State-of-the-Art Techniques for Real-Time Monitoring of Urban Flooding: A Review
Abstract
:1. Introduction
2. Bibliometric Review
2.1. Methods
2.2. Descriptive Analysis
2.3. Co-Citation Analysis
2.4. Country Analysis
3. Systematic Review
3.1. Sensor-Based Flood Stage Monitoring
3.1.1. Contact Sensors
Name | Operating Principle | Advantages | Disadvantages | References |
---|---|---|---|---|
Pressure sensor | Stevin’s law for hydrostatics pressure | Simple structure and low manufacturing costs | Susceptible to the conditions of installation and prone to damage | [36,37,38] |
Electronic water gauge | Based on the Micro-conductivity of water | Equipped with a special material shell to effectively cope with special conditions such as freezing, rot, and heat | Easily damaged by external human intervention | [33,39,40] |
3.1.2. Non-Contact Sensors
- (1)
- Ultrasonic sensors
- (2)
- Radar sensors
- (3)
- Unconventional sensors—mobile sensing
Name | Operating Principle | Advantages | Disadvantages | References |
---|---|---|---|---|
Ultrasonic sensor | Calculated from the time between ultrasonic wave transmission and reception | No need to be submerged in water, thus causing fewer maintenance issues | Impacted by rain, snow, fog, dust, temperature, and humidity | [53,54] |
Radar sensor | Similar to ultrasonic sensor, based on the principle of time travel | Large range, high precision, easy installation, almost not subject to external temperature, humidity, and other environmental conditions | Impacted by the media pressure, density, temperature, and other factors | [51] |
Mobile sensing | Based on gait characteristics of pedestrians at different flood depths | No need to install or maintain additional equipment | Impacted by the surrounding environment and privacy concerns | [52] |
3.2. Big Data-Based Flood Stage Monitoring
3.2.1. Surveillance Camera Data Based
- (1)
- Computer vision methods for surveillance image analysis
- (2)
- Limitations
Application Area | Algorithm | Application Effectiveness | References | |
---|---|---|---|---|
Advantages | Disadvantages | |||
A city in Hebei Province, China | CNN | Low economic cost, acceptable accuracy, high spatiotemporal resolution, and wide coverage | Large relative error for shallow waterlogging | [65] |
A city in Guizhou Province, China | Transfer learning | low economic cost, good real-time performance, and satisfactory accuracy | Accuracy affected by camera lens distortions, resolution, and field of view extent | [57] |
2 rivers in São Paulo, Brazil | DeepLabv3 (A deep learning model based on CNN) | Robust to changes in camera viewpoints and illumination, and easy to deploy in many urban rivers | Accuracy affected by strong wind | [68] |
Dongying City, Shandong Province, China | R-CNN and OpenCV | Low economic cost, high temporal and spatial resolution | Accuracy affected by the quality of the video image | [69] |
3.2.2. Social Media Data Based
- (1)
- Information retrieval
- (2)
- Image recognition
- (3)
- Text processing
- (4)
- Integration of image and text information
- (5)
- Limitations
3.3. Multi-Source Integration for Flood Stage Monitoring
- (1)
- Social media and remote sensing
- (2)
- Social media and hydrological modeling
4. Future Perspectives and Recommendations
5. Conclusions
- Sensor measurement has long been a primary method for flood monitoring, providing real-time, high-precision water level data. Sensors can be broadly categorized into contact and non-contact types. Contact sensors provide accurate and intuitive monitoring but require frequent maintenance, while non-contact sensors are more durable but their accuracy can be affected by environmental factors. To mitigate these limitations, a combination of different sensor types, often integrated with IoT technologies, is commonly used. However, the challenges of high costs and maintenance difficulties remain significant.
- With the advent of the big data era, the application of social media data, surveillance camera data, and various integrated data sources in flood monitoring has gradually attracted the attention of researchers. The analysis of these data typically involves artificial intelligence methods, such as computer vision and text analysis, which have demonstrated significant potential in both research and practical applications. Although substantial progress has been made in optimizing algorithms, challenges persist in areas such as data acquisition, information filtering, data analysis, and ensuring data reliability. Future research should focus on addressing these challenges to achieve more accurate and efficient urban flood monitoring.
