The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems
Abstract
:1. Introduction
2. Antibiotic Contamination in Freshwater
2.1. Sources and Pathways of Antibiotic Contaminants
2.2. Mechanisms of Antibiotic Contamination in Freshwater Systems
2.3. Impact of Antibiotics on Freshwater Ecosystems
3. Antibiotic Resistance Development and Dissemination
3.1. Mechanisms of Resistance in Microbial Populations
3.2. Horizontal Gene Transfer in Aquatic Environments
3.3. Role of Biofilms in Protecting Resistant Bacteria
3.4. Regional and Environmental Factors Influencing AMR Development
3.5. AMR and Its Detrimental Effects
4. Climate Change and Its Impact on Freshwater Ecosystems
4.1. Temperature Shifts and Water Chemistry and Flow
4.2. Impacts of Climate Change on Aquatic Life
5. Intersection of Antibiotic Contamination and Climate Change
5.1. Increased Temperatures and Their Effect on Antibiotic Activity
5.2. Changes in Precipitation Patterns and Runoff
5.3. Extreme Weather Events and Contamination Spikes
5.4. Impact on Water Quality and Ecosystem Health
6. Case Studies and Real-World Examples
6.1. Climate Change and AMR in Rivers
6.2. Lessons Learned from These Cases
7. Mitigation Strategies
8. Future Directions and Research Gaps
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nabout, J.C.; Machado, K.B.; David, A.C.M.; Mendonça, L.B.G.; da Silva, S.P.; Carvalho, P. Scientific Literature on Freshwater Ecosystem Services: Trends, Biases, and Future Directions. Hydrobiologia 2023, 850, 2485–2499. [Google Scholar] [CrossRef]
- Vári, Á.; Podschun, S.A.; Erős, T.; Hein, T.; Pataki, B.; Iojă, I.C.; Adamescu, C.M.; Gerhardt, A.; Gruber, T.; Dedić, A.; et al. Freshwater Systems and Ecosystem Services: Challenges and Chances for Cross-Fertilization of Disciplines. Ambio 2022, 51, 135–151. [Google Scholar] [CrossRef]
- Marques, R.Z.; da Silva Nogueira, K.; de Oliveira Tomaz, A.P.; Juneau, P.; Wang, S.; Gomes, M.P.; Marques, R.Z.; Nogueira, K.d.S.; Tomaz, A.P.d.O.; Juneau, P.; et al. Emerging Threat: Antimicrobial Resistance Proliferation during Epidemics—A Case Study of the SARS-CoV-2 Pandemic in South Brazil. J. Hazard. Mater. 2024, 470, 134202. [Google Scholar] [CrossRef]
- Marques, R.Z.; Oliveira, P.G.D.; Barbato, M.L.; Kitamura, R.S.A.; Maranho, L.T.; Brito, J.C.M.; Nogueira, K.d.S.; Juneau, P.; Gomes, M.P. Green Solutions for Antibiotic Pollution: Assessing the Phytoremediation Potential of Aquatic Macrophytes in Wastewater Treatment Plants. Environ. Pollut. 2024, 357, 124376. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef]
- Rocha, D.C.; Rocha, C.S.; Tavares, D.S.; Calado, S.L.M.; Gomes, M.P. Veterinary Antibiotics and Plant Physiology: An Overview. Sci. Total Environ. 2021, 767, 144902. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, A.; Gómez-Oliván, L.M.; Galar-Martínez, M.; Islas-Flores, H.; Dublán-García, O.; SanJuan-Reyes, N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. In Environmental Health Risk-Hazardous Factors to Living Species; InTech: London, UK, 2016. [Google Scholar]
- Marques, R.Z.; Kochi, L.Y.; Guzman-Tordecilla, M.; Malage, L.; Juneau, P.; Gomes, M.P. COVID-19 Pharmaceuticals in Aquatic Matrices: The Threatening Effects over Cyanobacteria and Microalgae. Sci. Total Environ. 2023, 892, 164309. [Google Scholar] [CrossRef]
- Tarazona, J.V.; Martínez, M.; Martínez, M.A.; Anadón, A. Environmental Impact Assessment of COVID-19 Therapeutic Solutions. A Prospective Analysis. Sci. Total Environ. 2021, 778, 146257. [Google Scholar] [CrossRef]
- WHO 2023. Antibiotic Resistance. Antimicrobial Resistance (who.int). Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 9 September 2024).
