Activity Concentration of Natural Radionuclides in Surface Sediments of Major River Watersheds in Korea and Assessment of Radiological Hazards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Pretreatment
2.3. Measurement of Radionuclides
2.4. Assessment of Radiological Hazards
3. Results and Discussion
3.1. Activity Concentration of 226Ra, 232Th, 238U, and 40K
3.2. Spatial and Frequency Distribution of 226Ra, 232Th, 238U, and 40K
3.3. Assessment of Radiological Hazards
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and Effects of Ionizing Radiation; UNSCEAR: New York, NY, USA, 2000. [Google Scholar]
- UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Report to the General Assembly, with Scientific Annexes Sources and Effects of Ionizing Radiation; UNSCEAR: New York, NY, USA, 2001. [Google Scholar]
- Xinwei, L.; Xiaolan, Z. Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands Park, China. Environ. Geol. 2006, 50, 977–982. [Google Scholar] [CrossRef]
- Ngachin, M.; Garavaglia, M.; Giovani, C.; Kwato Njock, M.G.; Nourreddine, A. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radiat. Meas. 2007, 42, 61–67. [Google Scholar] [CrossRef]
- Savidou, A.; Raptis, C.; Kritidis, P. Study of natural radionuclides and radon emanation in bricks used in the Attica region, Greece. J. Environ. Radioact. 1996, 31, 21–28. [Google Scholar] [CrossRef]
- Abbady, A.; Ahmed, N.K.; Elarabi, A.M.; Michel, R.; Elkamel, A.H.; Abbady, A.G.E. Estimation of radiation hazard indices from natural radioactivity of some rocks. Nucl. Sci. Tech. 2006, 17, 118–122. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Tariq, S.; Din, K.U.; Manzoor, S.; Calligaris, C.; Waheed, A. Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J. Radiat. Res. Appl. Sci. 2014, 7, 438–447. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandramohan, J.; Chandrasekaran, A.; Prince Prakash Jebakumar, J.P.P.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East Coast of TamilNadu, India with statistical approach. Mar. Pollut. Bull. 2015, 97, 419–430. [Google Scholar] [CrossRef]
- Yasmin, S.; Barua, B.S.; Kamal, M.; Rashid, M.A. An analysis for distribution of natural radionuclides in soil, sand and sediment of Potenga Sea Beach area of Chittagong, Bangladesh. J. Environ. Prot. 2014, 05, 1553–1563. [Google Scholar] [CrossRef]
- Baldık, R.; Aytekin, H.; Erer, M. Radioactivity measurements and radiation dose assessments due to natural radiation in Karabük (Turkey). J. Radioanal. Nucl. Chem. 2011, 289, 297–302. [Google Scholar] [CrossRef]
- Patra, A.C.; Sahoo, S.K.; Tripathi, R.M.; Puranik, V.D. Distribution of radionuclides in surface soils, Singhbhum shear Zone, India and associated dose. Environ. Monit. Assess. 2013, 185, 7833–7843. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Wang, F. Natural radioactivity in sediment of Wei River, China. Environ. Geol. 2008, 53, 1475–1481. [Google Scholar] [CrossRef]
- Kobya, Y.; Taşkın, H.; Yeşilkanat, C.M.; Varinlioğlu, A.; Korcak, S. Natural and artificial radioactivity assessment of dam lakes sediments in Çoruh River, Turkey. J. Radioanal. Nucl. Chem. 2015, 303, 287–295. [Google Scholar] [CrossRef]
- Krmar, M.; Varga, E.; Slivka, J. Correlations of natural radionuclides in soil with those in sediment from the Danube and nearby irrigation channels. J. Environ. Radioact. 2013, 117, 31–35. [Google Scholar] [CrossRef]
- Turtiainen, T.; Salahel-din, K.; Klemola, S.; Sihvonen, A.P. Collective effective dose received by the population of Egypt from building materials. J. Radiol. Prot. 2008, 28, 223–232. [Google Scholar] [CrossRef]
- Huang, D.; Du, J.; Deng, B.; Zhang, J. Distribution patterns of particle-reactive radionuclides in sediments off eastern Hainan Island, China: Implications for source and transport pathways. Contin. Shelf Res. 2013, 57, 10–17. [Google Scholar] [CrossRef]