- As the diversity of data sources for flood monitoring increases, the limitations of using a single data source to collect flood information are becoming more apparent. Researchers are beginning to explore integrating multiple data sources, particularly in major disaster situations, to enhance the timeliness and accuracy of emergency management. Current studies primarily focus on the integration of social media data with remote sensing and hydrological data. Moving forward, it is crucial to fully leverage the rich, complementary, and comprehensive information provided by various data sources while addressing challenges related to data interpretation and the incompatibility of data sources.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in Flood Losses in Europe over the Past 150 Years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Kotz, M.; Levermann, A.; Wenz, L. The Effect of Rainfall Changes on Economic Production. Nature 2022, 601, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite Imaging Reveals Increased Proportion of Population Exposed to Floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Zhang, C.; Hall, J.W.; Butler, D. Are sponge cities the solution to China’s growing urban flooding problems? WIREs Water 2023, 10, e1613. [Google Scholar] [CrossRef]
- Nanditha, J.S.; Kushwaha, A.P.; Singh, R.; Malik, I.; Solanki, H.; Chuphal, D.S.; Dangar, S.; Mahto, S.S.; Vegad, U.; Mishra, V. The Pakistan Flood of August 2022: Causes and Implications. Earths Future 2023, 11, e2022EF003230. [Google Scholar] [CrossRef]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Lai, C. Simulation Performance Evaluation and Uncertainty Analysis on a Coupled Inundation Model Combining SWMM and WCA2D. Int. J. Disaster Risk Sci. 2022, 13, 448–464. [Google Scholar] [CrossRef]
- Yin, D.; Evans, B.; Wang, Q.; Chen, Z.; Jia, H.; Chen, A.S.; Fu, G.; Ahmad, S.; Leng, L. Integrated 1D and 2D model for better assessing runoff quantity control of low impact development facilities on community scale. Sci. Total Environ. 2020, 720, 137630. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Chen, M.; Shen, D.; Niu, Y. Data-driven surrogate modeling: Introducing spatial lag to consider spatial autocorrelation of flooding within urban drainage systems. Environ. Model. Softw. 2023, 161, 105623. [Google Scholar] [CrossRef]
- Antwi-Agyakwa, K.T.; Afenyo, M.K.; Angnuureng, D.B. Know to Predict, Forecast to Warn: A Review of Flood Risk Prediction Tools. Water 2023, 15, 427. [Google Scholar] [CrossRef]
- Liang, J.Y.; Hu, Z.C.; Liu, S.G.; Zhong, G.H.; Zhen, Y.W.; Makhinov, A.N.; Araruna, J.T. Residual-Oriented Optimization of Antecedent Precipitation Index and Its Impact on Flood Prediction Uncertainty. Water 2022, 14, 3222. [Google Scholar] [CrossRef]
- Disse, M.; Rao, S.N.; Leandro, J.; Nair, B.B.; Bhola, P.K. Flood inundation forecasts using validation data generated with the assistance of computer vision. J. Hydroinform. 2019, 21, 240–256. [Google Scholar] [CrossRef]
- Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.Y.; Spuhler, D.; Moy de Vitry, M.; Beutler, P.; Maurer, M. The Potential of Knowing More: A Review of Data-Driven Urban Water Management. Environ. Sci. Technol. 2017, 51, 2538–2553. [Google Scholar] [CrossRef]
- Kerkez, B.; Gruden, C.; Lewis, M.; Montestruque, L.; Quigley, M.; Wong, B.; Bedig, A.; Kertesz, R.; Braun, T.; Cadwalader, O.; et al. Smarter Stormwater Systems. Environ. Sci. Technol. 2016, 50, 7267–7273. [Google Scholar] [CrossRef] [PubMed]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef]
