Future Agricultural Water Availability in Mediterranean Countries under Climate Change: A Systematic Review
Abstract
:1. Introduction
1.1. Climate Change Impacts on Mediterranean Water Resources
1.2. Motivation
2. Methodology and Gathered Data
Bibliometric Analysis
3. Water Resources and Climate Change
4. Future Water Availability in Mediterranean Countries
4.1. Spain
4.2. Portugal
4.3. Other European and Northern African Countries
5. Adaptation Plans and Tools
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manap, N.M.A.; Ismail, N.W. FOOD SECURITY AND ECONOMIC GROWTH. Int. J. Mod. Trends Soc. Sci. 2019, 2, 108–118. [Google Scholar] [CrossRef]
- Timmer, P. Food Security and Economic Growth: An Asian Perspective. SSRN Electron. J. 2004, 51, 1–24. [Google Scholar] [CrossRef]
- FAO Global Information System on Water and Agriculture. AQUASTAT: FAO’s Global Information System on Water and Agriculture—Water Use. Available online: https://www.fao.org/aquastat/en/overview/methodology/water-use/ (accessed on 17 June 2024).
- Frenken, K.; Gillet, V. Irrigation Water Requirement and Water Withdrawal by Country; FAO: Rome, Italy, 2012. [Google Scholar]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global Irrigated Area Map (GIAM), Derived from Remote Sensing, for the End of the Last Millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Deutsch, L.; Falkenmark, M.; Gordon, L.; Rockström, J.; Folke, C. Water-Mediated Ecological Consequences of Intensification and Expansion of Livestock Production. In Livestock in a Changing Landscape: Drivers, Consequences and Responses; Steinfeld, H., Mooney, H., Schneider, F., Neville, L., Eds.; Island Press: Washington, DC, USA, 2010; Volume 1, pp. 97–110. [Google Scholar]
- Sims, R.E.H. “Energy-Smart” Food for People and Climate; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011.
- United Nations World Water Assessment Programme. The United Nations World Water Development Report 2014: Water and Energy; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2014; Volume 1, ISBN 978-92-3-104259-1. [Google Scholar]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security: 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134071-4. [Google Scholar]
- de Fraiture, C.; Wichelns, D. Satisfying Future Water Demands for Agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Geiger, R. Klassifikation Der Klimate Nach W. Köppen. In Landolt-Börnstein—Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik; Springer: Berlin, Germany, 1954; Volume 3, pp. 603–607. [Google Scholar]
- Directorate-General for Agriculture and Rural Development. Olive Oil: An Overview of the Production and Marketing of Olive Oil in the EU. Available online: https://agriculture.ec.europa.eu/farming/crop-productions-and-plant-based-products/olive-oil_en (accessed on 17 June 2024).
- OIV. World Wine Production Outlook 2023; OIV: Dijon, France, 2023. [Google Scholar]
- Merino, A.; Fernández-Vaquero, M.; López, L.; Fernández-González, S.; Hermida, L.; Sánchez, J.L.; García-Ortega, E.; Gascón, E. Large-Scale Patterns of Daily Precipitation Extremes on the Iberian Peninsula. Int. J. Climatol. 2016, 36, 3873–3891. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A Long-Term Climatology of Medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Dayan, U.; Nissen, K.; Ulbrich, U. Review Article: Atmospheric Conditions Inducing Extreme Precipitation over the Eastern and Western Mediterranean. Nat. Hazards Earth Syst. Sci. 2015, 15, 2525–2544. [Google Scholar] [CrossRef]
- Ferreira, R.N. Cut-Off Lows and Extreme Precipitation in Eastern Spain: Current and Future Climate. Atmosphere 2021, 12, 835. [Google Scholar] [CrossRef]
- Claro, A.M.; Fonseca, A.; Fraga, H.; Santos, J.A. Susceptibility of Iberia to Extreme Precipitation and Aridity: A New High-Resolution Analysis over an Extended Historical Period. Water 2023, 15, 3840. [Google Scholar] [CrossRef]
- Manning, C.; Widmann, M.; Bevacqua, E.; Van Loon, A.F.; Maraun, D.; Vrac, M. Increased Probability of Compound Long-Duration Dry and Hot Events in Europe during Summer (1950–2013). Environ. Res. Lett. 2019, 14, 094006. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Zouber, A.; Lasanta, T.; Pueyo, Y. Dryness Is Accelerating Degradation of Vulnerable Shrublands in Semiarid Mediterranean Environments. Ecol. Monogr. 2012, 82, 407–428. [Google Scholar] [CrossRef]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread Crown Condition Decline, Food Web Disruption, and Amplified Tree Mortality with Increased Climate Change-Type Drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Moemken, J.; Koerner, B.; Ehmele, F.; Feldmann, H.; Pinto, J.G. Recurrence of Drought Events over Iberia. Part II: Future Changes Using Regional Climate Projections. Tellus A Dyn. Meteorol. Oceanogr. 2022, 74, 262. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean Water Resources in a Global Change Scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- UN Water Water, Food and Energy. Available online: https://www.unwater.org/water-facts/water-food-and-energy (accessed on 17 June 2024).