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial Resistance: Impacts, Challenges, and Future Prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Xi, C.; Zhang, Y.; Marrs, C.F.; Ye, W.; Simon, C.; Foxman, B.; Nriagu, J. Prevalence of Antibiotic Resistance in Drinking Water Treatment and Distribution Systems. Appl. Environ. Microbiol. 2009, 75, 5714–5718. [Google Scholar] [CrossRef]
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and Antibiotic Resistance in Water Environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Xu, W.; Pan, Z.; Wu, Y.; An, X.-L.; Wang, W.; Adamovich, B.; Zhu, Y.-G.; Su, J.-Q.; Huang, Q. A Database on the Abundance of Environmental Antibiotic Resistance Genes. Sci Data 2024, 11, 250. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; Sillanpää, M.; Feng, S.; Nhat, T.; Ramavandi, B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics 2022, 11, 1461. [Google Scholar] [CrossRef]
- Li, S.; Ondon, B.S.; Ho, S.-H.; Zhou, Q.; Li, F. Drinking Water Sources as Hotspots of Antibiotic-Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs): Occurrence, Spread, and Mitigation Strategies. J. Water Process Eng. 2023, 53, 103907. [Google Scholar] [CrossRef]
- Yan, F.; An, L.; Xu, X.; Du, W.; Dai, R. A Review of Antibiotics in Surface Water and Their Removal by Advanced Electrocoagulation Technologies. Sci. Total Environ. 2024, 906, 167737. [Google Scholar] [CrossRef]
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Barathe, P.; Kaur, K.; Reddy, S.; Shriram, V.; Kumar, V. Antibiotic Pollution and Associated Antimicrobial Resistance in the Environment. J. Hazard. Mater. Lett. 2024, 5, 100105. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and Veterinary Antibiotics during Composting of Sludge or Manure: Global Perspectives on Persistence, Degradation, and Resistance Genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Lu, C.; Liao, Q.; Gudda, F.O.; Ling, W. Antibiotics in Animal Manure and Manure-Based Fertilizers: Occurrence and Ecological Risk Assessment. Chemosphere 2020, 255, 127006. [Google Scholar] [CrossRef]
- Huygens, J.; Daeseleire, E.; Mahillon, J.; Van Elst, D.; Decrop, J.; Meirlaen, J.; Dewulf, J.; Heyndrickx, M.; Rasschaert, G. Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics 2021, 10, 410. [Google Scholar] [CrossRef]
- Rocha, C.S.; Kochi, L.Y.; Brito, J.C.M.; Maranho, L.T.; Carneiro, D.N.M.; Reis, M.V.; Gauthier, A.; Juneau, P.; Gomes, M.P. Calla Lily Production in Enrofloxacin-Contaminated Soil and Manure: An Attractive Alternative Coupling Income Generation with Antimicrobial Removal from the Environment. Front. Soil Sci. 2022, 2, 1060937. [Google Scholar] [CrossRef]
- Rasschaert, G.; Van Elst, D.; Colson, L.; Herman, L.; de Carvalho Ferreira, H.C.; Dewulf, J.; Decrop, J.; Meirlaen, J.; Heyndrickx, M.; Daeseleire, E. Antibiotic Residues and Antibiotic-Resistant Bacteria in Pig Slurry Used to Fertilize Agricultural Fields. Antibiotics 2020, 9, 34. [Google Scholar] [CrossRef]
- Christian, T.; Schneider, R.J.; Färber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E. Determination of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta Hydrochim. Hydrobiol. 2003, 31, 36–44. [Google Scholar] [CrossRef]
- Dolliver, H.; Gupta, S. Antibiotic Losses in Leaching and Surface Runoff from Manure-Amended Agricultural Land. J. Environ. Qual. 2008, 37, 1227–1237. [Google Scholar] [CrossRef]
- Marques, R.Z.; Rodrigues, L.P.; Kaschuk, G.; Moreira Brito, J.C.; Gomes, M.P. Protecting Soybean Yields from Enrofloxacin Toxicity: The Role of Bradyrhizobium Japonicum Inoculation. Rhizosphere 2023, 28, 100813. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.; Surachetpong, W.; Karunasagar, I.; et al. Review of Alternatives to Antibiotic Use in Aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Mog, M.; Ngasotter, S.; Tesia, S.; Waikhom, D.; Panda, S.; Sharma, S.; Varshney, S. Problems of Antibiotic Resistance Associated with Oxytetracycline Use in Aquaculture: A Review. J. Entomol. Zool. Stud. 2020, 8, 1075–1082. [Google Scholar]