- Lim, C.; Kim, K.-J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Moy de Vitry, M.; Leitao, J.P. The potential of proxy water level measurements for calibrating urban pluvial flood models. Water Res. 2020, 175, 115669. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.-W.; Wu, J.-H.; Lin, F.-P.; Hsu, C.-H. Visual Sensing for Urban Flood Monitoring. Sensors 2015, 15, 20006–20029. [Google Scholar] [CrossRef]
- Park, S.; Baek, F.; Sohn, J.; Kim, H. Computer Vision–Based Estimation of Flood Depth in Flooded-Vehicle Images. J. Comput. Civ. Eng. 2021, 35, 04020072. [Google Scholar] [CrossRef]
- Arshad, B.; Ogie, R.; Barthelemy, J.; Pradhan, B.; Verstaevel, N.; Perez, P. Computer Vision and IoT-Based Sensors in Flood Monitoring and Mapping: A Systematic Review. Sensors 2019, 19, 5012. [Google Scholar] [CrossRef]
- Van Ackere, S.; Verbeurgt, J.; De Sloover, L.; Gautama, S.; De Wulf, A.; De Maeyer, P. A Review of the Internet of Floods: Near Real-Time Detection of a Flood Event and Its Impact. Water 2019, 11, 2275. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Huang, K.; Yan, K.; Chen, H. A Review of Non-Contact Water Level Measurement Based on Computer Vision and Radar Technology. Water 2023, 15, 3233. [Google Scholar] [CrossRef]
- Lu, S.; Huang, J.; Wu, J. Knowledge Domain and Development Trend of Urban Flood Vulnerability Research: A Bibliometric Analysis. Water 2023, 15, 1865. [Google Scholar] [CrossRef]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Avand, M.; Kuriqi, A.; Khazaei, M.; Ghorbanzadeh, O. DEM resolution effects on machine learning performance for flood probability mapping. J. Hydro-Environ. Res. 2022, 40, 1–16. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, W.; Wang, X.; Xiong, H.; Cheng, J.; Yong, C.; Zhang, W.; Zou, X. A novel depth measurement method for urban flooding based on surveillance video images and a floating ruler. Nat. Hazards 2023, 119, 1967–1989. [Google Scholar] [CrossRef]
- Garcia, F.C.C.; Retamar, A.E.; Javier, J.C. A real time urban flood monitoring system for metro Manila. In Proceedings of the TENCON 2015—2015 IEEE Region 10 Conference, Macao, China, 1–4 November 2015; pp. 1–5. [Google Scholar]
- Shi, B.; Catsamas, S.; Kolotelo, P.; Wang, M.; Lintern, A.; Jovanovic, D.; Bach, P.M.; Deletic, A.; McCarthy, D.T. A Low-Cost Water Depth and Electrical Conductivity Sensor for Detecting Inputs into Urban Stormwater Networks. Sensors 2021, 21, 3056. [Google Scholar] [CrossRef]
- Crabit, A.; Colin, F.; Bailly, J.S.; Ayroles, H.; Garnier, F. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments. Sensors 2011, 11, 4656–4673. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z. Application of automatic water gauge in hydrological station. Meteorol. Hydrol. Mar. Instrum. 2011, 28, 54–57+61. [Google Scholar] [CrossRef]
- Ranieri, C.M.; Foletto, A.V.K.; Garcia, R.D.; Matos, S.N.; Medina, M.M.G.; Marcolino, L.S.; Ueyama, J. Water level identification with laser sensors, inertial units, and machine learning. Eng. Appl. Artif. Intell. 2024, 127, 107235. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Papadopoulos, A.; Poulis, G.; Nikiforakis, E.; Dimitriou, E. Assessment of an Ultrasonic Water Stage Monitoring Sensor Operating in an Urban Stream. Sensors 2021, 21, 4689. [Google Scholar] [CrossRef] [PubMed]
- Yuliza, E.; Salam, R.A.; Amri, I.; Atmajati, E.D.; Hapidin, D.A.; Meilano, I.; Munir, M.M.; Abdullah, M.; Khairurrijal. Characterization of a water level measurement system developed using a commercial submersible pressure transducer. In Proceedings of the 2016 International Conference on Instrumentation, Control and Automation (ICA), Bandung, Indonesia, 29–31 August 2016; pp. 99–102. [Google Scholar]