- Iglesias, A.; Mougou, R.; Moneo, M.; Quiroga, S. Towards Adaptation of Agriculture to Climate Change in the Mediterranean. Reg. Environ. Chang. 2011, 11, 159–166. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef]
- UN Water. Water and Climate Change. Available online: https://www.unwater.org/water-facts/water-and-climate-change (accessed on 17 June 2024).
- Bindi, M.; Olesen, J.E. The Responses of Agriculture in Europe to Climate Change. Reg. Environ. Chang. 2011, 11, 151–158. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale Water Scarcity Requires Micro-scale Approaches. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Arnell, N.W. Climate Change and Global Water Resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science (1979) 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and Testing of the WaterGAP 2 Global Model of Water Use and Availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Global Estimates of Water Withdrawals and Availability under Current and Future “Business-as-Usual” Conditions. Hydrol. Sci. J. 2003, 48, 339–348. [Google Scholar] [CrossRef]
- Arnell, N.W. A Simple Water Balance Model for the Simulation of Streamflow over a Large Geographic Domain. J. Hydrol. 1999, 217, 314–335. [Google Scholar] [CrossRef]
- Moore, R.J. The Probability-Distributed Principle and Runoff Production at Point and Basin Scales. Hydrol. Sci. J. 1985, 30, 273–297. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global Modeling of Irrigation Water Requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
- Döll, P. Impact of Climate Change and Variability on Irrigation Requirements: A Global Perspective. Clim. Chang. 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Strzepek, K.M.; Major, D.C.; Iglesias, A.; Yates, D.N.; McCluskey, A.; Hillel, D. Water Resources for Agriculture in a Changing Climate: International Case Studies. Glob. Environ. Chang. 2004, 14, 345–360. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate Change Impacts on Irrigation Water Requirements: Effects of Mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef]
- Correia, F.N. Water Resources in the Mediterranean Region. Water Int. 1999, 24, 22–30. [Google Scholar] [CrossRef]
- Haas, L. Mediterranean Water Resources Planning and Climate Change Adaptation. In Proceedings of the Water, Wetlands and Climate Change: Building Linkages for their Integrated Management, Athens, Greece, 10 December 2002. [Google Scholar]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.-M.; Ardoin-Bardin, S.; Thivet, G. Current State of Mediterranean Water Resources and Future Trends under Climatic and Anthropogenic Changes. Hydrol. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef]
- Gallart, F.; Delgado, J.; Beatson, S.J.V.; Posner, H.; Llorens, P.; Marcé, R. Analysing the Effect of Global Change on the Historical Trends of Water Resources in the Headwaters of the Llobregat and Ter River Basins (Catalonia, Spain). Phys. Chem. Earth Parts A/B/C 2011, 36, 655–661. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Dezetter, A.; Fabre, J.; Ardoin-Bardin, S.; Servat, E. Modeling the Current and Future Capacity of Water Resources to Meet Water Demands in the Ebro Basin. J. Hydrol. 2013, 500, 114–126. [Google Scholar] [CrossRef]
