Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments
Abstract
:1. Introduction
2. Study Areas
3. Materials and Methods
3.1. RF Model
3.2. SWAT Model
Dataset | Description | Sources |
---|---|---|
Elevation data | AW3D30 DEM at 30 m spatial resolution, released in 2022 | JAXA [75] |
Landcover map | ESA land cover data for 2020 at 10 m spatial resolution | Zanaga et al. [76] |
Soil map | Harmonized World Soil Database v1.2 for 2008 at 1 km spatial resolution | Fischer et al. [77] |
Hydro-meteorological data | Daily streamflow, precipitation, maximum temperature, and minimum temperature | Hydro-meteorological service centers of the studied countries |
3.3. Model Evaluation Metrics
4. Results
4.1. Performance of RF
4.2. Performance of SWAT
4.3. Comparing the Performance of RF and SWAT
4.4. Computational Efficiency
5. Discussion
5.1. Temporal Considerations and Feature Engineering for RF Models
5.2. Comparison of RF and SWAT
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, M.; Fang, F.; Kinouchi, T.; Navon, I.M.; Pain, C.C. Long Lead-Time Daily and Monthly Streamflow Forecasting Using Machine Learning Methods. J. Hydrol. 2020, 590, 125376. [Google Scholar] [CrossRef]
- Fathian, F.; Mehdizadeh, S.; Kozekalani Sales, A.; Safari, M.J.S. Hybrid Models to Improve the Monthly River Flow Prediction: Integrating Artificial Intelligence and Non-Linear Time Series Models. J. Hydrol. 2019, 575, 1200–1213. [Google Scholar] [CrossRef]
- Lian, X.; Hu, X.; Bian, J.; Shi, L.; Lin, L.; Cui, Y. Enhancing Streamflow Estimation by Integrating a Data-Driven Evapotranspiration Submodel into Process-Based Hydrological Models. J. Hydrol. 2023, 621, 129603. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P.; Cheng, L.; Xie, K.; Han, D.; Zhou, L. The Temporal Variations in Runoff-Generation Parameters of the Xinanjiang Model Due to Human Activities: A Case Study in the Upper Yangtze River Basin, China. J. Hydrol. Reg. Stud. 2021, 37, 100910. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Parra, V.; Fuentes-Aguilera, P.; Muñoz, E. Identifying Advantages and Drawbacks of Two Hydrological Models Based on a Sensitivity Analysis: A Study in Two Chilean Watersheds. Hydrol. Sci. J. 2018, 63, 1831–1843. [Google Scholar] [CrossRef]
- Rahman, K.; Shang, S.; Shahid, M.; Wen, Y. Hydrological Evaluation of Merged Satellite Precipitation Datasets for Streamflow Simulation Using SWAT: A Case Study of Potohar Plateau, Pakistan. J. Hydrol. 2020, 587, 125040. [Google Scholar] [CrossRef]
- Rahman, K.U.; Pham, Q.B.; Jadoon, K.Z.; Shahid, M.; Kushwaha, D.P.; Duan, Z.; Mohammadi, B.; Khedher, K.M.; Anh, D.T. Comparison of Machine Learning and Process-Based SWAT Model in Simulating Streamflow in the Upper Indus Basin. Appl. Water Sci. 2022, 12, 178. [Google Scholar] [CrossRef]
- Singh, A.; Imtiyaz, M.; Isaac, R.K.; Denis, D.M. Comparison of Soil and Water Assessment Tool (SWAT) and Multilayer Perceptron (MLP) Artificial Neural Network for Predicting Sediment Yield in the Nagwa Agricultural Watershed in Jharkhand, India. Agric. Water Manag. 2012, 104, 113–120. [Google Scholar] [CrossRef]
- Zakizadeh, H.; Ahmadi, H.; Zehtabian, G.; Moeini, A.; Moghaddamnia, A. A Novel Study of SWAT and ANN Models for Runoff Simulation with Application on Dataset of Metrological Stations. Phys. Chem. Earth Parts A/B/C 2020, 120, 102899. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A Review of Soil and Water Assessment Tool (SWAT) Studies of Mediterranean Catchments: Applications, Feasibility, and Future Directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A Review of SWAT Model Application in Africa. Water 2021, 13, 1313. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Martínez-España, R.; Casalí, J.; Pérez-Sánchez, J.; Senent-Aparicio, J. A Comparison of Performance of SWAT and Machine Learning Models for Predicting Sediment Load in a Forested Basin, Northern Spain. Catena 2021, 212, 105953. [Google Scholar] [CrossRef]