- Schenato, L.; Aguilar-López, J.P.; Galtarossa, A.; Pasuto, A.; Bogaard, T.; Palmieri, L. A Rugged FBG-Based Pressure Sensor for Water Level Monitoring in Dikes. IEEE Sens. J. 2021, 21, 13263–13271. [Google Scholar] [CrossRef]
- Furquim, G.; Pessin, G.; Faiçal, B.S.; Mendiondo, E.M.; Ueyama, J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory. Neural Comput. Appl. 2016, 27, 1129–1141. [Google Scholar] [CrossRef]
- Loizou, K.; Koutroulis, E. Water level sensing: State of the art review and performance evaluation of a low-cost measurement system. Measurement 2016, 89, 204–214. [Google Scholar] [CrossRef]
- Bento, R.T.; Silva, R.W.O.; Dias, L.A.; Ferrus Filho, A.; Pitta, A.J.C. Design, development and application of a real-time capacitive sensor for automatically measuring liquid level. SN Appl. Sci. 2019, 1, 734. [Google Scholar] [CrossRef]
- Mousa, M.; Zhang, X.; Claudel, C. Flash Flood Detection in Urban Cities Using Ultrasonic and Infrared Sensors. IEEE Sens. J. 2016, 16, 7204–7216. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Udgata, S.K. A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 3359–3369. [Google Scholar] [CrossRef]
- Sasikala, G.; Srinivasan, S.; Navarajan, J.; Theresa, M.M. IoT based Water Level Monitoring and Management in Reservoir. In Proceedings of the 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 17–19 August 2022; pp. 1763–1767. [Google Scholar]
- Prafanto, A.; Budiman, E. A Water Level Detection: IoT Platform Based on Wireless Sensor Network. In Proceedings of the 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT), Makassar, Indonesia, 6–7 November 2018; pp. 46–49. [Google Scholar]
- Silverman, A.I.; Brain, T.; Branco, B.; Challagonda, P.S.V.; Choi, P.; Fischman, R.; Graziano, K.; Henaff, E.; Mydlarz, C.; Rothman, P.; et al. Making waves: Uses of real-time, hyperlocal flood sensor data for emergency management, resiliency planning, and flood impact mitigation. Water Res. 2022, 220, 118648. [Google Scholar] [CrossRef] [PubMed]
- Chang, N.B.; Guo, D.H. Urban Flash Flood Monitoring, Mapping and Forecasting via a Tailored Sensor Network System. In Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, ICNSC ’06, Ft. Lauderdale, FL, USA, 23–25 April 2006. [Google Scholar]
- Martín Míguez, B.; Le Roy, R.; Wöppelmann, G. The Use of Radar Tide Gauges to Measure Variations in Sea Level along the French Coast. J. Coast. Res. 2008, 24, 61–68. [Google Scholar] [CrossRef]
- Kim, B.; Kim, S.; Lee, J. A Novel DFT-Based DOA Estimation by a Virtual Array Extension Using Simple Multiplications for FMCW Radar. Sensors 2018, 18, 1560. [Google Scholar] [CrossRef]
- Park, K.-E.; Lee, J.-P.; Kim, Y. Deep Learning-Based Indoor Distance Estimation Scheme Using FMCW Radar. Information 2021, 12, 80. [Google Scholar] [CrossRef]
- Baek, S.; Jung, Y.; Lee, S. Signal Expansion Method in Indoor FMCW Radar Systems for Improving Range Resolution. Sensors 2021, 21, 4226. [Google Scholar] [CrossRef] [PubMed]
- Shui, H.; Geng, H.; Li, Q.; Du, L.; Du, Y. A Low-Power High-Accuracy Urban Waterlogging Depth Sensor Based on Millimeter-Wave FMCW Radar. Sensors 2022, 22, 1236. [Google Scholar] [CrossRef] [PubMed]
- Panchal, U.K.; Ajmani, H.; Sait, S.Y. Flooding Level Classification by Gait Analysis of Smartphone Sensor Data. IEEE Access 2019, 7, 181678–181687. [Google Scholar] [CrossRef]
- Yunita, A.M.; Wardah, N.N.; Sugiarto, A.; Susanti, E.; Sujai, L.; Rizky, R. Water level measurements at the cikupa pandeglang bantendam using fuzzy sugenowith microcontroler-based ultrasonik sensor. J. Phys. Conf. Ser. 2020, 1477, 052048. [Google Scholar] [CrossRef]
