water-logo

Journal Browser

Journal Browser

Advances in Hydraulic and Water Resources Research (2nd Edition)

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydraulics and Hydrodynamics".

Deadline for manuscript submissions: closed (25 September 2024) | Viewed by 10755

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, A114, Ottawa, ON K1N 6N5, Canada
Interests: computational fluid dynamics; turbulent mixing; outfall systems and sustainable design; numerical modeling of riverine and coastal waters; jets and plumes and environmental sustainability; sediment transport
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
Interests: CFD coding; turbulence; turbulence modeling; turbulent flow; computational fluid dynamics; CFD Simulation; numerical simulation; computational fluid mechanics; numerical modeling; fluent
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Civil Engineering, University of Ottawa, 161 Louise Pasteur, Ottawa, ON K1N 6N5, Canada
2. Water Resources Engineer, Barr Engineering Co., 808 4 Avenue SW, Calgary, AB T2P 3E8, Canada
Interests: environmental fluid mechanic; river engineering; coastal engineering; computational fluid dynamics (CFD); effluent discharge; near-field and far-field mixing; dam breach analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hydraulic engineering methods can be applied to a wide range of research problems, including coastal engineering, river engineering, and lake modeling. This Special Issue deals with numerical, field, and laboratory studies related to the above-mentioned topics. Sediment transport, waves, pollutant fate and transport, hydraulic structures, coastal structures, coastal erosion, coastal flow simulation, dam breach analysis, mine water management, stream restoration and lake modeling are included in this Special Issue.

Prof. Dr. Majid Mohammadian
Dr. Xiaohui Yan
Dr. Hossein Kheirkhah Gildeh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • modeling
  • lab studies
  • field studies
  • coastal engineering
  • river engineering
  • lakes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 24944 KiB  
Article
Relationship Between Landslide Group and Local Structure on Right Bank of Shenyu River in Wudongde Hydropower Station
by Ke Liu, Tuanle Wang, Yangyang Gao, Huafeng Deng and Lei Cheng
Water 2025, 17(4), 505; https://doi.org/10.3390/w17040505 - 11 Feb 2025
Viewed by 563
Abstract
The Shenyu River, as the tributary of the Jinsha River closest to the Wudongde Hydropower Station, has had seven landslides developed on its right bank, forming an interconnected landslide group system. The evolution and future development trends of the landslide group have a [...] Read more.
The Shenyu River, as the tributary of the Jinsha River closest to the Wudongde Hydropower Station, has had seven landslides developed on its right bank, forming an interconnected landslide group system. The evolution and future development trends of the landslide group have a significant impact on the safe operation of the Wudongde Hydropower Station. Using geological field surveys and exploration data, we studied and analyzed the formation mechanism of the landslide group on the right bank of the Shenyu River in the reservoir area of the Wudongde Hydropower Station. The main conclusions are as follows: The local structure of the study area is mainly composed of north–south faults and folds, which control the development of rock mass unloading in the later stage of the study area, the formation of the stepped landform in the study area, and the formation process of geological disasters in the study area. The synclinore (Bellmouth fold) structure on the southern flank of the Shenyu River controls the spatial distribution of geological disasters in the study area, forming a spatial distribution pattern centered on the Dapingdi landslide and Dacun landslide, with the scale of geological disasters decreasing toward both sides. The research findings contribute to the improvement of the theoretical system of the formation mechanism of geological disasters. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