- Pradhan, P.; Tingsanchali, T.; Shrestha, S. Evaluation of Soil and Water Assessment Tool and Artificial Neural Network Models for Hydrologic Simulation in Different Climatic Regions of Asia. Sci. Total Environ. 2020, 701, 134308. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Baltas, E.; Mimikou, M. SWAT Parameterization for the Identification of Critical Diffuse Pollution Source Areas under Data Limitations. Ecol. Model. 2011, 222, 3500–3512. [Google Scholar] [CrossRef]
- Sánchez-Gómez, A.; Martínez-Pérez, S.; Pérez-Chavero, F.M.; Molina-Navarro, E. Optimization of a SWAT Model by Incorporating Geological Information through Calibration Strategies. Optim. Eng. 2022, 23, 2203–2233. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Alcalá, F.J.; Liu, S.; Jimeno-Sáez, P. Coupling SWAT Model and CMB Method for Modeling of High-Permeability Bedrock Basins Receiving Interbasin Groundwater Flow. Water 2020, 12, 657. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Shi, J.; Carl Johnson, V.; Ahmed, Z.; Wang, J.; Wang, W. Enhancing SWAT Model with Modified Method to Improve Eco-Hydrological Simulation in Arid Region. J. Clean. Prod. 2023, 403, 136891. [Google Scholar] [CrossRef]
- Abbasi, M.; Farokhnia, A.; Bahreinimotlagh, M.; Roozbahani, R. A Hybrid of Random Forest and Deep Auto-Encoder with Support Vector Regression Methods for Accuracy Improvement and Uncertainty Reduction of Long-Term Streamflow Prediction. J. Hydrol. 2021, 597, 125717. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. Comparison of Daily Streamflow Forecasts Using Extreme Learning Machines and the Random Forest Method. Hydrol. Sci. J. 2019, 64, 1857–1866. [Google Scholar] [CrossRef]
- Peng, F.; Wen, J.; Zhang, Y.; Jin, J. Monthly Streamflow Prediction Based on Random Forest Algorithm and Phase Space Reconstruction Theory. J. Phys. Conf. Ser. 2020, 1637, 012091. [Google Scholar] [CrossRef]
- Pham, L.T.; Luo, L.; Finley, A. Evaluation of Random Forests for Short-Term Daily Streamflow Forecasting in Rainfall- and Snowmelt-Driven Watersheds. Hydrol. Earth Syst. Sci. 2021, 25, 2997–3015. [Google Scholar] [CrossRef]
- Shen, Y.; Ruijsch, J.; Lu, M.; Sutanudjaja, E.H.; Karssenberg, D. Random Forests-Based Error-Correction of Streamflow from a Large-Scale Hydrological Model: Using Model State Variables to Estimate Error Terms. Comput. Geosci. 2022, 159, 105019. [Google Scholar] [CrossRef]
- Fadhillah, M.F.; Lee, S.; Lee, C.-W.; Park, Y.-C. Application of Support Vector Regression and Metaheuristic Optimization Algorithms for Groundwater Potential Mapping in Gangneung-Si, South Korea. Remote Sens. 2021, 13, 1196. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Chen, N. A Spatiotemporal Deep Learning Model ST-LSTM-SA for Hourly Rainfall Forecasting Using Radar Echo Images. J. Hydrol. 2022, 609, 127748. [Google Scholar] [CrossRef]
- Danandeh, A.; Ghadimi, S.; Marttila, H.; Torabi Haghighi, A. A New Evolutionary Time Series Model for Streamflow Forecasting in Boreal Lake-River Systems. Theor. Appl. Clim. 2022, 148, 255–268. [Google Scholar] [CrossRef]
- Wei, Y.; Hashim, H.; Chong, K.L.; Huang, Y.F.; Ahmed, A.N.; El-Shafie, A. Investigation of Meta-Heuristics Algorithms in ANN Streamflow Forecasting. KSCE J. Civ. Eng. 2023, 27, 2297–2312. [Google Scholar] [CrossRef]
- Dehghani, A.; Moazam, H.M.Z.H.; Mortazavizadeh, F.; Ranjbar, V.; Mirzaei, M.; Mortezavi, S.; Ng, J.L.; Dehghani, A. Comparative Evaluation of LSTM, CNN, and ConvLSTM for Hourly Short-Term Streamflow Forecasting Using Deep Learning Approaches. Ecol. Inform. 2023, 75, 102119. [Google Scholar] [CrossRef]