- Rocchi, A.; Santecchia, E.; Ciciulla, F.; Mengucci, P.; Barucca, G. Characterization and Optimization of Level Measurement by an Ultrasonic Sensor System. IEEE Sens. J. 2019, 19, 3077–3084. [Google Scholar] [CrossRef]
- Barz, B.; Schröter, K.; Münch, M.; Yang, B.; Unger, A.; Dransch, D.; Denzler, J. Enhancing Flood Impact Analysis using Interactive Retrieval of Social Media Images. arXiv 2019, arXiv:1908.03361. [Google Scholar]
- Royem, A.A.; Mui, C.K.; Fuka, D.R.; Walter, M.T. Technical Note: Proposing a Low-Tech, Affordable, Accurate Stream Stage Monitoring System. Trans. ASABE 2012, 55, 2237–2242. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, J.; Qin, C.-Z.; Wang, D. Extraction of Urban Waterlogging Depth from Video Images Using Transfer Learning. Water 2018, 10, 1485. [Google Scholar] [CrossRef]
- Iqbal, U.; Riaz, M.Z.B.; Barthelemy, J.; Perez, P.; Idrees, M.B. The last two decades of computer vision technologies in water resource management: A bibliometric analysis. Water Environ. J. 2023, 37, 373–389. [Google Scholar] [CrossRef]
- Li, T.; Jiang, C.; Bian, Z.; Wang, M.; Niu, X. Semantic Segmentation of Urban Street Scene Based on Convolutional Neural Network. J. Phys. Conf. Ser. 2020, 1682, 012077. [Google Scholar] [CrossRef]
- Hao, X.; Lyu, H.; Wang, Z.; Fu, S.; Zhang, C. Estimating the spatial-temporal distribution of urban street ponding levels from surveillance videos based on computer vision. Water Resour. Manag. 2022, 36, 1799–1812. [Google Scholar] [CrossRef]
- Yu, J.; Hahn, H. Remote Detection and Monitoring of a Water Level Using Narrow Band Channel. J. Inf. Sci. Eng. 2010, 26, 71–82. [Google Scholar]
- Sakaino, H. Camera-Vision-Based Water Level Estimation. IEEE Sens. J. 2016, 16, 7564–7565. [Google Scholar] [CrossRef]
- Vanden Boomen, R.L.; Yu, Z.; Liao, Q. Application of Deep Learning for Imaging-Based Stream Gaging. Water Resour. Res. 2021, 57, e2021WR029980. [Google Scholar] [CrossRef]
- Zhong, P.; Liu, Y.; Zheng, H.; Zhao, J. Detection of Urban Flood Inundation from Traffic Images Using Deep Learning Methods. Water Resour. Manag. 2023, 38, 287–301. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, J.; Cheng, C.; Huang, J.; Xue, A. Automatic Estimation of Urban Waterlogging Depths from Video Images Based on Ubiquitous Reference Objects. Remote Sens. 2019, 11, 587. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Dhaya, R.; Kanthavel, R. Video Surveillance-Based Urban Flood Monitoring System Using a Convolutional Neural Network. Intell. Autom. Soft Comput. 2022, 32, 183–192. [Google Scholar] [CrossRef]
- Fernandes, F.E.; Nonato, L.G.; Ueyama, J. A river flooding detection system based on deep learning and computer vision. Multimed. Tools Appl. 2022, 81, 40231–40251. [Google Scholar] [CrossRef]
- Gao, K.; Yang, Z.; Gao, X.; Shao, W.; Wei, H.; Xu, T. Measuring urban waterlogging depths from video images based on reference objects. J. Flood Risk Manag. 2024, 17, e12948. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, X.; Zhao, Z.; Tang, L. Achieving fine-grained urban flood perception and spatio-temporal evolution analysis based on social media. Sustain. Cities Soc. 2024, 101, 105077. [Google Scholar] [CrossRef]
- Neubaum, G.; Rösner, L.; Rosenthal-von der Pütten, A.M.; Krämer, N.C. Psychosocial functions of social media usage in a disaster situation: A multi-methodological approach. Comput. Hum. Behav. 2014, 34, 28–38. [Google Scholar] [CrossRef]
- Rajput, A.A.; Li, Q.; Zhang, C.; Mostafavi, A. Temporal network analysis of inter-organizational communications on social media during disasters: A study of Hurricane Harvey in Houston. Int. J. Disaster Risk Reduct. 2020, 46, 101622. [Google Scholar] [CrossRef]