- Isinkaye, M.O.; Emelue, H.U. Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J. Radiat. Res. Appl. Sci. 2015, 8, 459–469. [Google Scholar] [CrossRef]
- Krishnamoorthy, N.; Mullainathan, S.; Mehra, R.; Chaparro, M.A.E.; Chaparro, M.A.E. Radiation impact assessment of naturally occurring radionuclides and magnetic mineral studies of Bharathapuzha River sediments, South India. Environ. Earth Sci. 2014, 71, 3593–3604. [Google Scholar] [CrossRef]
- Wang, J.; Du, J.; Bi, Q. Natural radioactivity assessment of surface sediments in the Yangtze estuary. Mar. Pollut. Bull. 2017, 114, 602–608. [Google Scholar] [CrossRef]
- Chiozzi, P.; Pasquale, V.; Verdoya, M. Naturally occurring radioactivity at the alps–Apennines transition. Radiat. Meas. 2002, 35, 147–154. [Google Scholar] [CrossRef]
- El-Bahi, S.M. Assessment of radioactivity and radon exhalation rate in Egyptian cement. Health Phys. 2004, 86, 517–522. [Google Scholar] [CrossRef]
- Abdellah, W.M.; Diab, H.M.; El-Kameesy, S.U.; Salama, E.; El-Framawy, S. Natural radioactivity levels and associated health hazards from the terrestrial ecosystem in Rosetta branch of the River Nile, Egypt. Isot. Environ. Health Stud. 2017, 53, 427–439. [Google Scholar] [CrossRef]
- Aggrey, Y.A.; Amo-Boateng, M.; Kpeglo, D.O.; Dubinsky, M.; Tengey, I. Evaluation of natural radioactivity levels and related radiological hazards in marine sediment samples taken from Ahanta west in the Gulf of Guinea, Ghana. J. Radioanal. Nucl. Chem. 2024, 333, 2281–2289. [Google Scholar] [CrossRef]
- Botwe, B.O.; Schirone, A.; Delbono, I.; Barsanti, M.; Delfanti, R.; Kelderman, P.; Nyarko, E.; Lens, P.N.L. Radioactivity concentrations and their radiological significance in sediments of the Tema harbour (Greater Accra, Ghana). J. Radiat. Res. Appl. Sci. 2017, 10, 63–71. [Google Scholar] [CrossRef]
- Natarajan, T.; Sahoo, S.K.; Inoue, K.; Arae, H.; Aono, T.; Fukushi, M. Natural radionuclides and radiological risk assessment in the stream and river sediments of a high background natural radiation area Kanyakumari, India. Environ. Monit. Assess. 2024, 196, 330. [Google Scholar] [CrossRef]
- Bouhila, G.; Azbouche, A.; Benrachi, F.; Belamri, M. Natural radioactivity levels and evaluation of radiological hazards from Beni Haroun Dam sediment samples, Northeast Algeria. Environ. Earth Sci. 2017, 76, 710. [Google Scholar] [CrossRef]
- Chowdhury, M.I.; Alam, M.N.; Hazari, S.K.S. Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl. Radiat. Isot. 1999, 51, 747–755. [Google Scholar] [CrossRef]
- Kurnaz, A.; Küçükömeroğlu, B.; Keser, R.; Okumusoglu, N.T.; Korkmaz, F.; Karahan, G.; Çevik, U. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl. Radiat. Isot. 2007, 65, 1281–1289. [Google Scholar] [CrossRef]
- Powell, B.A.; Hughes, L.D.; Soreefan, A.M.; Falta, D.; Wall, M.; DeVol, T.A. Elevated concentrations of primordial radionuclides in sediments from the reedy river and surrounding creeks in Simpsonville, South Carolina. J. Environ. Radioact. 2007, 94, 121–128. [Google Scholar] [CrossRef]
- Santawamaitre, T.; Malain, D.; Al-Sulaiti, H.A.; Matthews, M.; Bradley, D.A.; Regan, P.H. Study of natural radioactivity in riverbank soils along the Chao Phraya River Basin in Thailand. Nucl. Instrum. Methods Phys. Res. A 2011, 652, 920–924. [Google Scholar] [CrossRef]
- Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V. A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar River sediments, India. J. Environ. Radioact. 2011, 102, 370–377. [Google Scholar] [CrossRef]
- Uosif, M.A.M. Gamma-ray spectroscopic analysis of selected samples from Nile River sediments in upper Egypt. Radiat. Prot. Dosim. 2007, 123, 215–220. [Google Scholar] [CrossRef]
- MOE (Ministry of the Environment). Water Environment Information System. Available online: https://water.nier.go.kr (accessed on 20 August 2024). (In Korean).