- Sabzipour, B.; Arsenault, R.; Troin, M.; Martel, J.-L.; Brissette, F.; Brunet, F.; Mai, J. Comparing a Long Short-Term Memory (LSTM) Neural Network with a Physically-Based Hydrological Model for Streamflow Forecasting over a Canadian Catchment. J. Hydrol. 2023, 627, 130380. [Google Scholar] [CrossRef]
- Ni, L.; Wang, D.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J.; Liu, J. Streamflow Forecasting Using Extreme Gradient Boosting Model Coupled with Gaussian Mixture Model. J. Hydrol. 2020, 586, 124901. [Google Scholar] [CrossRef]
- Sahour, H.; Gholami, V.; Torkaman, J.; Vazifedan, M.; Saeedi, S. Random Forest and Extreme Gradient Boosting Algorithms for Streamflow Modeling Using Vessel Features and Tree-Rings. Environ. Earth Sci. 2021, 80, 747. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Wu, L.; Chen, G.; Wang, L.; Qin, H. Comparison of Support Vector Regression and Extreme Gradient Boosting for Decomposition-Based Data-Driven 10-Day Streamflow Forecasting. J. Hydrol. 2020, 582, 124293. [Google Scholar] [CrossRef]
- Gurbuz, F.; Mudireddy, A.; Mantilla, R.; Xiao, S. Using a Physics-Based Hydrological Model and Storm Transposition to Investigate Machine-Learning Algorithms for Streamflow Prediction. J. Hydrol. 2024, 628, 130504. [Google Scholar] [CrossRef]
- Boo, K.B.W.; El-Shafie, A.; Othman, F.; Khan, M.M.H.; Birima, A.H.; Ahmed, A.N. Groundwater Level Forecasting with Machine Learning Models: A Review. Water Res. 2024, 252, 121249. [Google Scholar] [CrossRef]
- Liang, W.; Chen, Y.; Fang, G.; Kaldybayev, A. Machine Learning Method Is an Alternative for the Hydrological Model in an Alpine Catchment in the Tianshan Region, Central Asia. J. Hydrol. Reg. Stud. 2023, 49, 101492. [Google Scholar] [CrossRef]
- Deng, C.; Yin, X.; Zou, J.; Wang, M.; Hou, Y. Assessment of the Impact of Climate Change on Streamflow of Ganjiang River Catchment via LSTM-Based Models. J. Hydrol. Reg. Stud. 2024, 52, 101716. [Google Scholar] [CrossRef]
- Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X. Streamflow Prediction Using an Integrated Methodology Based on Convolutional Neural Network and Long Short-Term Memory Networks. Sci. Rep. 2021, 11, 17497. [Google Scholar] [CrossRef]
- Majeske, N.; Zhang, X.; Sabaj, M.; Gong, L.; Zhu, C.; Azad, A. Inductive Predictions of Hydrologic Events Using a Long Short-Term Memory Network and the Soil and Water Assessment Tool. Environ. Model. Softw. 2022, 152, 105400. [Google Scholar] [CrossRef]
- Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrol. Earth Syst. Sci. 2021, 25, 2045–2062. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Q.; Shao, J.; Wang, G.; Zhang, W. A New Few-Shot Learning Model for Runoff Prediction: Demonstration in Two Data Scarce Regions. Environ. Model. Softw. 2023, 162, 105659. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Lai, C.; Zhang, Z. Tree-Ring-Width Based Streamflow Reconstruction Based on the Random Forest Algorithm for the Source Region of the Yangtze River, China. Catena 2019, 183, 104216. [Google Scholar] [CrossRef]
- Schoppa, L.; Disse, M.; Bachmair, S. Evaluating the Performance of Random Forest for Large-Scale Flood Discharge Simulation. J. Hydrol. 2020, 590, 125531. [Google Scholar] [CrossRef]
- Shortridge, J.E.; Guikema, S.D.; Zaitchik, B.F. Machine Learning Methods for Empirical Streamflow Simulation: A Comparison of Model Accuracy, Interpretability, and Uncertainty in Seasonal Watersheds. Hydrol. Earth Syst. Sci. 2016, 20, 2611–2628. [Google Scholar] [CrossRef]
- Tongal, H.; Booij, M.J. Simulation and Forecasting of Streamflows Using Machine Learning Models Coupled with Base Flow Separation. J. Hydrol. 2018, 564, 266–282. [Google Scholar] [CrossRef]
- Fernandez-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Goehry, B.; Yan, H.; Goude, Y.; Massart, P.; Poggi, J.-M. Random Forests for Time Series 2021. REVSTAT-Stat. J. 2023, 21, 283–302. [Google Scholar]