- Makhlouf, Z.; Michel, C. A Two-Parameter Monthly Water Balance Model for French Watersheds. J. Hydrol. 1994, 162, 299–318. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Effects of Precipitation Patterns and Temperature Trends on Soil Water Available for Vineyards in a Mediterranean Climate Area. Agric. Water Manag. 2010, 97, 1495–1505. [Google Scholar] [CrossRef]
- von Gunten, D.; Wöhling, T.; Haslauer, C.P.; Merchán, D.; Causapé, J.; Cirpka, O.A. Estimating Climate-Change Effects on a Mediterranean Catchment under Various Irrigation Conditions. J. Hydrol. Reg. Stud. 2015, 4, 550–570. [Google Scholar] [CrossRef]
- Therrien, R.; McLaren, R.G.; Sudicky, E.A.; Panday, S.M. HydroGeoSphere: A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport; University of Waterloo: Waterloo, ON, USA, 2010. [Google Scholar]
- Ferrer, J.; Pérez-Martín, M.A.; Jiménez, S.; Estrela, T.; Andreu, J. GIS-Based Models for Water Quantity and Quality Assessment in the Júcar River Basin, Spain, Including Climate Change Effects. Sci. Total Environ. 2012, 440, 42–59. [Google Scholar] [CrossRef]
- Pellicer-Martínez, F.; Martínez-Paz, J.M. Climate Change Effects on the Hydrology of the Headwaters of the Tagus River: Implications for the Management of the Tagus–Segura Transfer. Hydrol. Earth Syst. Sci. 2018, 22, 6473–6491. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Andreu, J.; Estrela, T. Water Accounting for Stressed River Basins Based on Water Resources Management Models. Sci. Total Environ. 2016, 565, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Sierra, A.J.; Zapata-Castillo, L.; Manzano-Agugliaro, F. Water Resources Availability in Southern Europe at the Basin Scale in Response to Climate Change Scenarios. Environ. Sci. Eur. 2022, 34, 75. [Google Scholar] [CrossRef]
- Fonseca, A.R.; Santos, J.A. Predicting Hydrologic Flows under Climate Change: The Tâmega Basin as an Analog for the Mediterranean Region. Sci. Total Environ. 2019, 668, 1013–1024. [Google Scholar] [CrossRef]
- Rodrigues, D.; Fonseca, A.; Stolarski, O.; Freitas, T.R.; Guimarães, N.; Santos, J.A.; Fraga, H. Climate Change Impacts on the Côa Basin (Portugal) and Potential Impacts on Agricultural Irrigation. Water 2023, 15, 2739. [Google Scholar] [CrossRef]
- Nunes, J.P.; Jacinto, R.; Keizer, J.J. Combined Impacts of Climate and Socio-Economic Scenarios on Irrigation Water Availability for a Dry Mediterranean Reservoir. Sci. Total Environ. 2017, 584–585, 219–233. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of Climate Change on Reservoir Water Availability, Quality and Irrigation Needs in a Water Scarce Mediterranean Region (Southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of Climate and Land Use Changes on the Hydrological and Erosion Processes of Two Contrasting Mediterranean Catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, D.R.; Trisorio, L.G.; Lamaddalena, N.; Ragab, R. Assessing the Results of Scenarios of Climate and Land Use Changes on the Hydrology of an Italian Catchment: Modelling Study. Hydrol. Process 2010, 24, 2693–2704. [Google Scholar] [CrossRef]
- Ragab, R.; Prudhomme, C. SW—Soil and Water: Climate Change and Water Resources Management in Arid and Semi-Arid Regions: Prospective and Challenges for the 21st Century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- Mollema, P.; Antonellini, M.; Gabbianelli, G.; Laghi, M.; Marconi, V.; Minchio, A. Climate and Water Budget Change of a Mediterranean Coastal Watershed, Ravenna, Italy. Environ. Earth Sci. 2012, 65, 257–276. [Google Scholar] [CrossRef]