- KMA (Korea Meteorological Administration). Available online: https://www.kma.go.kr (accessed on 30 July 2024). (In Korean).
- Kang, T.W.; Park, W.P.; Han, Y.U.; Bong, K.M.; Kim, K.H. Natural and artificial radioactivity in volcanic ash soils of Jeju island, Republic of Korea, and assessment of the radiation hazards: Importance of soil properties. J. Radioanal. Nucl. Chem. 2020, 323, 1113–1124. [Google Scholar] [CrossRef]
- Karataşlı, M.; Turhan, Ş.; Varinlioğlu, A.; Yeğingil, Z. Natural and fallout radioactivity levels and radiation hazard evaluation in soil samples. Environ. Earth Sci. 2016, 75, 424. [Google Scholar] [CrossRef]
- Sanusi, M.S.M.; Ramli, A.T.; Wagiran, H.; Lee, M.H.; Heryanshah, A.; Said, M.N. Investigation of geological and soil influence on natural gamma radiation exposure and assessment of radiation hazards in western region, peninsular Malaysia. Environ. Earth Sci. 2016, 75, 485. [Google Scholar] [CrossRef]
- Beretka, J.; Matthew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- ICRP (International Commission on Radiological Protection). Recommendations of the International Commission on Radiological Protection; ICRP Publication 60, Ann. ICRP; Pergamon Press: Oxford, UK, 1990; Volume 21. [Google Scholar]
- Karahan, G.; Bayulken, A. Assessment of gamma dose rates around Istanbul (Turkey). J. Environ. Radioact. 2000, 47, 213–221. [Google Scholar] [CrossRef]
- Radi Dar, M.A.; El-Saharty, A.A. Some radioactive-elements in the coastal sediments of the Mediterranean Sea. Radiat. Prot. Dosim. 2013, 153, 361–368. [Google Scholar] [CrossRef]
- Ramasamy, V.; Suresh, G.; Meenakshisundaram, V.; Ponnusamy, V. Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl. Radiat. Isot. 2011, 69, 184–195. [Google Scholar] [CrossRef]
- Yun, J.Y.; Choi, S.W.; Kim, C.K.; Moon, J.Y.; Rho, B.H. Distribution and characteristics of radioactivity (232Th, 226Ra, 40K, 137Cs and 90Sr) and radiation in Korea. J. Radiat. Prot. Res. 2005, 30, 167–174. [Google Scholar]
- Hassan, N.M.; Kim, Y.J.; Jang, J.; Chang, B.U.; Chae, J.S. Comparative study of precise measurements of natural radionuclides and radiation dose using in-situ and laboratory γ-ray spectroscopy techniques. Sci. Rep. 2018, 8, 14115. [Google Scholar] [CrossRef]
- Jibiri, N.N.; Okeyode, I.C. Evaluation of radiological hazards in the sediments of Ogun River, South-Western Nigeria. Radiat. Phys. Chem. 2012, 81, 103–112. [Google Scholar] [CrossRef]
- Agbalagba, E.O.; Onoja, R.A. Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J. Environ. Radioact. 2011, 102, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Q.; Zhang, C.; Su, W.; Ma, Y.; Zhong, Q.; Xiao, E.; Xia, F.; Zheng, G.; Xiao, T. Geochemical distribution and environmental risks of radionuclides in soils and sediments runoff of a uranium mining area in South China. Toxics 2024, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Selçuk Zorer, Ö.S. Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments. Microchem. J. 2019, 145, 762–766. [Google Scholar] [CrossRef]
- Korea Institute of Nuclear Safety (KINS). Integrated Environmental Radiation Monitoring Network. Available online: https://iernet.kins.re.kr (accessed on 30 July 2024).
