Experimental Study on the Impact of Sorption-Desorption on Nitrate Isotopes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of the Sorbent
3.2. Nitrate Sorption Behavior
3.3. Changes in Nitrate Isotope during Sorption
3.4. Changes in Nitrate Isotope during Desorption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Böhlke, J.K. Groundwater recharge and agricultural contamination. Hydrogeol. J. 2002, 10, 153–179. [Google Scholar] [CrossRef]
- Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 2014, 468–469, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Izato, Y.; Shiota, K.; Miyake, A. Condensed-phase pyrolysis mechanism of ammonium nitrate based on detailed kinetic model. J. Anal. Appl. Pyrolysis 2019, 143, 104671. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2011; Available online: https://iris.who.int/handle/10665/44584 (accessed on 8 July 2023).
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Yuan, L.; Huang, T.; Kong, Y.; Liu, J.; Li, Y. Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach. J. Earth Sci. 2013, 24, 111–124. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Global status of nitrate contamination in groundwater: Its occurrence, health impacts, and mitigation measures. In Handbook of Environmental Materials Management; Hussain, C., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Kendall, C.; Aravena, R. Nitrate isotopes in ground water systems. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 261–297. [Google Scholar] [CrossRef]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Sci. Total Environ. 2018, 624, 1513–1522. [Google Scholar] [CrossRef]
- Tokazhanov, G.; Ramazanova, E.; Hamid, S.; Bae, S.; Lee, W. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review. Chem. Eng. J. 2020, 384, 123252. [Google Scholar] [CrossRef]
- Kendall, C. Tracing sources and cycling of nitrate in catchments. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 519–576. [Google Scholar]
- Spalding, R.F.; Exner, M.E. Occurrence of nitrate in groundwater-a review. J. Environ. Qual. 1993, 22, 392–402. [Google Scholar] [CrossRef]
- Mayer, B.; Boyer, E.W.; Goodale, C.; Jaworski, N.A.; van Breemen, N.; Howarth, R.W.; Seitzinger, S.; Billen, G.; Lajtha, K.; Nadelhoffer, K.; et al. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 2002, 57, 171–197. [Google Scholar] [CrossRef]
- Huang, T.; Li, Z.; Ma, B.; Long, Y. Tracing the origin of groundwater nitrate in an area affected by acid rain using dual isotopic composition of nitrate. Geofluids 2019, 2019, 8964182. [Google Scholar] [CrossRef]
- Fukada, T.; Hiscock, K.M.; Dennis, P.F.; Grischek, T. A dual isotope approach to identify denitrification in ground water at a river bank infiltration site. Water Res. 2003, 37, 3070–3078. [Google Scholar] [CrossRef] [PubMed]
- Aravena, R.; Robertson, W.D. Use of multiple isotope tracers to evaluate denitrification in groundwater: Case study of nitrate from a large-flux septic system plume. Ground Water 1998, 36, 975–982. [Google Scholar] [CrossRef]
- Ma, B.; Huang, T.; Li, J.; Li, Z.; Long, Y.; Zhang, F.; Pang, Z. Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone. Catena 2021, 198, 105045. [Google Scholar] [CrossRef]
- Mayer, B. Assessing sources and transformations of sulphate and nitrate in the hydrosphere using isotope techniques. In Isotopes in the Water Cycle; Present and Future of a Developing Science, 2005 IAEA; Aggarwal, P.K., Gat, J.R., Froehlich, K.F.O., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 67–89. [Google Scholar]
- Denk, T.R.A.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Xu, W.; Li, Y.; Ruan, Q.; Cao, W. Multiple stable isotopic approaches for tracing nitrate contamination sources: Implications for nitrogen management in complex watersheds. Ecotoxicol. Environ. Saf. 2024, 269, 115822. [Google Scholar] [CrossRef]