- Shrivastava, G.K.; Pateriya, R.K.; Kaushik, P. An efficient focused crawler using LSTM-CNN based deep learning. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 391–407. [Google Scholar] [CrossRef]
- de Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef]
- Witherow, M.A.; Elbakary, M.I.; Iftekharuddin, K.M.; Cetin, M. Analysis of Crowdsourced Images for Flooding Detection. In Proceedings of the VipIMAGE 2017, Porto, Portugal, 18–20 October 2017; Springer International Publishing: Cham, Switzerland, 2018; pp. 140–149. [Google Scholar]
- Witherow, M.A.; Sazara, C.; Winter-Arboleda, I.M.; Elbakary, M.I.; Cetin, M.; Iftekharuddin, K.M. Floodwater detection on roadways from crowdsourced images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2019, 7, 529–540. [Google Scholar] [CrossRef]
- Pereira, J.; Monteiro, J.; Estima, J.; Martins, B. Assessing flood severity from georeferenced photos. In Proceedings of the 13th Workshop on Geographic Information Retrieval, Lyon, France, 28–29 November 2019. Article 5. [Google Scholar]
- Li, J.; Cai, R.; Tan, Y.; Zhou, H.; Sadick, A.-M.; Shou, W.; Wang, X. Automatic detection of actual water depth of urban floods from social media images. Measurement 2023, 216, 112891. [Google Scholar] [CrossRef]
- Ragini, J.R.; Anand, P.M.R.; Bhaskar, V. Big data analytics for disaster response and recovery through sentiment analysis. Int. J. Inf. Manag. 2018, 42, 13–24. [Google Scholar] [CrossRef]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Determining disaster severity through social media analysis: Testing the methodology with South East Queensland Flood tweets. Int. J. Disaster Risk Reduct. 2020, 42, 101360. [Google Scholar] [CrossRef]
- Bai, X.; Liu, X.; Lu, S.; Zhang, X.; Su, W.; Su, X.; Li, L. SEPM: Rapid seism emergency information processing based on social media. Nat. Hazards 2020, 104, 659–679. [Google Scholar] [CrossRef]
- de Bruijn, J.A.; de Moel, H.; Jongman, B.; de Ruiter, M.C.; Wagemaker, J.; Aerts, J.C.J.H. A global database of historic and real-time flood events based on social media. Sci. Data 2019, 6, 311. [Google Scholar] [CrossRef]
- Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J.F. Deep Learning-based Text Classification: A Comprehensive Review. ACM Comput. Surv. 2022, 54, 62. [Google Scholar] [CrossRef]
- Liu, X.; Guo, H.; Lin, Y.-r.; Li, Y.; Hou, J. Analyzing Spatial-Temporal Distribution of Natural Hazards in China by Mining News Sources. Nat. Hazards Rev. 2018, 19, 04018006. [Google Scholar] [CrossRef]
- Mondal, T.; Pramanik, P.; Bhattacharya, I.; Boral, N.; Ghosh, S. Analysis and Early Detection of Rumors in a Post Disaster Scenario. Inf. Syst. Front. 2018, 20, 961–979. [Google Scholar] [CrossRef]
- Chen, Y.Z.Y. Review and application of flood risk information extraction based on social media data. China Flood Drought Manag. 2024, 34, 41–49. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Li, Z.; Ning, H. A visual–textual fused approach to automated tagging of flood-related tweets during a flood event. Int. J. Digit. Earth 2019, 12, 1248–1264. [Google Scholar]
- Wang, R.-Q.; Hu, Y.; Zhou, Z.; Yang, K. Tracking flooding phase transitions and establishing a passive hotline with AI-enabled social media data. IEEE Access 2020, 8, 103395–103404. [Google Scholar] [CrossRef]
- Fan, C.; Jiang, Y.; Mostafavi, A. Social Sensing in Disaster City Digital Twin: Integrated Textual–Visual–Geo Framework for Situational Awareness during Built Environment Disruptions. J. Manag. Eng. 2020, 36, 04020002. [Google Scholar] [CrossRef]