- Choi, S.; Sim, W.; Jang, D.; Yoon, Y.; Ryu, J.; Oh, J.; Woo, J.-S.S.; Kim, Y.M.; Lee, Y. Antibiotics in Coastal Aquaculture Waters: Occurrence and Elimination Efficiency in Oxidative Water Treatment Processes. J. Hazard. Mater. 2020, 396, 122585. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.L.; Rodrigues, P.; Pereira, M.F.R.; Guimarães, L.; Almeida, C.M.R.; Silva, A.M.T. Antibiotics Removal from Aquaculture Effluents by Ozonation: Chemical and Toxicity Descriptors. Water Res. 2022, 218, 118497. [Google Scholar] [CrossRef]
- Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.J. Contamination of Surface, Ground, and Drinking Water from Pharmaceutical Production. Environ. Toxicol. Chem. 2009, 28, 2522–2527. [Google Scholar] [CrossRef]
- Thai, P.K.; Ky, L.X.; Binh, V.N.; Nhung, P.H.; Nhan, P.T.; Hieu, N.Q.; Dang, N.T.T.; Tam, N.K.B.; Anh, N.T.K. Occurrence of Antibiotic Residues and Antibiotic-Resistant Bacteria in Effluents of Pharmaceutical Manufacturers and Other Sources around Hanoi, Vietnam. Sci. Total Environ. 2018, 645, 393–400. [Google Scholar] [CrossRef]
- Wang, K.; Zhuang, T.; Su, Z.; Chi, M.; Wang, H. Antibiotic Residues in Wastewaters from Sewage Treatment Plants and Pharmaceutical Industries: Occurrence, Removal and Environmental Impacts. Sci. Total Environ. 2021, 788, 147811. [Google Scholar] [CrossRef]
- Birošová, L.; Mackuľak, T.; Bodík, I.; Ryba, J.; Škubák, J.; Grabic, R. Pilot Study of Seasonal Occurrence and Distribution of Antibiotics and Drug Resistant Bacteria in Wastewater Treatment Plants in Slovakia. Sci. Total Environ. 2014, 490, 440–444. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L.; Wojnárovits, L.; Takács, E. Occurrence and Fate of Antibiotics, Antibiotic Resistant Genes (ARGs) and Antibiotic Resistant Bacteria (ARB) in Municipal Wastewater Treatment Plant: An Overview. Sci. Total Environ. 2020, 744, 140997. [Google Scholar] [CrossRef]
- Harrower, J.; McNaughtan, M.; Hunter, C.; Hough, R.; Zhang, Z.; Helwig, K. Chemical Fate and Partitioning Behavior of Antibiotics in the Aquatic Environment—A Review. Environ. Toxicol. Chem. 2021, 40, 3275–3298. [Google Scholar] [CrossRef]
- Gangar, T.; Patra, S. Antibiotic Persistence and Its Impact on the Environment. 3 Biotech 2023, 13, 401. [Google Scholar] [CrossRef]
- Bombaywala, S.; Mandpe, A.; Paliya, S.; Kumar, S. Antibiotic Resistance in the Environment: A Critical Insight on Its Occurrence, Fate, and Eco-Toxicity. Environ. Sci. Pollut. Res. 2021, 28, 24889–24916. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Han, Q.; Wang, X.; Wang, S.; Yuan, X.; Zhang, B.; Zhao, S. Antibiotics in Mariculture Organisms of Different Growth Stages: Tissue-Specific Bioaccumulation and Influencing Factors. Environ. Pollut. 2021, 288, 117715. [Google Scholar] [CrossRef] [PubMed]
- Zenker, A.; Cicero, M.R.; Prestinaci, F.; Bottoni, P.; Carere, M. Bioaccumulation and Biomagnification Potential of Pharmaceuticals with a Focus to the Aquatic Environment. J. Environ. Manag. 2014, 133, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, R.S.A.; Fusaro, T.; Marques, R.Z.; Brito, J.C.M.; Juneau, P.; Gomes, M.P. The Use of Aquatic Macrophytes as a Nature-Based Solution to Prevent Ciprofloxacin Deleterious Effects on Microalgae. Water 2023, 15, 2143. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef]
- Denk-Lobnig, M.; Wood, K.B. Antibiotic Resistance in Bacterial Communities. Curr. Opin. Microbiol. 2023, 74, 102306. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Y.; Ren, Y.; Wang, J.; Chen, H. Effect of Antibiotic and/or Heavy Metal on Nitrogen Cycle of Sediment-Water Interface in Aquaculture System: Implications from Sea Cucumber Culture. Environ. Pollut. 2023, 325, 121453. [Google Scholar] [CrossRef]