- Qiu, X.; Zhang, L.; Nagaratnam Suganthan, P.; Amaratunga, G.A.J. Oblique Random Forest Ensemble via Least Square Estimation for Time Series Forecasting. Inf. Sci. 2017, 420, 249–262. [Google Scholar] [CrossRef]
- Hauswirth, S.M.; Bierkens, M.F.P.; Beijk, V.; Wanders, N. The Potential of Data Driven Approaches for Quantifying Hydrological Extremes. Adv. Water Resour. 2021, 155, 104017. [Google Scholar] [CrossRef]
- Ghosh, A.; Maiti, R. Application of SWAT, Random Forest and Artificial Neural Network Models for Sediment Yield Estimation and Prediction of Gully Erosion Susceptible Zones: Study on Mayurakshi River Basin of Eastern India. Geocarto Int. 2022, 37, 9663–9687. [Google Scholar] [CrossRef]
- Khosravi, K.; Golkarian, A.; Booij, M.J.; Barzegar, R.; Sun, W.; Yaseen, Z.M.; Mosavi, A. Improving Daily Stochastic Streamflow Prediction: Comparison of Novel Hybrid Data-Mining Algorithms. Hydrol. Sci. J. 2021, 66, 1457–1474. [Google Scholar] [CrossRef]
- Woo, S.Y.; Jung, C.G.; Lee, J.W.; Kim, S.J. Evaluation of Watershed Scale Aquatic Ecosystem Health by SWAT Modeling and Random Forest Technique. Sustainability 2019, 11, 3397. [Google Scholar] [CrossRef]
- Woo, S.Y.; Jung, C.G.; Kim, J.U.; Kim, S.J. Assessment of climate change impact on Aquatic ecology Health Indices in Han River basin using SWAT and random forest. J. Korea Water Resour. Assoc. 2018, 51, 863–874. [Google Scholar]
- Dhar, P. The Carbon Impact of Artificial Intelligence. Nat. Mach. Intell. 2020, 2, 423–425. [Google Scholar] [CrossRef]
- Verdecchia, R.; Sallou, J.; Cruz, L. A Systematic Review of Green AI 2023. Data Min. Knowl. Discov. 2023, 13, e1507. [Google Scholar] [CrossRef]
- Martínez-Salvador, A.; Conesa-García, C. Suitability of the SWAT Model for Simulating Water Discharge and Sediment Load in a Karst Watershed of the Semiarid Mediterranean Basin. Water Resour. Manag. 2020, 34, 785–802. [Google Scholar] [CrossRef]
- Mander, Ü.; Kull, A.; Kuusemets, V.; Tamm, T. Nutrient Runoff Dynamics in a Rural Catchment: Influence of Land-Use Changes, Climatic Fluctuations and Ecotechnological Measures. Ecol. Eng. 2000, 14, 405–417. [Google Scholar] [CrossRef]
- Moges, D.M.; Kmoch, A.; Uuemaa, E. Application of Satellite and Reanalysis Precipitation Products for Hydrological Modeling in the Data-Scarce Porijõgi Catchment, Estonia. J. Hydrol. Reg. Stud. 2022, 41, 101070. [Google Scholar] [CrossRef]
- Moges, D.M.; Bhat, H.G. An Insight into Land Use and Land Cover Changes and Their Impacts in Rib Watershed, North-Western Highland Ethiopia. Land. Degrad. Dev. 2018, 29, 3317–3330. [Google Scholar] [CrossRef]
- Moges, D.M.; Kmoch, A.; Bhat, H.G.; Uuemaa, E. Future Soil Loss in Highland Ethiopia under Changing Climate and Land Use. Reg. Environ. Chang. 2020, 20, 32. [Google Scholar] [CrossRef]
- Moges, D.M.; Bhat, H. Integration of Geospatial Technologies with RUSLE for Analysis of Land Use/Cover Change Impact on Soil Erosion: Case Study in Rib Watershed, North-Western Highland Ethiopia. Environ. Earth Sci. 2017, 76, 765. [Google Scholar] [CrossRef]
- Jayaprathiga, M.; Cibin, R.; Sudheer, K.P. Reliability of Hydrology and Water Quality Simulations Using Global Scale Datasets. J. Am. Water Resour. Assoc. 2022, 58, 453–470. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Fernandes Filho, E.I. Estimation of Reference Evapotranspiration in Brazil with Limited Meteorological Data Using ANN and SVM–A New Approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D.; Potter, A.; Daniell, J.J. Application of Machine Learning Methods to Spatial Interpolation of Environmental Variables. Environ. Model. Softw. 2011, 26, 1647–1659. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef]
- Rasouli, K.; Hsieh, W.W.; Cannon, A.J. Daily Streamflow Forecasting by Machine Learning Methods with Weather and Climate Inputs. J. Hydrol. 2012, 414, 284–293. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011.