- Hübner, H. Isotope effects of nitrogen in the soil and biosphere. In Handbook of Environmental Isotope Geochemistry; The Terrestrial Environment; Fritz, P., Fontes, I.-C., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; Volume 2, pp. 361–425. [Google Scholar]
- Mayer, B.; Matiatos, I. Nutrient dynamics in rivers and lakes. Treatise Geochem. 2024, 3, 155–178. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, M.; Özcan, A.S. Adsorption of Nitrate Ions onto Sepiolite and Surfactant-Modified Sepiolite. Adsorpt. Sci. Technol. 2005, 23, 323–334. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, W.; Zhong, Z. Fundamentals of Hydrogeochemistry; Geology Publishing House: Beijing, China, 1993. [Google Scholar]
- Halajnia, A.; Oustan, S.; Najafi, N.; Khataee, A.R.; Lakzian, A. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl. Clay Sci. 2013, 80–81, 305–312. [Google Scholar] [CrossRef]
- Mohsenipour, M.; Shahid, S.; Ebrahimi, K. Nitrate Adsorption on Clay Kaolin: Batch Tests. J. Chem. 2015, 2015, 397069. [Google Scholar] [CrossRef]
- Mena-Duran, C.J.; Kou, M.R.S.; Lopez, T.; Azamar-Barrios, J.A.; Aguilar, D.H.; Dominguez, M.I.; Odriozola, J.A.; Quintana, P. Nitrate removal using natural clays modified by acid thermoactivation. Appl. Surf. Sci. 2007, 253, 5762–5766. [Google Scholar] [CrossRef]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci. 2010, 48, 92–96. [Google Scholar] [CrossRef]
- Battas, A.; Gaidoumi, A.E.; Ksakas, A.; Kherbeche, A. Adsorption study for the removal of nitrate from water using local clay. Sci. World J. 2019, 2019, 9529618. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Han, M.; Pang, L. Adsorption behavior and mechanism of the bamboo-carbon for nitrate in aqueous solution. Food Mach. 2010, 26, 68–71. [Google Scholar]
- Huang, T.; Li, Z.; Mayer, B.; Nightingale, M.; Li, X.; Li, G.; Long, Y.; Pang, Z. Identification of geochemical processes during hydraulic fracturing of a shale gas reservoir: A controlled field and laboratory water-rock interaction experiment. Geophys. Res. Lett. 2020, 47, e2020GL090420. [Google Scholar] [CrossRef]
- Heller, R.; Zoback, M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 2014, 8, 14–24. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkema Publishers: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Limited: England, UK, 2017. [Google Scholar]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Mueller, D.K.; Helsel, D.R. Nutrients in the nation’s waters-too much of a good thing? US Geol. Surv. Circ. 1996, 1136, 24. [Google Scholar]
- Shand, P.; Edmunds, W.M. The baseline inorganic chemistry of European groundwaters. In Natural Groundwater Quality; Edmunds, W.M., Shand, P., Eds.; Blackwell: New York, NY, USA, 2008; pp. 22–58. [Google Scholar]
- Huang, T.; Pang, Z.; Yuan, L. Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: Baseline and factors controlling its transport and fate. Environ. Earth Sci. 2013, 70, 145–156. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, Y.; Huang, L.; Wei, X.; Fang, Y.; Wu, L.; Binley, A.; Shao, M. Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the Loess Plateau. Sci. Total Environ. 2018, 633, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Böhlke, J.K. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Gao, W.; Hu, R. A New Evaluation Method for the Fracability of a Shale Reservoir Based on the Structural Properties. Geofluids 2019, 2019, 14. [Google Scholar] [CrossRef]
- Tremblay, C.; Kohl, S.D.; Rice, J.A.b.; Gagné, J.-P. Effects of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Mar. Chem. 2005, 96, 21–34. [Google Scholar] [CrossRef]
- Huang, T.; Li, Z.; Long, Y.; Zhang, F.; Pang, Z. Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. J. Hydrol. 2022, 610, 127800. [Google Scholar] [CrossRef]
- Kang, L.; Mucci, M.; Lürling, M. Influence of temperature and pH on phosphate removal efficiency of different sorbents used in lake restoration. Sci. Total Environ. 2022, 812, 151489. [Google Scholar] [CrossRef]