- Okkan, U.; Kirdemir, U. Investigation of the Behavior of an Agricultural-Operated Dam Reservoir Under RCP Scenarios of AR5-IPCC. Water Resour. Manag. 2018, 32, 2847–2866. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L.; Ishida, K. Assessing the Impacts of Future Climate Change on the Hydroclimatology of the Gediz Basin in Turkey by Using Dynamically Downscaled CMIP5 Projections. Sci. Total Environ. 2019, 648, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Potter, N.; Hickel, K.; Zhang, Y.; Shao, Q. Water Balance Modeling over Variable Time Scales Based on the Budyko Framework—Model Development and Testing. J. Hydrol. 2008, 360, 117–131. [Google Scholar] [CrossRef]
- Allani, M.; Mezzi, R.; Zouabi, A.; Béji, R.; Joumade-Mansouri, F.; Hamza, M.E.; Sahli, A. Impact of Future Climate Change on Water Supply and Irrigation Demand in a Small Mediterranean Catchment. Case Study: Nebhana Dam System, Tunisia. J. Water Clim. Chang. 2020, 11, 1724–1747. [Google Scholar] [CrossRef]
- Hadri, A.; Saidi, M.E.M.; El Khalki, E.M.; Aachrine, B.; Saouabe, T.; Elmaki, A.A. Integrated Water Management under Climate Change through the Application of the WEAP Model in a Mediterranean Arid Region. J. Water Clim. Chang. 2022, 13, 2414–2442. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Varanda, M.; Bento, S.; Nunes, J.P.; Hugman, R. Combined Assessment of Climate Change and Socio-Economic Development as Drivers of Freshwater Availability in the South of Portugal. Water Resour. Manag. 2017, 31, 609–628. [Google Scholar] [CrossRef]
- van der Laan, E.; Nunes, J.P.; Dias, L.F.; Carvalho, S.; Mendonça dos Santos, F. Assessing the Climate Change Adaptability of Sustainable Land Management Practices Regarding Water Availability and Quality: A Case Study in the Sorraia Catchment, Portugal. Sci. Total Environ. 2023, 897, 165438. [Google Scholar] [CrossRef] [PubMed]
- Sordo-Ward, A.; Granados, A.; Iglesias, A.; Garrote, L.; Bejarano, M. Adaptation Effort and Performance of Water Management Strategies to Face Climate Change Impacts in Six Representative Basins of Southern Europe. Water 2019, 11, 1078. [Google Scholar] [CrossRef]
- Masia, S.; Trabucco, A.; Spano, D.; Snyder, R.L.; Sušnik, J.; Marras, S. A Modelling Platform for Climate Change Impact on Local and Regional Crop Water Requirements. Agric. Water Manag. 2021, 255, 107005. [Google Scholar] [CrossRef]
- Yalcin, E. A CMIP6 Multi-Model Ensemble-Based Analysis of Potential Climate Change Impacts on Irrigation Water Demand and Supply Using SWAT and CROPWAT Models: A Case Study of Akmese Dam, Turkey. Theor. Appl. Climatol. 2024, 155, 679–699. [Google Scholar] [CrossRef]
- Bucak, T.; Trolle, D.; Andersen, H.E.; Thodsen, H.; Erdoğan, Ş.; Levi, E.E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M. Future Water Availability in the Largest Freshwater Mediterranean Lake Is at Great Risk as Evidenced from Simulations with the SWAT Model. Sci. Total Environ. 2017, 581–582, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Pulighe, G.; Lupia, F.; Chen, H.; Yin, H. Modeling Climate Change Impacts on Water Balance of a Mediterranean Watershed Using SWAT+. Hydrology 2021, 8, 157. [Google Scholar] [CrossRef]
- Rivas-Tabares, D.; Tarquis, A.M.; Willaarts, B.; De Miguel, Á. An Accurate Evaluation of Water Availability in Sub-Arid Mediterranean Watersheds through SWAT: Cega-Eresma-Adaja. Agric. Water Manag. 2019, 212, 211–225. [Google Scholar] [CrossRef]