- Schnebele, E.; Cervone, G.; Kumar, S.; Waters, N. Real Time Estimation of the Calgary Floods Using Limited Remote Sensing Data. Water 2014, 6, 381–398. [Google Scholar] [CrossRef]
- Zheng, X.; Duan, C.; Chen, Y.; Li, R.; Wu, Z. Disaster loss calculation method of urban flood bimodal data fusion based on remote sensing and text. J. Hydrol. Reg. Stud. 2023, 47, 101410. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami, S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [Google Scholar] [CrossRef]
- Yang, T.; Xie, J.; Li, G.; Zhang, L.; Mou, N.; Wang, H.; Zhang, X.; Wang, X. Extracting Disaster-Related Location Information through Social Media to Assist Remote Sensing for Disaster Analysis: The Case of the Flood Disaster in the Yangtze River Basin in China in 2020. Remote Sens. 2022, 14, 1199. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Huang, X. Geospatial Assessment of Wetness Dynamics in the October 2015 SC Flood with Remote Sensing and Social Media. Southeast. Geogr. 2018, 58, 164–180. [Google Scholar] [CrossRef]
- Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K. Social media as an information source for rapid flood inundation mapping. Nat. Hazards Earth Syst. Sci. 2015, 15, 2725–2738. [Google Scholar] [CrossRef]
- Jongman, B.; Wagemaker, J.; Romero, B.R.; De Perez, E.C. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals. ISPRS Int. J. Geo-Inf. 2015, 4, 2246–2266. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Li, Z. Reconstructing Flood Inundation Probability by Enhancing Near Real-Time Imagery With Real-Time Gauges and Tweets. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4691–4701. [Google Scholar] [CrossRef]
- Rosser, J.F.; Leibovici, D.G.; Jackson, M.J. Rapid flood inundation mapping using social media, remote sensing and topographic data. Nat. Hazards 2017, 87, 103–120. [Google Scholar] [CrossRef]
- Duan, C.; Zheng, X.; Li, R.; Wu, Z. Urban flood vulnerability Knowledge-Graph based on remote sensing and textual bimodal data fusion. J. Hydrol. 2024, 633, 131010. [Google Scholar] [CrossRef]
- Restrepo-Estrada, C.; de Andrade, S.C.; Abe, N.; Fava, M.C.; Mendiondo, E.M.; de Albuquerque, J.P. Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring. Comput. Geosci. 2018, 111, 148–158. [Google Scholar] [CrossRef]
- Chen, C.C.; Wang, H.-C. Using community information for natural disaster alerts. J. Inf. Sci. 2022, 48, 718–732. [Google Scholar] [CrossRef]
- Shoyama, K.; Cui, Q.; Hanashima, M.; Sano, H.; Usuda, Y. Emergency flood detection using multiple information sources: Integrated analysis of natural hazard monitoring and social media data. Sci. Total Environ. 2021, 767, 144371. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Hussein, H.; Campbell, Z.; Leather, J.; Ryce, P. Putting diplomacy at the forefront of Water Diplomacy. PLoS Water 2023, 2, e0000173. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Shao, Z.; Zhan, Z.; Chen, L. State-of-the-Art Techniques for Real-Time Monitoring of Urban Flooding: A Review. Water 2024, 16, 2476. https://doi.org/10.3390/w16172476
Song J, Shao Z, Zhan Z, Chen L. State-of-the-Art Techniques for Real-Time Monitoring of Urban Flooding: A Review. Water. 2024; 16(17):2476. https://doi.org/10.3390/w16172476
Chicago/Turabian StyleSong, Jiayi, Zhiyu Shao, Ziyi Zhan, and Lei Chen. 2024. "State-of-the-Art Techniques for Real-Time Monitoring of Urban Flooding: A Review" Water 16, no. 17: 2476. https://doi.org/10.3390/w16172476
APA StyleSong, J., Shao, Z., Zhan, Z., & Chen, L. (2024). State-of-the-Art Techniques for Real-Time Monitoring of Urban Flooding: A Review. Water, 16(17), 2476. https://doi.org/10.3390/w16172476