26 pages, 18247 KiB  
Article
Experimental Assessment of the Turbulent Flow Field Due to Emergent Vegetation at a Sharply Curved Open Channel
by Hamidreza Raeisifar, Ali Rahm Rahimpour, Hossein Afzalimehr, Oral Yagci and Manousos Valyrakis
Water 2025, 17(2), 205; https://doi.org/10.3390/w17020205 - 14 Jan 2025
Cited by 1 | Viewed by 663
Abstract
Emergent vegetation in river corridors influences both the flow structure and subsequent fluvial processes. This investigation aimed to analyze the impact of the bending and vegetation components in a sharply curved open channel on the flow field. Experiments were undertaken in a meandering [...] Read more.
Emergent vegetation in river corridors influences both the flow structure and subsequent fluvial processes. This investigation aimed to analyze the impact of the bending and vegetation components in a sharply curved open channel on the flow field. Experiments were undertaken in a meandering flume (0.9 m wide, wavelength of 3.2 m, and a sinuosity of 1.05) with a 90-degree bend at the end of it, with and without vegetation, to achieve this goal. The individual vegetation elements arranged across the 90-degree bend of the flow channel were physically modelled using rigid plastic stems (of 5 mm and 10 mm diameters). Analysis of the findings from the flow velocimetry, taken at five cross-sections oriented at angles of 0°, 30°, 45°, 60°, and 90°, along the 90-degree bend indicates that as the plant density increases, the effect of centrifugal force from the channel’s bend on the cross-sectional flow patterns decreases. At the same time, the restricting influence of vegetation on lateral momentum transfer becomes more pronounced. Specifically, for increasing vegetation density: (a) higher transverse and vertical velocities are observed (increased by 4.35% and 9.68% for 5 mm and 10 mm reed vegetation, respectively, compared to the non-vegetated case); (b) greater turbulence intensity is seen in the transverse flow direction, along with increased turbulent kinetic energy (TKE); and (c) reduced near-bed Reynolds stresses are found. The average transverse flow velocity for the non-vegetated case is 18.19% of the longitudinal flow velocity and the average vertical velocity for the non-vegetated case and 5 mm and 10 mm reed vegetation is 3.24%, 3.6%, and 5.44% of the longitudinal flow velocity, respectively. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

26 pages, 30479 KiB  
Article
Experimental Investigation of T-Jump Stabilization Using Water Jets and Sinusoidal Corrugated Beds
by Maryam Tahmasbipour, Hossein Azizi Nadian, Javad Ahadiyan, Giuseppe Oliveto, Seyed Mohsen Sajjadi and Amir Mohammad Kiyani
Water 2024, 16(23), 3513; https://doi.org/10.3390/w16233513 - 6 Dec 2024
Viewed by 932
Abstract
Hydraulic jump is a phenomenon that occurs in open channels with a sudden and rapid transition of the flow regime from supercritical to subcritical. One of the common approaches in controlling the energy dissipation of hydraulic jumps aims to expand the section of [...] Read more.
Hydraulic jump is a phenomenon that occurs in open channels with a sudden and rapid transition of the flow regime from supercritical to subcritical. One of the common approaches in controlling the energy dissipation of hydraulic jumps aims to expand the section of the stilling basin with the development of T-jumps. However, T-jumps without additional baffle and terminal elements are unacceptable for thorough energy dissipation. Therefore, this study investigates the main characteristics of T-jumps in an abruptly expanding channel and in the presence of bed water jets and sinusoidal roughness elements. Such complex configurations are hardly found in the literature. Inflow Froude numbers from 6.2 to 10.85, five relative jet flow rates from 0.10 to 0.27, and three rough beds with roughness wave slopes from 0.33 to 0.60 were selected. Experimental results revealed that increasing the bed corrugation would decrease the length of the jump, the length of the roller, and the sequent depth ratio. The same results were found in presence of bed water jets and sinusoidal roughness elements, but the T-jump would appear to be better stabilized. In fact, it was also observed that increasing the relative flow rate of the jet had a significant effect in controlling the T-jump and reducing its relative length. The simultaneous presence of bed water jets and sinusoidal roughness elements decreased the relative length of the T-jump by about 81% and the tailwater depth by about 42% in comparison with the classic hydraulic jumps on smooth beds. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