- Collet, L.; Ruelland, D.; Borrell-Estupina, V.; Dezetter, A.; Servat, E. Integrated Modelling to Assess Long-Term Water Supply Capacity of a Meso-Scale Mediterranean Catchment. Sci. Total Environ. 2013, 461–462, 528–540. [Google Scholar] [CrossRef]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.L.; Galluccio, G.; Marcomini, A. A Risk Assessment Framework for Irrigated Agriculture under Climate Change. Adv. Water Resour. 2017, 110, 562–578. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Koubouris, G.C.; Dokou, Z. Optimal Irrigation Planning for Addressing Current or Future Water Scarcity in Mediterranean Tree Crops. Sci. Total Environ. 2019, 654, 616–632. [Google Scholar] [CrossRef]
- Domínguez, A.; Martínez-López, J.A.; Amami, H.; Nsiri, R.; Karam, F.; Oueslati, M. Adaptation of a Scientific Decision Support System to the Productive Sector—A Case Study: MOPECO Irrigation Scheduling Model for Annual Crops. Water 2023, 15, 1691. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2020, 11, 56. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of Climate Change on Olive Crop Evapotranspiration and Irrigation Requirements in the Mediterranean Region. Agric. Water Manag. 2014, 144, 54–68. [Google Scholar] [CrossRef]
- Ferrise, R.; Trombi, G.; Moriondo, M.; Bindi, M. Climate Change and Grapevines: A Simulation Study for the Mediterranean Basin. J. Wine Econ. 2016, 11, 88–104. [Google Scholar] [CrossRef]
- Santillán, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate Change Risks and Adaptation: New Indicators for Mediterranean Viticulture. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 881–899. [Google Scholar] [CrossRef]
Databases | Websites | Access Date | Search Equation |
---|---|---|---|
Scopus and Web of Science | https://www.scopus.com / https://webofscience.com | 10 January 2024 | (“south* europe” OR mediterranean) AND (water OR irrigation) AND (agriculture OR crop* OR viticulture OR olive OR maize OR wheat OR almond OR corn) AND (“clima* change”) |
30 January 2024 | (“south* europe” OR mediterranean) AND (water OR irrigation) AND (agriculture OR crop* OR viticulture OR olive OR maize OR wheat OR almond OR corn) AND (“clima* change”) AND (“crop* model*” OR “hydro* model*”) |
Subject Areas | Keywords |
---|---|
“Environmental Science” “Agricultural and Biological Sciences” “Earth and Planetary Sciences” “Multi- disciplinary” | “Adaptation”, “Adaptive Management”, “Agriculture”, “Agricultural Irrigation/Modeling/Production”, “Agronomy”, “AquaCrop”, “Climate”, “Climate Change”, “Climate Change Projections/Scenarios/Impact”, “Climate Conditions/Effect/Variation”, “Climate Models/Modeling/Modelling”, “Crop(s)”, “Crop Model/Modeling/Modelling”, “Crop Plant/Production/Yield”, “Cultivation”, “Drought(s)”, “Drought Stress”, “Evapotranspiration”, “Flowering”, “Future Climate”, “General Circulation Model”, “Global Change/Warming”, “Growth”, “Growing Season”, “Hydrological Model/Modeling/Modelling”, “Hydrology”, “Irrigated Agriculture”, “Irrigation”, “Irrigation Requirements/System”, “Numerical Model”, “Precipitation”, “Productivity”, “Rain”, “Rainfall”, “Rainfed Agriculture”, “Reservoirs (water)”, “Reservoir Management”, “Runoff”, “Seasonal Variation”, “Soil Water”, “Soil and Water Assessment Tool”, “STICS”, “SWAT”, “SWAT Model”, “Vitis”, “Water”, “Water Availability/Conservation/Demand/Resource(s)/Scarcity”, “Watershed(s)”, “Water Stress/Supply/Use”, “Water Use Efficiency”, “Wheat”, “Yield”, “Yield Response” |
Categories | Citation Topics Meso | Citation Topics Micro | Research Areas |
