Methods
3.1. Data Source
3.2. Data Structure and Normalization
3.3. Data Splitting and Model Architecture
- ✓
- “training” used for model training
- ✓
- “validation” used as “values unknown by the model” in order to have unbiased performance evaluation.
Y(x) = x, if x > 0
- Input Layer:
- Purpose: Matches the number of input features (5 in this case)
- Activation function: ReLu
- Hidden Layers:
- Purposes: capturing features, spatial and temporal relations, hidden variables
- Activation Function: Rectified Linear Unit (ReLu), which allows the network to capture complex, non-linear patterns: ReLu (x) = max(0,x)
- Batch Normalization: Applied to stabilize the learning process, accelerate training and reduce internal covariate shift
- Output Layer:
- Purpose: A single neuron with linear activation, suitable for regression tasks where the output is a continuous value.
- Activation function: Linear
4. Results and Discussion
4.1. Cross Correlation Analyses
4.2. FCNN Model Results
4.2.1. Filling Gaps in the Spring Discharge Time Series
4.2.2. Simulating Karst Spring Flowrate Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world. Rev. Geophys. 2013, 2013, 218–242. [Google Scholar] [CrossRef]
- Stevanović, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 662. [Google Scholar] [CrossRef]
- Hartmann, A. The karst and the furious—Ways to keep calm when dealing with karst hydrology. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. EGU21-1353. [Google Scholar] [CrossRef]
- Fan, X.; Goeppert, N.; Goldscheider, N. Quantifying the historic and future response of karst spring discharge to climate variability and change at a snow-influenced temperate catchment in central Europe. Hydrogeol. J. 2023, 31, 2213–2229. [Google Scholar] [CrossRef]
- Fiorillo, F.; Malik, P. Hydraulic behavior of karst aquifers. Water 2019, 11, 1563. [Google Scholar] [CrossRef]
- De Filippi, F.M.; Iacurto, S.; Grelle, G.; Sappa, G. Magnesium as Environmental Tracer for Karst Spring Baseflow/Overflow Assessment—A Case Study of the Pertuso Karst Spring (Latium Region, Italy). Water 2021, 13, 93. [Google Scholar] [CrossRef]
- Guo, Y.; Qin, D.; Li, L.; Sun, J.; Li, F.; Huang, J. A complicated karst spring system: Identified by karst springs using water level, hydrogeochemical, and isotopic data in Jinan, China. Water 2019, 11, 947. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, Z.; Goldscheider, N.; Frank, S.; Goeppert, N.; Kaufmann, G. Comparisons on the effects of temperature, runoff, and land-cover on carbonate weathering in different karst catchments: Insights into the future global carbon cycle. Hydrogeol. J. 2020, 29, 331–345. [Google Scholar] [CrossRef]
- Rudolph, M.G.; Collenteur, R.A.; Kavousi, A.; Giese, M.; Wöhling, T.; Birk, S.; Hartmann, A.; Reimann, T. A data-driven approach for modelling Karst spring discharge using transfer function noise models. Environ. Earth Sci. 2023, 82, 339. [Google Scholar] [CrossRef]
- Citrini, A.; Camera, C.; Beretta, G. Pietro Nossana Spring (Northern Italy) under Climate Change: Projections of future discharge rates and water availability. Water 2020, 12, 387. [Google Scholar] [CrossRef]
- Hao, Y.; Yeh, T.C.J.; Wang, Y.; Zhao, Y. Analysis of karst aquifer spring flows with a gray system decomposition model. Ground Water 2007, 45, 46–52. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst and karst groundwater resources in the Mediterranean. Environ. Earth Sci 2015, 74, 5–14. [Google Scholar] [CrossRef]
- Xanke, J.; Goldscheider, N.; Bakalowicz, M.; Barbera, J.A.; Broda, S.; Chen, Z.; Ghanmi, M.; Gunther, A.; Hartmann, A.; Jourde, H.; et al. Mediterranean Karst Aquifer Map (MEDKAM), 1:5,000,000. Berlin, Karlsruhe, Paris. Available online: https://doi.org/10.25928/MEDKAM.1 (accessed on 10 June 2024).