- Agbalagba, E.O.; Avwiri, G.O.; Chad-Umoreh, Y.E. γ-Spectroscopy Measurement of Natural Radioactivity and Assessment of Radiation Hazard Indices in Soil Samples from Oil Fields Environment of Delta State, Nigeria. J. Environ. Radioact. 2012, 109, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Bara, S.V.; Arora, V.; Chinnaesakki, S.; Sartandel, S.J.; Bajwa, B.S.; Tripathi, R.M.; Puranik, V.D. Radiological assessment of natural and fallout radioactivity in the soil of Chamba and Dharamshala areas of Himachal Pradesh, India. J. Radioanal. Nucl. Chem. 2012, 291, 769–776. [Google Scholar] [CrossRef]
- Öztürk, B.C.; Çam, N.F.; Yaprak, G. Reference levels of natural radioactivity and 137Cs in and around the surface soils of Kestanbol pluton in e-zine region of Çanakkale Province, Turkey. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1522–1532. [Google Scholar] [CrossRef]
- Saleh, I.H. Depleted uranium residues, NORMs and 137Cs in the coastal zone soil of Musandam peninsula, Hurmuz Strait region, Sultanate of Oman. J. Radiat. Res. Appl. Sci. 2018, 11, 182–189. [Google Scholar] [CrossRef]
Watershed | 226Ra (Bq kg−1) | 232Th (Bq kg−1) | 238U (Bq kg−1) | 40K (Bq kg−1) |
---|---|---|---|---|
Han River (n = 15) | 28.2 ± 15.2 (8.73–65.4) a | 60.9 ± 24.7 (23.6–103) | 22.4 ± 11.4 (9.25–46.6) | 989 ± 118 (881–1319) |
Geum River (n = 13) | 33.8 ± 9.7 (23.6–58.0) | 65.6 ± 20.2 (41.4–111) | 30.4 ± 10.5 (19.8–59.1) | 1016 ± 111 (870–1257) |
Nakdong River (n = 16) | 24.2 ± 11.2 (11.3–46.7) | 45.3 ± 25.3 (16.0–112) | 19.7 ± 12.0 (<2.64 b–46.2) | 858 ± 62 (763–1004) |
Yeongsan River (n = 9) | 40.3 ± 15.3 (19.3–59.9) | 62.1 ± 22.1 (36.4–93.1) | 36.5 ± 9.9 (21.7–50.2) | 763 ± 100 (581–915) |
Seomjin River (n = 5) | 37.1 ± 19.5 (16.9–64.9) | 64.3 ± 33.0 (29.4–104) | 35.2 ± 24.3 (15.9–76.4) | 837 ± 134 (608–959) |
Total (n = 58) | 31.0 ± 14.2 (8.73–65.4) | 58.1 ± 24.8 (16.0–112) | 26.8 ± 13.8 (<2.64–76.4) | 911 ± 136 (581–1319) |
Country | River/Lake/ Estuary | 226Ra (Bq kg−1) | 232Th (Bq kg−1) | 238U (Bq kg−1) | 40K (Bq kg−1) | Reference |
---|---|---|---|---|---|---|
Algeria | Beni Haroun | 24.7 (9–66) a | 26.0 (14–37) | - b | 208 (177–288) | [26] |
Bangladesh | Karnaphuli | 35.9 (18.4–85.2) | 65.5 (50.8–88.4) | 37.2 (20.0–89.7) | 272 (217–320) | [27] |
Shango | 27.8 (24.0–31.9) | 57.5 (52.4–61.7) | 25.4 (21.6–28.3) | 255 (212–292) | [27] | |
China | Wei | 21.8 (10.4–39.9) | 33.1 (15.3–54.8) | - | 833 (515–1176) | [12] |
Yangtze | 24.3 (13.7–52.3) | 40.9 (26.1–71.9) | 32.8 (14.1–62.3) | 628 (392–898) | [19] | |
Egypt | Nile | 52.0 | 76.2 | - | 352 | [32] |
India | Ponnaiyar | - | 46.9 (<MDA c–106) | 7.31 (<MDA–11.6) | 384 (201–468) | [31] |
Bharathapuzha | 41.9 (21.2–66.0) | 54.9 (33.5–93.1) | - | 478 (232–900) | [18] | |
Nigeria | Oguta | 47.9 (7.23–135) | 55.4 (<MDA–140) | - | 1023 (189–2401) | [17] |
Ogun | 12.7 (5.57–20.4) | 11.8 (5.04–23.1) | - | 499 (371–608) | [45] | |