---|---|---|---|
“Environmental Sciences” “Agronomy” “Water Resources” “Agriculture Multidisciplinary” “Computer Science Interdisciplinary Applications” “Meteorology Atmospheric Sciences” | “Oceanography, Meteorology & Atmospheric Sciences” “Crop Science” “Soil Science” “Climate Change” “Water Resources” “Crop Protection” “Environmental Sciences” | “Evapotranspiration” “Grain Yield” “Water Governance” “Groundwater” “Climate Change Adaptation” “Growth Regulation” “Stormwater” “Climate Security” “Reservoir Operation” “Science Communication” “Heat Waves” | “Agriculture” “Water Resources” “Meteorology Atmospheric Sciences” |
Refs. | Year | Studied Areas | Topic | Refs. | Year | Studied Areas | Topic |
---|---|---|---|---|---|---|---|
[34] | 1989 | Africa | (1) | [60] | 2019 | Tâmega Basin (Portugal) | (2); (3) |
[35] | 1999 | Worldwide | (1) | [61] | 2023 | Côa Basin (Portugal) | (4) |
[36] | 2000 | Worldwide | (1) | [62] | 2017 | Vale do Gaio reservoir (Portugal) | (4) |
[37] | 2003 | Worldwide | (1) | [63] | 2020 | Alentejo (Portugal) | (2); (5) |
[38] | 2003 | Worldwide | (1) | [65] | 2010 | Southern Italy | (2) |
[39] | 1999 | Europe | (1) | [67] | 2012 | Northern Italy | (2) |
[40] | 1985 | None | (1) | [68] | 2018 | Gediz Basin (Turkey) | (2) |
[41] | 2002 | Worldwide | (1) | [69] | 2019 | Gediz Basin (Turkey) | (2) |
[42] | 2002 | Worldwide | (1) | [71] | 2020 | Nebhana dam (Tunisia) | (4) |
[43] | 2004 | Worldwide | (1) | [72] | 2022 | Haouz Plain (Morocco) | (4) |
[44] | 2007 | Worldwide | (1) | [73] | 2017 | Algarve (Portugal) | (2) |
[45] | 1999 | Mediterranean countries | (1) | [74] | 2023 | Sorraia Basin (Portugal) | (5) |
[46] | 2002 | Mediterranean countries | (1) | [75] | 2019 | Southern Europe | (5) |
[47] | 2007 | Mediterranean countries | (1) | [76] | 2021 | Europe | (6) |
[48] | 2013 | Mediterranean countries | (5); (3) | [77] | 2024 | Akmese dam (Turkey) | (6) |
[49] | 2011 | Catalonia (Spain) | (3) | [78] | 2017 | Lake Beyşehir (Turkey) | (6) |
[51] | 2013 | Ebro Basin (Spain) | (3); (6) | [79] | 2021 | Sardinia (Italy) | (2) |
[53] | 2010 | Northeast Spain | (2); (3) | [80] | 2019 | Central Spain | (2) |
[54] | 2015 | Ebro Basin (Spain) | (4) | [81] | 2013 | Hérault Basin (France) | (6) |
[56] | 2012 | Júcar Basin (Spain) | (3) | [82] | 2017 | Southern Italy | (7) |
[57] | 2018 | Tagus Basin (Spain) | (2); (3) | [83] | 2019 | Crete (Greece) | (7) |
[59] | 2022 | Almeria (Spain) | (2); (3) | [84] | 2023 | Spain, Tunisia, Lebanon | (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claro, A.M.; Fonseca, A.; Fraga, H.; Santos, J.A. Future Agricultural Water Availability in Mediterranean Countries under Climate Change: A Systematic Review. Water 2024, 16, 2484. https://doi.org/10.3390/w16172484
Claro AM, Fonseca A, Fraga H, Santos JA. Future Agricultural Water Availability in Mediterranean Countries under Climate Change: A Systematic Review. Water. 2024; 16(17):2484. https://doi.org/10.3390/w16172484
Chicago/Turabian StyleClaro, André M., André Fonseca, Helder Fraga, and João A. Santos. 2024. "Future Agricultural Water Availability in Mediterranean Countries under Climate Change: A Systematic Review" Water 16, no. 17: 2484. https://doi.org/10.3390/w16172484
APA StyleClaro, A. M., Fonseca, A., Fraga, H., & Santos, J. A. (2024). Future Agricultural Water Availability in Mediterranean Countries under Climate Change: A Systematic Review. Water, 16(17), 2484. https://doi.org/10.3390/w16172484