- Moges, D.M.; Virro, H.; Kmoch, A.; Cibin, R.; Rohith, A.N.; Martínez-Salvador, A.; Conesa-García, C.; Uuemaa, E. How Does the Choice of DEMs Affect Catchment Hydrological Modeling? Sci. Total Environ. 2023, 892, 164627. [Google Scholar] [CrossRef]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a New Open Source GIS User Interface for the SWAT Model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; van Genuchten, M.T.; Schulin, R.; Schläppi, E. A Sequential Uncertainty Domain Inverse Procedure for Estimating Subsurface Flow and Transport Parameters. Water Resour. Res. 1997, 33, 1879–1892. [Google Scholar] [CrossRef]
- JAXA ALOS Global Digital Surface Model (DSM). ALOS World 3D-30m (AW3D30) Version 3.1: Product Description; Earth Obs. Res. Cent. Japan Aerosp. Explor. Agency (JAXA EORC). Available online: https://www.eorc.jaxa.jp/ALOS/ (accessed on 29 March 2022).
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100 2021. Available online: https://worldcover2020.esa.int/download (accessed on 21 March 2022).
- Fischer, G.; Nachtergaele, V.F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA Laxenburg Austria FAO: Rome, Italy, 2008. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Hussain, D.; Khan, A.A. Machine Learning Techniques for Monthly River Flow Forecasting of Hunza River, Pakistan. Earth Sci. Inf. 2020, 13, 939–949. [Google Scholar] [CrossRef]
- Ma, K.; He, D.; Liu, S.; Ji, X.; Li, Y.; Jiang, H. Novel Time-Lag Informed Deep Learning Framework for Enhanced Streamflow Prediction and Flood Early Warning in Large-Scale Catchments. J. Hydrol. 2024, 631, 130841. [Google Scholar] [CrossRef]
- Kalu, I.; Ndehedehe, C.E.; Ferreira, V.G.; Kennard, M.J. Machine Learning Assessment of Hydrological Model Performance under Localized Water Storage Changes through Downscaling. J. Hydrol. 2024, 628, 130597. [Google Scholar] [CrossRef]
- Garg, V.; Sambare, R.S.; Thakur, P.K.; Dhote, P.R.; Nikam, B.R.; Aggarwal, S.P. Improving Stream Flow Estimation by Incorporating Time Delay Approach in Soft Computing Models. ISH J. Hydraul. Eng. 2022, 28, 57–68. [Google Scholar] [CrossRef]
- Feng, D.; Fang, K.; Shen, C. Enhancing Streamflow Forecast and Extracting Insights Using Long-Short Term Memory Networks With Data Integration at Continental Scales. Water Resour. Res. 2020, 56, e2019WR026793. [Google Scholar] [CrossRef]
- Besaw, L.E.; Rizzo, D.M.; Bierman, P.R.; Hackett, W.R. Advances in Ungauged Streamflow Prediction Using Artificial Neural Networks. J. Hydrol. 2010, 386, 27–37. [Google Scholar] [CrossRef]
- Saadi, M.; Oudin, L.; Ribstein, P. Random Forest Ability in Regionalizing Hourly Hydrological Model Parameters. Water 2019, 11, 1540. [Google Scholar] [CrossRef]
- Islam, K.I.; Elias, E.; Carroll, K.C.; Brown, C. Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sens. 2023, 15, 3999. [Google Scholar] [CrossRef]
- Papacharalampous, G.A.; Tyralis, H. Evaluation of Random Forests and Prophet for Daily Streamflow Forecasting. Adv. Geosci. 2018, 45, 201–208. [Google Scholar] [CrossRef]