- Gomes, M.P.; Brito, J.C.M.; Vieira, F.; Kitamura, R.; Juneau, P. Emerging Contaminants in Streams of Doce River Watershed, Minas Gerais, Brazil. Front. Environ. Sci. 2022, 9, 801599. [Google Scholar] [CrossRef]
- Zhou, J.; Yun, X.; Wang, J.; Li, Q.; Wang, Y. A Review on the Ecotoxicological Effect of Sulphonamides on Aquatic Organisms. Toxicol. Rep. 2022, 9, 534–540. [Google Scholar] [CrossRef]
- Kitamura, R.S.A.; Vicentini, M.; Perussolo, M.C.; Lirola, J.R.; Cirilo dos Santos, C.F.; Moreira Brito, J.C.; Cestari, M.M.; Prodocimo, M.M.; Gomes, M.P.; Silva de Assis, H.C. Sublethal Biochemical, Histopathological and Genotoxicological Effects of Short-Term Exposure to Ciprofloxacin in Catfish Rhamdia Quelen. Environ. Pollut. 2022, 300, 118935. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. A Review of the Toxicity in Fish Exposed to Antibiotics. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108840. [Google Scholar] [CrossRef] [PubMed]
- Gunathilaka, M.L.; Bao, S.; Liu, X.; Li, Y.; Pan, Y. Antibiotic Pollution of Planktonic Ecosystems: A Review Focused on Community Analysis and the Causal Chain Linking Individual- and Community-Level Responses. Environ. Sci. Technol. 2023, 57, 1199–1213. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; de Brito, J.C.M.; Bicalho, E.M.; Silva, J.G.; de Fátima Gomides, M.; Garcia, Q.S.; Figueredo, C.C.; Brito, J.C.M.; Bicalho, E.M.; Silva, J.G.; et al. Ciprofloxacin vs. Temperature: Antibiotic Toxicity in the Free-Floating Liverwort Ricciocarpus Natans from a Climate Change Perspective. Chemosphere 2018, 202, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Kochi, L.Y.; Kitamura, R.S.A.; Rocha, C.S.; Brito, J.C.M.; Juneau, P.; Gomes, M.P. Synergistic Removal of Ciprofloxacin and Sulfamethoxazole by Lemna Minor and Salvinia Molesta in Mixed Culture: Implications for Phytoremediation of Antibiotic-Contaminated Water. Water 2023, 15, 1899. [Google Scholar] [CrossRef]
- Gomes, M.P.; Brito, J.C.M.; Rocha, D.C.; Navarro-Silva, M.A.; Juneau, P. Individual and Combined Effects of Amoxicillin, Enrofloxacin, and Oxytetracycline on Lemna Minor Physiology. Ecotoxicol. Environ. Saf. 2020, 203, 111025. [Google Scholar] [CrossRef]
- Baquero, F.; Martinez, J.L.; Lanza, V.F.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 2021, 34, e00050-19. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- MacLean, R.C.; San Millan, A. The Evolution of Antibiotic Resistance. Science 2019, 365, 1082–1083. [Google Scholar] [CrossRef]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot Spots of Horizontal Gene Transfer (HGT) in Aquatic Environments, with a Focus on a New HGT Mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef]
- Schneider, C.L. Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. In Bacteriophages; Springer International Publishing: Cham, Switzerland, 2021; pp. 151–192. [Google Scholar]
- McGrath, C. Breaking Genetic Barriers: Understanding the Limits of Horizontal Gene Transfer. Genome Biol. Evol. 2023, 15, evad102. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Dincer, S.; Masume Uslu, F.; Delik, A. Antibiotic Resistance in Biofilm. In Bacterial Biofilms; IntechOpen: London, UK, 2020. [Google Scholar]
- Bello, O.O.; Martins, F.T.; Bello, T.K.; Anuoluwa, I.A.; Anyakudo, M.M.; Amolegbe, O.A.; Ilemobayo, A.M. Occurrence and Role of Bacterial Biofilms in Different Systems. Acta Microbiol. Bulg. 2023, 39, 239–248. [Google Scholar] [CrossRef]
- Singh, S.; Datta, S.; Narayanan, K.B.; Rajnish, K.N. Bacterial Exo-Polysaccharides in Biofilms: Role in Antimicrobial Resistance and Treatments. J. Genet. Eng. Biotechnol. 2021, 19, 140. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, B.D.; Costerton, J.W. Bacterial Resistance to Antibiotics: The Role of Biofilms. In Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des Recherches Pharmaceutiques; Birkhäuser Basel: Basel, Switzerland, 1991; pp. 91–105. [Google Scholar]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; Vapa Tankosić, J.; Ignjatijević, S.; Carić, M.; Prodanović, R. Antimicrobial Resistance in the Environment: Review of the Selected Resistance Drivers and Public Health Concerns. J. Agron. Technol. Eng. Manag. (JATEM) 2022, 5, 793–802. [Google Scholar] [CrossRef]