17 pages, 4885 KiB  
Article
An Experimental Investigation of the Effect of Two-Phase Flow in a Manifold on Water Jet Lengths
by Seyhmus Tumur, Arjin Ata and Tamer Bagatur
Water 2024, 16(22), 3263; https://doi.org/10.3390/w16223263 - 13 Nov 2024
Viewed by 807
Abstract
The outlet flow rates and changes in behaviors of five outlet ports where water and air–water (two-phase) mixtures pass horizontally in a manifold pipe system were investigated experimentally. The effects of different air-flow rates, vacuumed from the atmosphere with a Venturi device in [...] Read more.
The outlet flow rates and changes in behaviors of five outlet ports where water and air–water (two-phase) mixtures pass horizontally in a manifold pipe system were investigated experimentally. The effects of different air-flow rates, vacuumed from the atmosphere with a Venturi device in the system, on the outlet flow rates and diameters of the manifold port outlets were compared by measuring the outlet jet lengths. The system performance provided homogeneity of manifold port outlet flows and was tested. As a result, it was observed that homogeneous jet lengths were obtained in both single and two-phase low main manifold flows and equal outlet port diameters. When the main manifold flow rate V is 1.5–2 m/s, the system is stable and produces high jet lengths. The manifold pipe systems used in the experimental setup provide suitable working conditions for d/D = 0.433. The system does not show a smooth flow pattern with Venturi devices for d/D < 0.433. The low flow rates in this study’s tests are key. They are vital for designing micro irrigation systems. This depends on the critical d/D ratio of the system. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

20 pages, 5074 KiB  
Article
How Wetting and Drainage Cycles and Wetting Angle Affect Capillary Air Trapping and Hydraulic Conductivity: A Pore Network Modeling of Experiments on Sand
by Tomas Princ, John Koestel and Michal Snehota
Water 2024, 16(21), 3103; https://doi.org/10.3390/w16213103 - 29 Oct 2024
Viewed by 1039
Abstract
Entrapped air in porous media can significantly affect water flow but simulations of air entrapment are still challenging. We developed a pore-network model using quasi-static algorithms to simulate air entrapment during spontaneous wetting and subsequent drainage processes. The model, implemented in OpenPNM, was [...] Read more.
Entrapped air in porous media can significantly affect water flow but simulations of air entrapment are still challenging. We developed a pore-network model using quasi-static algorithms to simulate air entrapment during spontaneous wetting and subsequent drainage processes. The model, implemented in OpenPNM, was tailored to replicate an experiment conducted on a medium-sized unconsolidated sand sample. We started building the model with three types of relatively small networks formed by 54,000 pore bodies which we used to calibrate basic network topological parameters by fitting the model to the water retention curve and the saturated hydraulic conductivity of the sand sample. Using these parameters, along with X-ray image data (µCT), a larger network formed by over 250,000 pore bodies was introduced in the form of stacked sub-networks where topological parameters were scaled along the z-axis. We investigated the impact of two different contact angles on air entrapment. For a contact angle of 0, the model showed good agreement with the experimental data, accurately predicting the amount of entrapped air and the saturated hydraulic conductivity. On the contrary, for a contact angle of π/4, the model provided reasonable accuracy for saturated hydraulic conductivity but overestimated the amount of entrapped air. Overall, this approach demonstrated that a reasonable match between simulated and experimental data can be achieved with minimal computational costs. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

13 pages, 6176 KiB  
Article
Study of Flooding Behavior and Discharge from Karot Dam in the Event of a Possible Breach by Using the Hydrodynamic Model
by Lilian Thomas Momburi, Changwen Li, Frank N. M. Masami, Minglei Ren and Isaac Otoo
Water 2024, 16(20), 2922; https://doi.org/10.3390/w16202922 - 14 Oct 2024
Cited by 1 | Viewed by 1174
Abstract
This study utilizes the MIKE 11 hydrodynamic model developed by the Danish Hydraulic Institute to simulate flood behavior downstream of Karot Dam under multi-year in-flow conditions. The key parameters analyzed include breach characteristics, flood duration, water depth, flow velocity, discharge rate, and downstream [...] Read more.
This study utilizes the MIKE 11 hydrodynamic model developed by the Danish Hydraulic Institute to simulate flood behavior downstream of Karot Dam under multi-year in-flow conditions. The key parameters analyzed include breach characteristics, flood duration, water depth, flow velocity, discharge rate, and downstream distance. After dam failure, the peak discharge reaches 33,171 m3/s, exceeding the 10,000-year recurrence peak flow of 32,300 m3/s, with a breach duration of 2 h. The estimated peak discharge after simulation using empirical equations and comparative analyses showed maximum flood discharges of 28,187 m3/s, 28,922 m3/s, and 29,769 m3/s, with breach widths of 181 m, 256 m, and 331 m, respectively. The peak discharge predicted to reach the outlet with travel time ranging from 4 h 25 min to 4 h 40 min. Under multi-year average inflow conditions, Mangla Dam faces no risk of failure, with a maximum outflow of 12,097 m3/s and a spillway capacity of 30,147 m3/s. The model accurately predicted discharge values, with a strong correlation coefficient of R2 = 0.9653, indicating strong agreement between the actual water level data and predicted discharge. These insights are essential for developing effective emergency response strategies to mitigate the risks associated with dam failure. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