- Akbarian, M.; Saghafian, B.; Golian, S. Monthly Streamflow Forecasting by Machine Learning Methods Using Dynamic Weather Prediction Model Outputs over Iran. J. Hydrol. 2023, 620, 129480. [Google Scholar] [CrossRef]
- Ferreira, R.G.; da Silva, D.D.; Elesbon, A.A.A.; Fernandes-Filho, E.I.; Veloso, G.V.; de Souza Fraga, M.; Ferreira, L.B. Machine Learning Models for Streamflow Regionalization in a Tropical Watershed. J. Environ. Manag. 2021, 280, 111713. [Google Scholar] [CrossRef]
- Choukri, F.; Raclot, D.; Naimi, M.; Chikhaoui, M.; Nunes, J.P.; Huard, F.; Hérivaux, C.; Sabir, M.; Pépin, Y. Distinct and Combined Impacts of Climate and Land Use Scenarios on Water Availability and Sediment Loads for a Water Supply Reservoir in Northern Morocco. Int. Soil. Water Conserv. Res. 2020, 8, 141–153. [Google Scholar] [CrossRef]
- Ahmadi, M.; Moeini, A.; Ahmadi, H.; Motamedvaziri, B.; Zehtabiyan, G.R. Comparison of the Performance of SWAT, IHACRES and Artificial Neural Networks Models in Rainfall-Runoff Simulation (Case Study: Kan Watershed, Iran). Phys. Chem. Earth Parts A/B/C 2019, 111, 65–77. [Google Scholar] [CrossRef]
- Samimi, M.; Mirchi, A.; Moriasi, D.; Ahn, S.; Alian, S.; Taghvaeian, S.; Sheng, Z. Modeling Arid/Semi-Arid Irrigated Agricultural Watersheds with SWAT: Applications, Challenges, and Solution Strategies. J. Hydrol. 2020, 590, 125418. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Sampson, C.C.; Smith, A.M.; Johnson, K.A.; Erickson, T.A. Validation of a 30 m Resolution Flood Hazard Model of the Conterminous United States. Water Resour. Res. 2017, 53, 7968–7986. [Google Scholar] [CrossRef]
- Ruiz-Aĺvarez, M.; Gomariz-Castillo, F.; Alonso-Sarría, F. Evapotranspiration Response to Climate Change in Semi-Arid Areas: Using Random Forest as Multi-Model Ensemble Method. Water 2021, 13, 222. [Google Scholar] [CrossRef]
- Sharifinejad, A.; Hassanzadeh, E. Evaluating Climate Change Effects on a Snow-Dominant Watershed: A Multi-Model Hydrological Investigation. Water 2023, 15, 3281. [Google Scholar] [CrossRef]
- Yen, H.; Ahmadi, M.; White, M.J.; Wang, X.; Arnold, J.G. C-SWAT: The Soil and Water Assessment Tool with Consolidated Input Files in Alleviating Computational Burden of Recursive Simulations. Comput. Geosci. 2014, 72, 221–232. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ascough, J.C.; DeJonge, K.C.; Arabi, M. Multisite-Multivariable Sensitivity Analysis of Distributed Watershed Models: Enhancing the Perceptions from Computationally Frugal Methods. Ecol. Model. 2014, 279, 54–67. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, X.; Yao, H.; Lin, B. Improved Calibration Scheme of SWAT by Separating Wet and Dry Seasons. Ecol. Model. 2015, 301, 54–61. [Google Scholar] [CrossRef]
Metric | Equations | Range | Performance Rating a | |||
---|---|---|---|---|---|---|
Very Good | Good | Satisfactory | Unsatisfactory | |||
NSE | −∞ to 1.0 | 0.75 < NSE < 1.00 | 0.65 < NSE < 0.75 | 0.50 < NSE < 0.65 | NSE < 0.50 | |