- Allel, K.; Labarca, J.; Carvajal, C.; Garcia, P.; Cifuentes, M.; Silva, F.; Munita, J.M.; Undurraga, E.A. Trends and Socioeconomic, Demographic, and Environmental Factors Associated with Antimicrobial Resistance: A Longitudinal Analysis in 39 Hospitals in Chile 2008–2017. Lancet Reg. Health-Am. 2023, 21, 100484. [Google Scholar] [CrossRef]
- Rad, A.K.; Astaykina, A.; Streletskii, R.; Afsharyzad, Y.; Etesami, H.; Zarei, M.; Balasundram, S.K. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. Int. J. Environ. Res. Public Health 2022, 19, 4666. [Google Scholar] [CrossRef]
- Huang, L.; Ahmed, S.; Gu, Y.; Huang, J.; An, B.; Wu, C.; Zhou, Y.; Cheng, G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021, 26, 4277. [Google Scholar] [CrossRef]
- Rocha, C.S.; Rocha, D.C.; Kochi, L.Y.; Carneiro, D.M.S.; Reis, M.V.; Gomes, M.P. Phytoremediation by Ornamental Plants: A Beautiful and Ecological Alternative. Environ. Sci. Pollut. Res. 2022, 29, 3336–3354. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.U. Global Economic Impact of Antibiotic Resistance: A Review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef]
- Li, Z.; Lu, T.; Li, M.; Mortimer, M.; Guo, L.-H. Direct and Gut Microbiota-Mediated Toxicities of Environmental Antibiotics to Fish and Aquatic Invertebrates. Chemosphere 2023, 329, 138692. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, R.S.A.; Vicentini, M.; Bitencourt, V.; Vicari, T.; Motta, W.; Brito, J.C.M.; Cestari, M.M.; Prodocimo, M.M.; de Assis, H.C.S.; Gomes, M.P. Salvinia Molesta Phytoremediation Capacity as a Nature-Based Solution to Prevent Harmful Effects and Accumulation of Ciprofloxacin in Neotropical Catfish. Environ. Sci. Pollut. Res. 2023, 30, 41848–41863. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Hyun, D.; Jezek, A.; Samore, M.H. Mortality, Length of Stay, and Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Elderly Hospitalized Patients in the United States. Clin. Infect. Dis. 2022, 74, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.Z.; Wistuba, N.; Brito, J.C.M.; Bernardoni, V.; Rocha, D.C.; Gomes, M.P. Crop Irrigation (Soybean, Bean, and Corn) with Enrofloxacin-Contaminated Water Leads to Yield Reductions and Antibiotic Accumulation. Ecotoxicol. Environ. Saf. 2021, 216, 112193. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, T.; Gao, D. Genetic and Epigenetic Regulation of Growth, Reproduction, Disease Resistance and Stress Responses in Aquaculture. Front. Genet. 2022, 13, 994471. [Google Scholar] [CrossRef]
- Grollier, T.; Feurtet-Mazel, A.; Boudou, A.; Ribeyre, F. Role of Temperature on Isoproturon Bioaccumulation and Effects on Two Freshwater Rooted Macrophytes:Elodea densaandLudwigia Natans. Ecotoxicol. Environ. Saf. 1997, 36, 205–212. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Abdalla, N.; Alshaal, T.; Elhenawy, A.S.; Shams, M.S.; Faizy, S.E.-D.A.; Belal, E.-S.B.; Shehata, S.A.; Ragab, M.I.; Amer, M.M.; et al. Giant Reed for Selenium Phytoremediation under Changing Climate. Environ. Chem. Lett. 2015, 13, 359–380. [Google Scholar] [CrossRef]
- Boyd, C.E. Dissolved Oxygen and Other Gases. In Water Quality; Springer International Publishing: Cham, Switzerland, 2020; pp. 135–162. [Google Scholar]
- Tavares, D.S.; Sant’Anna-Santos, B.F.; Gomes, M.P. Unleashing the Power of Fungi: Utilizing the Arbuscular Mycorrhizal Fungi Rhizophagus Clarus to Mitigate Salinity Stress and Boost Cowpea Bean Productivity for Food Security. Stresses 2024, 4, 393–410. [Google Scholar] [CrossRef]