- Bakalowicz, M. Coastal Karst Groundwater in the Mediterranean: A Resource to Be Preferably Exploited Onshore, Not from Karst Submarine Springs. Geosciences 2018, 8, 258. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Nikolaidis, N.P. The response of three Mediterranean karst springs to drought and the impact of climate change. J. Hydrol. 2020, 591, 125296. [Google Scholar] [CrossRef]
- Sappa, G.; De Filippi, F.M.; Ferranti, F.; Iacurto, S. Environmental Issues and Anthropic Pressures in Coastal Aquifers: A Case Study in Southern Latium Region. Acque Sotter. Ital. J. Groundw. 2019, 8. [Google Scholar] [CrossRef]
- Sivelle, V.; Jourde, H.; Bittner, D.; Mazzilli, N.; Tramblay, Y. Assessment of the relative impacts of climate changes and anthropogenic forcing on spring discharge of a Mediterranean karst system. J. Hydrol. 2021, 598, 126396. [Google Scholar] [CrossRef]
- Jodar, J.; Herms, I.; Lamban, L.J.; Martos-Rosillo, S.; Herrera-Lameli, C.; Urrutia, J.; Soler, A.; Custodio, E. Isotopic content in high mountain karst aquifers as a proxy for climate change impact in Mediterranean zones: The Port del Comte karst aquifer (SE Pyrenees, Catalonia, Spain). Sci. Total Environ. 2021, 790, 148036. [Google Scholar] [CrossRef]
- D’Oria, M.; Balacco, G.; Todaro, V.; Alfio, M.R.; Tanda, M.G. Assessing the impact of climate change on a coastal karst aquifer in a semi-arid area. Groundw. Sustain. Dev. 2024, 25, 101131. [Google Scholar] [CrossRef]
- Sappa, G.; De Filippi, F.M.; Iacurto, S.; Grelle, G. Evaluation of Minimum Karst Spring Discharge Using a Simple Rainfall-Input Model: The Case Study of Capodacqua di Spigno Spring (Central Italy). Water 2019, 11, 807. [Google Scholar] [CrossRef]
- Romano, E.; Del Bon, A.; Petrangeli, E.; Preziosi, E. Generating synthetic time series of springs discharge in relation to standardized precipitation indices. Case study in Central Italy. J. Hydrol. 2013, 507, 86–99. [Google Scholar] [CrossRef]
- Fiorillo, F. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resour. Manag. 2014, 28, 1781–1805. [Google Scholar] [CrossRef]
- Diodato, N.; Guerriero, L.; Fiorillo, F.; Esposito, L.; Revellino, P.; Grelle, G.; Guadagno, F.M. Predicting Monthly Spring Discharges Using a Simple Statistical Model. Water Resour. Manag. 2014, 28, 969–978. [Google Scholar] [CrossRef]
- Xi, C.; Cai, C.; Quingquing, H.; Zhicai, Z.; Peng, S. Simulation of rainfall-underground outflow responses of a karstic watershed in Southwest China with an artificial neural network. Water Sci. Eng. 2008, 1, 1–9. [Google Scholar]
- Chang, W.; Chen, X. Monthly Rainfall-Runoff Modeling at Watershed Scale: A Comparative Study of Data-Driven and Theory-Driven Approches. Water 2018, 10, 1116. [Google Scholar] [CrossRef]
- Maillet, E. Essais D’hydraulique Souterraine et Fluviale; Hermann, A., Ed.; Librairie Sci.: Paris, France, 1905; 218p. [Google Scholar]
- Bonacci, O. Karst Springs Hydrographs as Indicators of Karst Aquifers. Hydrol. Sci. J. 1993, 38, 51–62. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley: Chichester, UK, 2007; p. 562. [Google Scholar] [CrossRef]
- Torresan, F.; Fabbri, P.; Piccinini, L.; Dalla Libera, N.; Pola, M.; Zampieri, D. Defining the hydrogeological behavior of karst springs through an integrated analysis: A case study in the Berici Mountains area (Vicenza, NE Italy). Hydrogeol. J. 2020, 28, 1229–1247. [Google Scholar] [CrossRef]