PBIAS | × 100 | −∞ to ∞ | PBIAS < ±10 | ±10 < PBIAS < ±15 | ±15 < PBIAS < ±25 | PBIAS > ±25 |
NRMSE | 0 to 1 |
Parameter | Argos | Porijõgi | Rib | Bald Eagle | ||||
---|---|---|---|---|---|---|---|---|
Rank | Fitted Value | Rank | Fitted Value | Rank | Fitted Value | Rank | Fitted Value | |
r_CN2 | 1 * | 0.01 | 1 * | 0.04 | 1 * | −0.36 | 1 * | −0.12 |
r_SOL_BD | 11 | −0.03 | 2 * | −0.02 | 2 * | −0.10 | 10 * | −0.03 |
v_GW_DELAY | 2 * | 476 | 4 | 287 | 8 | 417 | 4 * | 137 |
v_RCHRG_DP | 3 * | 0.15 | 7 * | 0.44 | 7 * | −0.78 | 3 * | 0.40 |
v_GWQMN | 5 * | 2686 | 3 * | 3086 | 4 * | 2539 | 2 * | 2268 |
v_GW_REVAP | 6 * | −0.03 | 5 | 0.24 | 5 * | 0.18 | 6 * | 0.22 |
v_ALPHA_BF | 9 | 0.51 | 6 | 0.88 | 6 | −0.34 | 5 | 0.58 |
v_HRU_SLP | 7 * | 0.15 | 11 | 0.00 | 3 * | 0.42 | 7 * | 0.27 |
v_ESCO | 8 * | 0.10 | 8 * | 0.52 | 11 | 0.13 | 11 | 0.45 |
v_CH_N2 | 10 | 0.13 | 10 * | 0.33 | 9 * | 0.14 | 9 | 0.01 |
v_CH_K2 | 4 | 144 | 9 * | 164 | 10 * | 63.7 | 8 | 208 |
Catchment | Metric | SWAT | RF | ||
---|---|---|---|---|---|
Training | Testing | Training | Testing | ||
Argos | NSE | 0.18 | 0.10 | 0.90 | 0.24 |
NRMSE | 4.42 | 4.76 | 1.46 | 4.94 | |
PBIAS | −7.6 | −4.7 | 0.2 | −2.7 | |
Porijõgi | NSE | 0.72 | 0.44 | 0.99 | 0.85 |
NRMSE | 5.36 | 6.66 | 0.95 | 2.07 | |
PBIAS | 22.6 | 3.18 | −0.1 | 1.9 | |
Rib | NSE | 0.78 | 0.86 | 0.98 | 0.88 |
NRMSE | 11.04 | 8.07 | 2.38 | 6.17 | |
PBIAS | 12.1 | 2.02 | 0.6 | 4.5 | |
Bald Eagle | NSE | 0.55 | 0.33 | 0.93 | 0.51 |
NRMSE | 2.68 | 8.98 | 0.99 | 2.32 | |
PBIAS | 15.2 | 27.4 | −4.9 | −2.5 |
Catchment | Metric | SWAT | RF | ||
---|---|---|---|---|---|
Training | Testing | Training | Testing | ||
Argos | NSE | 0.51 | 0.26 | 0.93 | 0.38 |
NRMSE | 18.15 | 21.14 | 5.0 | 16.25 | |
Porijõgi | NSE | 0.82 | 0.51 | 0.9 | 0.05 |
NRMSE | 7.65 | 18.2 | 5.75 | 9.89 | |
Rib | NSE | 0.88 | 0.95 | 0.97 | 0.88 |
NRMSE | 9.54 | 6.37 | 4.5 | 8.88 | |
Bald Eagle | NSE | 0.58 | 0.34 | 0.88 | 0.31 |
NRMSE | 14.49 | 18.11 | 6.89 | 16.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moges, D.M.; Virro, H.; Kmoch, A.; Cibin, R.; Rohith, R.A.N.; Martínez-Salvador, A.; Conesa-García, C.; Uuemaa, E. Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments. Water 2024, 16, 2805. https://doi.org/10.3390/w16192805
Moges DM, Virro H, Kmoch A, Cibin R, Rohith RAN, Martínez-Salvador A, Conesa-García C, Uuemaa E. Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments. Water. 2024; 16(19):2805. https://doi.org/10.3390/w16192805
Chicago/Turabian StyleMoges, Desalew Meseret, Holger Virro, Alexander Kmoch, Raj Cibin, Rohith A. N. Rohith, Alberto Martínez-Salvador, Carmelo Conesa-García, and Evelyn Uuemaa. 2024. "Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments" Water 16, no. 19: 2805. https://doi.org/10.3390/w16192805
APA StyleMoges, D. M., Virro, H., Kmoch, A., Cibin, R., Rohith, R. A. N., Martínez-Salvador, A., Conesa-García, C., & Uuemaa, E. (2024). Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments. Water, 16(19), 2805. https://doi.org/10.3390/w16192805