- Anthony, K.R.N.; Kline, D.I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O. Ocean Acidification Causes Bleaching and Productivity Loss in Coral Reef Builders. Proc. Natl. Acad. Sci. USA 2008, 105, 17442–17446. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y. Impacts of Ocean Acidification on Physiology and Ecology of Marine Invertebrates: A Comprehensive Review. Aquat. Ecol. 2024, 58, 207–226. [Google Scholar] [CrossRef]
- O’Connor, D.; Zheng, X.; Hou, D.; Shen, Z.; Li, G.; Miao, G.; O’Connell, S.; Guo, M. Phytoremediation: Climate Change Resilience and Sustainability Assessment at a Coastal Brownfield Redevelopment. Environ. Int. 2019, 130, 104945. [Google Scholar] [CrossRef] [PubMed]
- Neidhardt, H.; Shao, W. Impact of Climate Change-Induced Warming on Groundwater Temperatures and Quality. Appl. Water Sci. 2023, 13, 235. [Google Scholar] [CrossRef]
- Young, M.K.; Isaak, D.J.; Spaulding, S.; Thomas, C.A.; Barndt, S.A.; Groce, M.C.; Horan, D.; Nagel, D.E. Effects of Climate Change on Cold-Water Fish in the Northern Rockies. In Climate Change and Rocky Mountain Ecosystems; Springer: Cham, Switzerland, 2018; pp. 37–58. [Google Scholar]
- Rai, P.K. Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Crit. Rev. Environ. Sci. Technol. 2009, 39, 697–753. [Google Scholar] [CrossRef]
- Howard, C.; Mason, T.H.E.; Baillie, S.R.; Border, J.; Hewson, C.M.; Houston, A.I.; Pearce-Higgins, J.W.; Bauer, S.; Willis, S.G.; Stephens, P.A. Explaining and Predicting Animal Migration under Global Change. Divers. Distrib. 2024, 30, e13797. [Google Scholar] [CrossRef]
- Nagelkerken, I.; Allan, B.J.M.; Booth, D.J.; Donelson, J.M.; Edgar, G.J.; Ravasi, T.; Rummer, J.L.; Vergés, A.; Mellin, C. The Effects of Climate Change on the Ecology of Fishes. PLoS Clim. 2023, 2, e0000258. [Google Scholar] [CrossRef]
- Khan, R.; Patel, V. The Influence of Global Climate Change on Freshwater Ecosystem. In Water Conservation in the Era of Global Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–366. [Google Scholar]
- Nickus, U.; Bishop, K.; Erlandsson, M.; Evans, C.D.; Forsius, M.; Laudon, H.; Livingstone, D.M.; Monteith, D.; Thies, H. Direct Impacts of Climate Change on Freshwater Ecosystems. In Climate Change Impacts on Freshwater Ecosystems; Wiley: Hoboken, NJ, USA, 2010; pp. 38–64. [Google Scholar]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate Change and Freshwater Ecosystems: Impacts across Multiple Levels of Organization. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of Climate Change on Freshwater Ecosystems: A Global-Scale Analysis of Ecologically Relevant River Flow Alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef]
- Dallas, H.F.; Rivers-Moore, N. Ecological Consequences of Global Climate Change for Freshwater Ecosystems in South Africa. S. Afr. J. Sci. 2014, 110, 11. [Google Scholar] [CrossRef]
- Meyer, J.L.; Sale, M.J.; Mulholland, P.J.; LeRoy Poff, N. Impacts of climate change on aquatic ecosystem functioning and health. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1373–1386. [Google Scholar] [CrossRef]
- Kernan, M.; Battarbee, R.; Moss, B. Climate Change Impacts on Freshwater Ecosystems. Choice Rev. Online 2011, 48, 48–6880. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Fang, Z.; Cravotto, G. Sonolytic Degradation Kinetics and Mechanisms of Antibiotics in Water and Cow Milk. Ultrason. Sonochem. 2023, 99, 106518. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Sun, Q.; Yang, Y.; Chen, S.; Long, Y.; Li, Y.; Ge, S.; Zheng, D. BiOCl-Based Composites for Photocatalytic Degradation of Antibiotics: A Review of Synthesis Method, Modification, Factors Affecting Photodegradation and Toxicity Assessment. J. Alloys Compd. 2024, 981, 173733. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. pH and Temperature Effects on the Hydrolysis of Three β-Lactam Antibiotics: Ampicillin, Cefalotin and Cefoxitin. Sci. Total Environ. 2014, 466–467, 547–555. [Google Scholar] [CrossRef]