Pakistan | Gilgit & Indus | 50.7 (21.4–111) | 70.2 (11.7–172) | - | 532 (174–825) | [7] |
Thailand | Chao Phraya | - | 64.9 (60.7–69.1) | 60.2 (55.3–65.2) | 432 (393–478) | [30] |
Turkey | Fırtına | 49.9 (15–167) | 38 (17–87) | 39 (16–113) | 573 (51–1605) | [28] |
Çoruh | - | 18.3 (8.4–46.8) | 11.4 (<3.5 c–29.9) | 510 (129–969) | [13] | |
USA | Reedy | 21.4 (11.4–41.2) | 45.3 (13.0–186) | 37.8 (11.1–74.2) | 609 (386–1047) | [29] |
Worldwide | 40 (8–160) | 35 (4–130) | 35 (4–140) | 370 (100–700) | [1] | |
Korea | 31.0 (8.73–65.4) | 58.1 (16.0–112) | 26.8 (<2.64–76.4) | 911 (581–1319) | This study |
Watershed | Raeq a (Bq kg−1) | Hex b | Hin c | AGDR d (nGy h−1) | AEDRout e (µSv y−1) |
---|---|---|---|---|---|
Han River (n = 15) | 191 ± 48 (116–281) f | 0.517 ± 0.130 (0.314–0.759) | 0.593 ± 0.168 (0.337–0.936) | 91.0 ± 20.9 (58.2–130) | 112 ± 26 (71.4–159) |
Geum River (n = 13) | 206 ± 36 (164–284) | 0.556 ± 0.097 (0.444–0.766) | 0.647 ± 0.119 (0.507–0.923) | 97.6 ± 15.5 (79.0–130) | 120 ± 19 (96.9–160) |
Nakdong River (n = 16) | 155 ± 44 (100–266) | 0.419 ± 0.119 (0.270–0.717) | 0.484 ± 0.148 (0.304–0.844) | 74.3 ± 18.7 (50.3–121) | 91.2 ± 22.9 (61.7–148) |
Yeongsan River (n = 9) | 188 ± 50 (122–253) | 0.507 ± 0.136 (0.329–0.683) | 0.616 ± 0.176 (0.390–0.845) | 87.9 ± 22.3 (57.7–118) | 108 ± 27 (70.8–144) |
Seomjin River (n = 5) | 194 ± 62 (126–282) | 0.523 ± 0.169 (0.340–0.762) | 0.623 ± 0.221 (0.386–0.938) | 90.9 ± 26.8 (61.8–130) | 111 ± 33 (75.8–159) |
Total (n = 58) | 184 ± 48 (99.8–284) | 0.498 ± 0.131 (0.270–0.766) | 0.581 ± 0.166 (0.304–0.938) | 87.4 ± 21.1 (50.3–130) | 107 ± 26 (61.7–160) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.-W.; An, M.; Han, Y.-U.; Yang, H.J.; Kang, T.; Jung, S.; Lee, W.-S.; Park, W.-P. Activity Concentration of Natural Radionuclides in Surface Sediments of Major River Watersheds in Korea and Assessment of Radiological Hazards. Water 2024, 16, 2897. https://doi.org/10.3390/w16202897
Kang T-W, An M, Han Y-U, Yang HJ, Kang T, Jung S, Lee W-S, Park W-P. Activity Concentration of Natural Radionuclides in Surface Sediments of Major River Watersheds in Korea and Assessment of Radiological Hazards. Water. 2024; 16(20):2897. https://doi.org/10.3390/w16202897
Chicago/Turabian StyleKang, Tae-Woo, Mijeong An, Young-Un Han, Hae Jong Yang, Taegu Kang, Soojung Jung, Won-Seok Lee, and Won-Pyo Park. 2024. "Activity Concentration of Natural Radionuclides in Surface Sediments of Major River Watersheds in Korea and Assessment of Radiological Hazards" Water 16, no. 20: 2897. https://doi.org/10.3390/w16202897
APA StyleKang, T. -W., An, M., Han, Y. -U., Yang, H. J., Kang, T., Jung, S., Lee, W. -S., & Park, W. -P. (2024). Activity Concentration of Natural Radionuclides in Surface Sediments of Major River Watersheds in Korea and Assessment of Radiological Hazards. Water, 16(20), 2897. https://doi.org/10.3390/w16202897