22 pages, 3493 KiB  
Article
A Coupled River–Overland (1D-2D) Model for Fluvial Flooding Assessment with Cellular Automata
by Hsiang-Lin Yu, Tsang-Jung Chang, Chia-Ho Wang and Shyh-Yuan Maa
Water 2024, 16(18), 2703; https://doi.org/10.3390/w16182703 - 23 Sep 2024
Cited by 1 | Viewed by 1436
Abstract
To provide accurate and efficient forecasting of fluvial flooding assessment in the river basin, the present study links the well-known CA-based urban inundation modeling (2D-OFM-CA) with a one-dimensional river flow model (1D-RFM) as a coupled 1D-2D river–overland modeling. Rules to delineate the geometric [...] Read more.
To provide accurate and efficient forecasting of fluvial flooding assessment in the river basin, the present study links the well-known CA-based urban inundation modeling (2D-OFM-CA) with a one-dimensional river flow model (1D-RFM) as a coupled 1D-2D river–overland modeling. Rules to delineate the geometric linking between the 1D-RFM and 2D-OFM-CA along embankments are developed. The corresponding exchanged water volume across an embankment is then computed by using the free and submerged weir flow formulas. The applicability of the proposed coupled model on fluvial flooding assessment is then assessed and compared with a well-recognized commercial software (HEC-RAS model) through an idealized fluvial case and an extensively studied real-scale fluvial case in the Severn River Basin. Based on the simulated results concerning the numerical accuracy, the coupled model is found to give similar results in the aspects of the river flow and overland flow modeling in both two study cases, which demonstrates the effectiveness of the linking methodology between the 1D-RFM and 2D-OFM-CA. From the viewpoint of numerical efficiency, the coupled model is 47% and 41% faster than the HEC-RAS model in the two cases, respectively. The above results indicate that the coupled model can reach almost the same accuracy as the HEC-RAS model with an obvious reduction in its computational time. Hence, it is concluded that the coupled model has considerable potential to be an effective alternative for fluvial flooding assessment in the river basin. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

29 pages, 5060 KiB  
Article
Effectiveness of Collars and Hooked-Collars in Mitigating Scour around Different Abutment Shapes
by Zaka Ullah Khan, Afzal Ahmed, Manousos Valyrakis, Ghufran Ahmed Pasha, Rashid Farooq, Nadir Murtaza and Diyar Khan
Water 2024, 16(17), 2550; https://doi.org/10.3390/w16172550 - 9 Sep 2024
Cited by 5 | Viewed by 1047
Abstract
Abutment scour is a major cause of bridge failures worldwide, leading to disruptions, economic losses, and loss of life. The present experimental study examines countermeasures against abutment scour using hooked-collar protections on vertical-wall and wing-wall abutments (at 45° and 60°) under different flow [...] Read more.
Abutment scour is a major cause of bridge failures worldwide, leading to disruptions, economic losses, and loss of life. The present experimental study examines countermeasures against abutment scour using hooked-collar protections on vertical-wall and wing-wall abutments (at 45° and 60°) under different flow conditions. All 60 experiments were performed under sub-critical flow conditions by investigating scour around an abutment 20 cm long, 20 cm wide, and 25 cm tall. Two distinct values of the Froude number, 0.154 and 0.179, and a sediment particle diameter (d50) of 0.88 mm were used throughout the experimental phase. The resulting equilibrium scour around the abutments was compared to those with collar and hooked-collar protections. It was determined that the maximum abutment scour depth reduction was 83.89% when hooked collars were placed on vertical wall abutments beneath the bed surface level, and for wing-wall abutments at 45° and 60°, it was 74.2% and 73.5%, respectively, at the bed surface level. Regression analysis was conducted to assess the non-dimensional scour depth (Ds/Yf) and scour reduction (RDs/Yf), with a high enough coefficient of determination (R2 values of 0.96 and 0.93, respectively), indicating high confidence in the analysis. The sensitivity analysis findings demonstrate that the width of the collar (Wc) and La are the most influencing factors affecting Ds/Yf and RDs/Yf. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