- Medici, G.; Lorenzi, V.; Sbarbati, C.; Manetta, M.; Petitta, M. Structural Classification, Discharge Statistics, and Recession Analysis from the Springs of the Gran Sasso (Italy) Carbonate Aquifer; Comparison with Selected Analogues Worldwide. Sustainability 2023, 15, 10125. [Google Scholar] [CrossRef]
- Padilla, A.; Pulido-Bosch, A. Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J. Hydrol. 1995, 168, 73–79. [Google Scholar] [CrossRef]
- Petalas, C.P.; Akratos, C.S.; Tsihrintzis, V.A. Hydrogeological Investigation of a Karst Aquifer System. Environ. Process. 2018, 5, 155–181. [Google Scholar] [CrossRef]
- Duran, L.; Massei, N.; Lecoq, N.; Fournier, M.; Labat, D. Analyzing multi-scale hydrodynamic processes in karst with a coupled conceptual modeling and signal decomposition approach. J. Hydrol. 2020, 583, 124625. [Google Scholar] [CrossRef]
- Fiorillo, F.; Doglioni, A. The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol. J. 2010, 18, 1881–1895. [Google Scholar] [CrossRef]
- Lo Russo, S.; Suozzi, E.; Gizzi, M.; Taddia, G. SOURCE: A semi-automatic tool for spring-monitoring data analysis and aquifer characterisation. Environ. Earth Sci. 2021, 80, 710. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Qin, D.; Zhao, Z.; Gan, F.; Yan, B.; Bai, J.; Muhammed, H. Hydrodynamic characteristics of a typical karst spring system based on time series analysis in northern China. China Geol. 2021, 4, 433–445. [Google Scholar] [CrossRef]
- Denić-Jukić, V.; Lozić, A.; Jukić, D. An Application of Correlation and Spectral Analysis in Hydrological Study of Neighboring Karst Springs. Water 2020, 12, 3570. [Google Scholar] [CrossRef]
- Pavlić, K.; Parlov, J. Cross-Correlation and Cross-Spectral Analysis of the Hydrographs in the Northern Part of the Dinaric Karst of Croatia. Geosciences 2019, 9, 86. [Google Scholar] [CrossRef]
- Granata, F.; Saroli, M.; De Marinis, G.; Gargano, R. Machine Learning Models for Spring Discharge Forecasting. Geofluids 2018, 2018, 8328167. [Google Scholar] [CrossRef]
- Giustolisi, O.; Doglioni, A.; Savic, D.A.; di Pierro, F. An evolutionary multiobjective strategy for the effective management of groundwater resources. Water Resour. Res. 2008, 44, W01403. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Prediction of Spring Flows Using Nonlinear Autoregressive Exogenous (NARX) Neural Network Models. Environ. Monit. Assess. 2021, 193, 350. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Bai, Y.; Šraj, M. Hydrological Modelling of Karst Catchment Using Lumped Conceptual and Data Mining Models. J. Hydrol. 2019, 576, 98–110. [Google Scholar] [CrossRef]
- An, L.; Hao, Y.; Yeh, T.C.J.; Liu, Y.; Liu, W.; Zhang, B. Simulation of Karst Spring Discharge Using a Combination of Time–Frequency Analysis Methods and Long Short-Term Memory Neural Networks. J. Hydrol. 2020, 589, 125320. [Google Scholar] [CrossRef]
- Song, X.; Hao, H.; Liu, W.; Wang, Q.; An, L.; Jim Yeh, T.C.; Hao, Y. Spatial-Temporal Behavior of Precipitation Driven Karst Spring Discharge in a Mountain Terrain. J. Hydrol. 2022, 612, 128116. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, Y. Linear and Nonlinear Ensemble Deep Learning Models for Karst Spring Discharge Forecasting. J. Hydrol. 2023, 627, 130394. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Cinkus, G.; Ravbar, N.; Chen, Z.; Mazzilli, N.; Jourde, H.; Goldscheider, N. Karst Spring Discharge Modeling Based on Deep Learning Using Spatially Distributed Input Data. Hydrol. Earth Syst. Sci. 2022, 26, 2405–2430. [Google Scholar] [CrossRef]