- Danner, M.-C.; Azams, S.O.; Robertson, A.; Perkins, D.; Behrends, V.; Reiss, J. It More than Adds Up: Interaction of Antibiotic Mixing and Temperature. Life 2021, 11, 1435. [Google Scholar] [CrossRef]
- Li, W.; Liu, K.; Min, Z.; Li, J.; Zhang, M.; Korshin, G.V.; Han, J. Transformation of Macrolide Antibiotics during Chlorination Process: Kinetics, Degradation Products, and Comprehensive Toxicity Evaluation. Sci. Total Environ. 2023, 858, 159800. [Google Scholar] [CrossRef]
- Reisinger, E.; Wendelin, I.; Gasser, R.; Halwachs, G.; Wilders-Truschnig, M.; Krejs, G. Antibiotics and Increased Temperature against Borrelia Burgdorferi in Vitro. Scand. J. Infect. Dis. 1996, 28, 155–157. [Google Scholar] [CrossRef]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic Resistance Increases with Local Temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Ho, H.C.; Shi, L.; Zeng, Y.; Yang, X.; Huang, Q.; Pei, Y.; Huang, C.; Yang, L. Association between Antibiotic Resistance and Increasing Ambient Temperature in China: An Ecological Study with Nationwide Panel Data. Lancet Reg. Health-West. Pac. 2023, 30, 100628. [Google Scholar] [CrossRef] [PubMed]
- Blakely, G.W. Mechanisms of Horizontal Gene Transfer and DNA Recombination. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 309–324. [Google Scholar]
- Bagra, K.; Kneis, D.; Padfield, D.; Szekeres, E.; Teban-Man, A.; Coman, C.; Singh, G.; Berendonk, T.U.; Klümper, U. Contrary Effects of Increasing Temperatures on the Spread of Antimicrobial Resistance in River Biofilms. mSphere 2024, 9, e00573-23. [Google Scholar] [CrossRef]
- Ecke, A.; Westphalen, T.; Retzmann, A.; Schneider, R.J. Factors Affecting the Hydrolysis of the Antibiotic Amoxicillin in the Aquatic Environment. Chemosphere 2023, 311, 136921. [Google Scholar] [CrossRef]
- Liang, Y.; Ying, C.; Zhu, J.; Zhou, Q.; Sun, K.; Tian, Y.; Li, J. Effects of Salinity, pH, and Cu(II) on the Adsorption Behaviors of Tetracycline onto Polyvinyl Chloride Microplastics: A Site Energy Distribution Analysis. Water 2023, 15, 1925. [Google Scholar] [CrossRef]
- Rodríguez-Verdugo, A.; Lozano-Huntelman, N.; Cruz-Loya, M.; Savage, V.; Yeh, P. Compounding Effects of Climate Warming and Antibiotic Resistance. iScience 2020, 23, 101024. [Google Scholar] [CrossRef] [PubMed]
- Lupo, A.; Coyne, S.; Berendonk, T.U. Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies. Front. Microbiol. 2012, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Neher, T.P.; Ma, L.; Moorman, T.B.; Howe, A.; Soupir, M.L. Seasonal Variations in Export of Antibiotic Resistance Genes and Bacteria in Runoff from an Agricultural Watershed in Iowa. Sci. Total Environ. 2020, 738, 140224. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Thorslund, J.; Strokal, M.; Hofstra, N.; Flörke, M.; Ehalt Macedo, H.; Nkwasa, A.; Tang, T.; Kaushal, S.S.; Kumar, R.; et al. Global River Water Quality under Climate Change and Hydroclimatic Extremes. Nat. Rev. Earth Environ. 2023, 4, 687–702. [Google Scholar] [CrossRef]
- Gomes, M.P.; Juneau, P. Temperature and Light Modulation of Herbicide Toxicity on Algal and Cyanobacterial Physiology. Front. Environ. Sci. 2017, 5, 50. [Google Scholar] [CrossRef]
- Utzig, L.M.; Lima, R.M.; Gomes, M.F.; Ramsdorf, W.A.; Martins, L.R.R.; Liz, M.V.; Freitas, A.M. Ecotoxicity Response of Chlorpyrifos in Aedes Aegypti Larvae and Lactuca Sativa Seeds after UV/H2O2 and UVC Oxidation. Ecotoxicol. Environ. Saf. 2019, 169, 449–456. [Google Scholar] [CrossRef]
- Duffin, J.; Yager, E.M.; Buffington, J.M.; Benjankar, R.; Borden, C.; Tonina, D. Impact of Flow Regulation on Stream Morphology and Habitat Quality Distribution. Sci. Total Environ. 2023, 878, 163016. [Google Scholar] [CrossRef]
- Akhter, S.; Bhat, M.A.; Ahmed, S.; Siddiqi, W.A.; Ahmad, S.; Shrimal, H. Profiling of Antibiotic Residues in Surface Water of River Yamuna Stretch Passing through Delhi, India. Water 2023, 15, 527. [Google Scholar] [CrossRef]