12 pages, 2499 KiB  
Article
Study on the Coefficient of Apparent Shear Stress along Lines Dividing a Compound Cross-Section
by Yindi Zhao, Dong Chen, Jinghong Qin, Lei Wang and You Luo
Water 2024, 16(12), 1648; https://doi.org/10.3390/w16121648 - 8 Jun 2024
Cited by 1 | Viewed by 1082
Abstract
A compound channel’s discharge capacity and boundary shear force can be predicted as a sum of the discharge capacity of different sub-regions once the apparent shear stress of the dividing line is reasonably quantified. The apparent shear stress was usually expressed as a [...] Read more.
A compound channel’s discharge capacity and boundary shear force can be predicted as a sum of the discharge capacity of different sub-regions once the apparent shear stress of the dividing line is reasonably quantified. The apparent shear stress was usually expressed as a coefficient multiplied by the difference between two squared velocities of two adjacent regions. This study investigated the range of the coefficient values and their influencing factors. Firstly, the optimal values of the coefficient were obtained based on experimental data. Then, comparisons between the optimal values and several parameters used in quantifying the apparent shear stress were conducted. The results show that the coefficient is mainly related to a morphological parameter of the floodplain and the ratio of resistance coefficients between the floodplain and the main channel. An empirical formula to calculate the coefficient was developed and introduced to calculate the flow discharge and boundary shear stress. Experimental data, including 142 sets of test data of symmetric-floodplain cases and 104 sets of one-floodplain cases, have been used to examine the prediction accuracy of discharges and boundary shear stress. For all these tests, the ranges of water depth of the main channel and the total width of the compound cross-section are about 0.05~0.30 m and 0.3~10 m, respectively; the Q range and the range of Froude numbers of the main channel flow are about 0.0033~1.11 m3/s and 0.3~2.3, respectively. Comparison with other methods and experimental data from both rigid and erodible compound channels indicated that the proposed method not only provided acceptable accuracy for the computation of discharge capacity and boundary shear stress of compound channels in labs but also gave insights for calculating discharge capacity in natural compound channels. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

25 pages, 11561 KiB  
Article
Simulation of Sloped-Bed Tuned Liquid Dampers Using a Nonlinear Shallow Water Model
by Mahdiyar Khanpour, Abdolmajid Mohammadian, Hamidreza Shirkhani and Reza Kianoush
Water 2024, 16(10), 1394; https://doi.org/10.3390/w16101394 - 14 May 2024
Viewed by 1250
Abstract
This research aims to develop an efficient and accurate model for simulating tuned liquid dampers (TLDs) with sloped beds. The model, based on nonlinear shallow water equations, is enhanced by introducing new terms tailored to each specific case. It employs the central upwind [...] Read more.
This research aims to develop an efficient and accurate model for simulating tuned liquid dampers (TLDs) with sloped beds. The model, based on nonlinear shallow water equations, is enhanced by introducing new terms tailored to each specific case. It employs the central upwind method and Minmod limiter functions for flux and interface variable assessment, ensuring both high accuracy and reasonable computational cost. While acceleration, slope, and dissipation are treated as explicit sources, an implicit scheme is utilized for dispersion discretization to enhance the model’s stability, resulting in matrix equations. Time discretization uses the fourth-order Runge–Kutta scheme for precision. The performance of the model has been evaluated using several test cases including dam-breaks on flat and inclined beds and run-up and run-down simulations over parabolic beds, which are relevant to sloshing in tanks with sloped beds. It accurately predicts phenomena such as asymmetric sloshing waves, especially in sloped beds, where pronounced waves occur. Dispersion and dissipation terms are crucial for capturing these effects and maintaining stable wave patterns. An initial perturbation method assesses the tank’s natural period and numerical diffusion. Furthermore, the model integrates with a single-degree-of-freedom (SDOF) system to create a TLD model, demonstrating enhanced damping effects with sloped beds. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

Back to TopTop