- Cinkus, G.; Wunsch, A.; Mazzilli, N.; Liesch, T.; Chen, Z.; Ravbar, N.; Doummar, J.; Fernández-Ortega, J.; Barberá, J.A.; Andreo, B.; et al. Comparison of Artificial Neural Networks and Reservoir Models for Simulating Karst Spring Discharge on Five Test Sites in the Alpine and Mediterranean Regions. Hydrol. Earth Syst. Sci. 2023, 27, 1961–1985. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Skitzi, I.; Katsifarakis, K.; Darivianakis, N. Neural Network Simulation of Spring Flow in Karst Environments. Stoch. Environ. Res. Risk Assess. 2013, 27, 1829–1837. [Google Scholar] [CrossRef]
- Siou, L.K.A.; Johannet, A.; Borrell, V.; Pistre, S. Complexity Selection of a Neural Network Model for Karst Flood Forecasting: The Case of the Lez Basin (Southern France). J. Hydrol. 2011, 403, 367–380. [Google Scholar] [CrossRef]
- Rahbar, A.; Mirarabi, A.; Nakhaei, M.; Talkhabi, M.; Jamali, M. A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction. Water Resour. Manag. 2022, 36, 589–609. [Google Scholar] [CrossRef]
- Pölz, A.; Blaschke, A.P.; Komma, J.; Farnleitner, A.H.; Derx, J. Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting. Water Resour. Res. 2024, 60, e2022WR032602. [Google Scholar] [CrossRef]
- Wen, C.; Li, J.; Sun, D.; Zhang, Y.; Zhao, N.; Hu, L. Reconstruction of Past Water Levels in Data-Deficient Karst Springs. Water 2024, 16, 1150. [Google Scholar] [CrossRef]
- Tamburini, A.; Menichetti, M. Groundwater Circulation in Fractured and Karstic Aquifers of the Umbria-Marche Apennine. Water 2020, 12, 1039. [Google Scholar] [CrossRef]
- Centamore, E.; Deiana, G. La Geologia delle Marche. Studi Geol. Camerti 1986, Special Volume, 1–145. [Google Scholar]
- Barchi, M.; De Feyter, A.; Magnani, M.B.; Minelli, G.; Pialli, G.; Sotera, B.M. The structural style of the Umbria-Marche fold and thrust belt. Soc. Geol. Ital. Mem. 1998, 52, 557–578. [Google Scholar]
- Capaccioni, B.; Didero, M.; Paletta, C.; Salvadori, P. Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: An example from Mt Catria-Mt Nerone ridge (Northern Apennines, Italy). J. Hydrol. 2001, 253, 14–26. [Google Scholar] [CrossRef]
- Nanni, T.; Vivalda, P. The aquifers of the Umbria-Marche Adriatic region: Relationship between structural setting and groundwater chemistry. Boll. Soc. Geol. Ital. 2005, 124, 523–542. [Google Scholar]
- Mastrorillo, L.; Baldoni, T.; Banzato, F.; Boscherini, A.; Cascone, D.; Checcucci, R.; Petitta, M.; Boni, C. Quantitative hydrogeological analysis of the carbonate domain in the Umbria region. Ital. Eng. Geol. Environ. 2009, 1, 137–155. [Google Scholar]
- Di Matteo, L.; Dragoni, W.; Valigi, D. Update on Knowledge of Water Resources of Amelia Mountains (central Italy). Ital. J. Eng. Geol. Environ. 2009, 1, 83–96. [Google Scholar]
- Mastrorillo, L.; Petitta, M. Hydrogeological conceptual model of the Upper River basin aquifers (Umbria-Marche Apennines). Ital. J. Geosci. 2014, 133, 396–408. [Google Scholar] [CrossRef]
- Di Matteo, L.; Capoccioni, A.; Porreca, M.; Pauselli, C. Groundwater-Surface Water Interaction in the Nera River Basin (Central Italy): New Insights after the 2016 Seismic Sequence. Hydrology 2021, 8, 97. [Google Scholar] [CrossRef]
- Preziosi, E.; Guyennon, N.; Petrangeli, A.B.; Romano, E.; Di Salvo, C. A Stepwise Modelling Approach to Identifying Structural Features That Control Groundwater Flow in a Folded Carbonate Aquifer System. Water 2022, 14, 2475. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Appear. Int. Jt. Conf. Articial Intell. 1995, 14, 1137–1143. [Google Scholar]
Spring | Latitude | Longitude | Elevation (m asl) |
---|---|---|---|
Nocera | 43.167 | 12.849 | 632 |
San Giovenale | 43.103 | 12.811 | 456 |