- Singh, N.S.; Singhal, N.; Kumar, M.; Virdi, J.S. High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated from River Yamuna, India: A Serious Public Health Risk. Front. Microbiol. 2021, 12, 621564. [Google Scholar] [CrossRef] [PubMed]
- Das, B.K.; Behera, B.K.; Chakraborty, H.J.; Paria, P.; Gangopadhyay, A.; Rout, A.K.; Nayak, K.K.; Parida, P.K.; Rai, A. Metagenomic Study Focusing on Antibiotic Resistance Genes from the Sediments of River Yamuna. Gene 2020, 758, 144951. [Google Scholar] [CrossRef] [PubMed]
- Kristiansson, E.; Fick, J.; Janzon, A.; Grabic, R.; Rutgersson, C.; Weijdegård, B.; Söderström, H.; Larsson, D.G.J. Pyrosequencing of Antibiotic-Contaminated River Sediments Reveals High Levels of Resistance and Gene Transfer Elements. PLoS ONE 2011, 6, e17038. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Wu, W.; Saillant, E.; Grimes, D.J. Antibiotic Resistance in a Coastal River in Mississippi, USA–Potential Drivers. Gulf Caribb. Res. 2024, 35, 23–34. [Google Scholar] [CrossRef]
- Staley, C.; Gould, T.J.; Wang, P.; Phillips, J.; Cotner, J.B.; Sadowsky, M.J. High-Throughput Functional Screening Reveals Low Frequency of Antibiotic Resistance Genes in DNA Recovered from the Upper Mississippi River. J. Water Health 2015, 13, 693–703. [Google Scholar] [CrossRef]
- Yu, Q.; Han, Q.; Shi, S.; Sun, X.; Wang, X.; Wang, S.; Yang, J.; Su, W.; Nan, Z.; Li, H. Metagenomics Reveals the Response of Antibiotic Resistance Genes to Elevated Temperature in the Yellow River. Sci. Total Environ. 2023, 859, 160324. [Google Scholar] [CrossRef]
- Braga, K.; Kneis, D.; Padfield, D.; Szekeres, E.; Teban-Man, A.; Coman, C.; Singh, G.; Berendonk, T.U.; Klumper, U. Tradeoffs of Increasing Temperatures for the Spread of Antimicrobial Resistance in River Biofilms. arXiv 2023. [Google Scholar] [CrossRef]
- Vazquez, L.; Gomes, L.M.; Presumido, P.H.; Rocca, D.G.; Moreira, R.F.; Dagnac, T.; Llompart, M.; Gomes, A.I.; Vilar, V.J. Tubular Membrane Photoreactor for the Tertiary Treatment of Urban Wastewater towards Antibiotics Removal: Application of Different Photocatalyst/Oxidant Combinations and Ozonation. J. Environ. Chem. Eng. 2023, 11, 109766. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Cuesta, S.; Pérez, J.; Rodríguez, E.; Rodríguez-Chueca, J. Life Cycle Assessment of Sulfate Radical Based-AOPs for Wastewater Disinfection. Chem. Eng. J. 2023, 474, 145427. [Google Scholar] [CrossRef]
- Kochi, L.Y.; Freitas, P.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution. Sustainability 2020, 12, 9202. [Google Scholar] [CrossRef]
- Saeed, M.U.; Hussain, N.; Javaid, M.; Zaman, H. Microbial Remediation for Environmental Cleanup. In Advanced Microbial Technology for Sustainable Agriculture and Environment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 247–274. [Google Scholar]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J.; Islam, S. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Adv. Agric. 2023, 2023, 5546373. [Google Scholar] [CrossRef]
- Alfirević, N.; Arslanagić-Kalajdžić, M.; Lep, Ž. The Role of Higher Education and Civic Involvement in Converting Young Adults’ Social Responsibility to Prosocial Behavior. Sci. Rep. 2023, 13, 2559. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.P. The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems. Water 2024, 16, 2606. https://doi.org/10.3390/w16182606
Gomes MP. The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems. Water. 2024; 16(18):2606. https://doi.org/10.3390/w16182606
Chicago/Turabian StyleGomes, Marcelo Pedrosa. 2024. "The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems" Water 16, no. 18: 2606. https://doi.org/10.3390/w16182606
APA StyleGomes, M. P. (2024). The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems. Water, 16(18), 2606. https://doi.org/10.3390/w16182606