Lupa | 42.585 | 12.813 | 375 |
AcquaBianca | 43.029 | 12.741 | 391 |
Bagnara | 43.109 | 12.855 | 623 |
Rasiglia | 42.983 | 12.852 | 665 |
Rainfall Station | Latitude | Longitude | Elevation (m asl) |
---|---|---|---|
Nocera Umbra | 43.11889 | 12.79111 | 535 |
Colfiorito | 43.02639 | 12.88917 | 759 |
Gualdo Tadino | 43.24083 | 12.78139 | 595 |
Armenzano | 43.07333 | 12.70167 | 716 |
La Bolsella | 43.03817 | 12.66732 | 923 |
Assisi | 43.07098 | 12.61462 | 424 |
Casa Castalda | 43.17750 | 12.65972 | 718 |
Branca | 43.26028 | 12.68083 | 350 |
Torre dell’Olmo | 43.31889 | 12.69500 | 550 |
Pianello | 43.14389 | 12.56528 | 234 |
Nocera Scalo | 43.09889 | 12.76722 | 392 |
Petrignano | 43.10278 | 12.53778 | 244 |
Foligno | 42.95314 | 12.67908 | 224 |
Spoleto | 42.75583 | 12.73861 | 357 |
Azzano | 42.81250 | 12.75694 | 240 |
Sellano | 42.89083 | 12.93028 | 608 |
Forsivo | 42.79972 | 13.01389 | 968 |
Norcia | 42.79861 | 13.10500 | 700 |
Forca Canapine | 42.76056 | 13.18889 | 1654 |
Sorgenti Pescia | 42.67667 | 13.16444 | 1179 |
Castelluccio di Norcia | 42.82933 | 13.21402 | 1452 |
Campi Altopiano | 42.86861 | 13.11611 | 1141 |
Cascia | 42.72004 | 13.02722 | 604 |
Monteleone di Spoleto | 42.64667 | 12.94917 | 935 |
San Vito | 42.67639 | 12.85222 | 1006 |
Castagnacupa | 42.67760 | 12.65389 | 778 |
Piediluco | 42.53417 | 12.76722 | 370 |
S. Silvestro | 42.75583 | 12.67389 | 383 |
Terni | 42.55972 | 12.65028 | 130 |
Layer | Output Shape | Activation Function |
---|---|---|
Dense Fully Connected (Input) | 64 | ReLu |
Batch Normalization | 64 | |
Dense Fully Connected | 128 | ReLu |
Dense Fully Connected | 256 | ReLu |
Batch Normalization | 256 | |
Dense Fully Connected | 512 | ReLu |
Batch Normalization | 512 | |
Dense Fully Connected | 1024 | ReLu |
Batch Normalization | 1024 | |
Dense Fully Connected | 512 | ReLu |
Batch Normalization | 512 | |
Dense Fully Connected | 128 | ReLu |
Dense Fully Connected | 64 | ReLu |
Dense Fully Connected | 32 | ReLu |
Batch Normalization | 32 | |
Dense Fully Connected | 16 | ReLu |
Dense Fully Connected (Output) | 1 | Linear |
Nocera | San Giovenale | Lupa | Acquabianca | Bagnara | Rasiglia | |
---|---|---|---|---|---|---|
Nocera | - | 0.55 | 0.74 | 0.57 | 0.81 | 0.60 |
San Giovenale | 0.55 | - | 0.67 | 0.61 | 0.60 | 0.67 |
Lupa | 0.74 | 0.67 | - | 0.82 | 0.74 | 0.84 |
AcquaBianca | 0.57 | 0.61 | 0.82 | - | 0.72 | 0.78 |
Bagnara | 0.81 | 0.60 | 0.74 | 0.72 | - | 0.74 |
Rasiglia | 0.60 | 0.67 | 0.84 | 0.78 | 0.74 | - |
Spring | R2 | MAE | RMSE |
---|---|---|---|
(-) | (L/s) | (L/s) | |
Nocera | 0.95 | 17.5 | 23.1 |
San Giovenale | 0.98 | 49.8 | 68.6 |
Lupa | 0.89 | 46.1 | 56.5 |
AcquaBianca | 0.91 | 19.7 | 25.1 |
Bagnara | 0.92 | 35.6 | 45.4 |
Rasiglia | 0.99 | 19.8 | 24.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Filippi, F.M.; Ginesi, M.; Sappa, G. A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy). Water 2024, 16, 2580. https://doi.org/10.3390/w16182580
De Filippi FM, Ginesi M, Sappa G. A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy). Water. 2024; 16(18):2580. https://doi.org/10.3390/w16182580
Chicago/Turabian StyleDe Filippi, Francesco Maria, Matteo Ginesi, and Giuseppe Sappa. 2024. "A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy)" Water 16, no. 18: 2580. https://doi.org/10.3390/w16182580
APA StyleDe Filippi, F. M., Ginesi, M., & Sappa, G. (2024). A Fully Connected Neural Network (FCNN) Model to Simulate Karst Spring Flowrates in the Umbria Region (Central Italy). Water, 16(18), 2580. https://doi.org/10.3390/w16182580