- Islam, M.; Patel, R. Physicochemical characterization and adsorption behavior of Ca/Al chloride hydrotalcite-like compound towards removal of nitrate. J. Hazard. Mater. 2011, 190, 659–668. [Google Scholar] [CrossRef]
- Hosni, K.; Srasra, E. Nitrate adsorption from aqueous solution by MII-Al-CO3 layered double hydroxide. Inorg. Mater. 2008, 44, 742–749. [Google Scholar] [CrossRef]
- Dai, X.; Wei, C.; Wang, M.; Song, Y.; Chen, R.; Wang, X.; Shi, X.; Vandeginste, V. Mineralization mechanism of carbon dioxide with illite interlayer cations using molecular dynamics simulation and experiments. J. CO2 Util. 2022, 64, 102161. [Google Scholar] [CrossRef]
- Long, Y. Study on the Calcium Isotopic Fractionation Following Cation Exchange. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, June 2024. [Google Scholar]
- Vengosh, A.; Spivack, A.J. Boron isotopes in groundwater. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Kluwer: Boston, MA, USA, 2000; pp. 479–485. [Google Scholar]
- Ockert, C.; Gussone, N.; Kaufhold, S.; Teichert, B.M.A. Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochim. Cosmochim. Acta 2013, 112, 374–388. [Google Scholar] [CrossRef]
Sample | Equilibration Time | NO3− | Cl− | SO42− |
---|---|---|---|---|
(mg/L) | (mg/L) | (mg/L) | ||
1-1 | 2 min | 0.04 | 16.9 | 269 |
1-2 | 18 min | 0.06 | 17.2 | 276 |
1-3 | 30 min | 0.06 | 17.2 | 273 |
1-4 | 1 h | 0.07 | 17.5 | 283 |
1-5 | 2 h | 0.05 | 17.3 | 274 |
1-6 | 4 h | 0.05 | 17.7 | 286 |
1-7 | 6 h | 0.05 | 17.8 | 294 |
1-8 | 1 d | 0.05 | 17.3 | 305 |
1-9 | 2 d | 0.05 | 18.1 | 325 |
1-10 | 3 d | 0.05 | 18.4 | 348 |
1-11 | 7 d | 0.03 | 18.8 | 419 |
Set | Shale Sample (g) | KNO3 Solution (mL) | NO3− (mg/L) | Temperature (°C) | Variables |
---|---|---|---|---|---|
2 | 15 | 30 | 31.31 | 25 | Time: 1 min, 2 min, 3 min, 4 min, 5 min, 8 min, 10 min, 15 min, 20 min, 1 h, 1 d |
3 | 15 | 30 | 31.31 | 25 | pH: 2.01, 3.93, 7.02, 10.5 |
4 | 15 | 30 | 31.31 | - | Temperature: 5, 35, 55, 75 °C |
5 | 15 | 30 | 31.31 | 25 | EC: 290, 606, 906 μs/cm |
6 | 15 | 30 | - | 25 | NO3−: 6.3, 31.3, 61.8, 79.6 mg/L |
Sample | Equilibration Time | NO3− | δ15N-NO3− | δ18O-NO3− | Cl− | SO42− |
---|---|---|---|---|---|---|
mg/L | ‰ | ‰ | mg/L | mg/L | ||
Sam0 | - | 14.3 | 9.3 | 1.2 | 14.6 | 153 |
7-1 | 5 min | 4.1 | 9.5 | 2.9 | 31.4 | 370 |
7-1 | 1 h | 3.7 | 9.4 | 3.1 | 31.4 | 378 |
7-1 | 6 h | 4.0 | 9.4 | 3.2 | 32.1 | 394 |
7-1 | 11 h | 4.4 | 9.5 | 3.4 | 32.6 | 401 |
7-1 | 1 d | 4.0 | 9.3 | 3.7 | 32.0 | 404 |
7-1 | 2 d | 4.6 | 9.2 | 3.3 | 33.0 | 418 |
7-1 | 3 d | 4.9 | 9.5 | 3.2 | 34.2 | 438 |
7-1 | 7 d | 4.6 | 11.7 | 4.4 | 33.6 | 470 |
Set | Sample | Description | Purpose |
---|---|---|---|
8 | 8-1 | 15 g shale sample + 30 mL initial water | sorption |
8-2 | +30 mL deionized water | desorption | |
8-3 | +30 mL deionized water | desorption | |
8-4 | +30 mL deionized water | desorption | |
8-5 | +30 mL deionized water | desorption | |
9 | 9-1 | 15 g shale sample + 30 mL initial water | sorption |
9-2 | +30 mL 2N KCl solution | desorption | |
9-3 | +30 mL 2N KCl solution | desorption | |
9-4 | +30 mL 2N KCl solution | desorption | |
9-5 | +30 mL 2N KCl solution | desorption |
Set | Sample | Description | vol. | NO3− | m-NO3− | δ15N-NO3− | δ18O-NO3− |
---|---|---|---|---|---|---|---|
mL | mg/L | μg | ‰ | ‰ | |||
The initial water (Sam0) | 30 | 14.31 | 9.3 | 1.2 | |||
8 | 8-1 | 15 g shale sample + 30 mL initial water | 24 * | 3.99 | 309.6 $ | 9.4 | 3.9 |
8-2 | +30 mL deionized water | 30 * | 2.52 | 66.8 & | 9.2 | 4.3 | |
8-3 | +30 mL deionized water | 30 * | 1.51 | 39.2 & | 9.4 | 4.2 | |
8-4 | +30 mL deionized water | 30 * | 1.15 | 32.3 & | 9.3 | 4.6 | |
8-5 | +30 mL deionized water | 36 # | 0.93 | 26.6 & | 9.0 | 5.2 | |
Total desorbed rate | 53.3% | ||||||
9 | 9-1 | 15 g shale sample + 30 mL initial water | 24 * | 4.12 | 305.7 $ | 9.4 | 3.5 |
9-2 | +30 mL 2 N KCl solution | 30 * | 7.72 | 253.2 & | 9.4 | 2.7 | |
9-3 | +30 mL 2 N KCl solution | 30 * | 1.21 | -2.8 & | 9.5 | 3.3 | |
9-4 | +30 mL 2 N KCl solution | 30 * | 0.32 | 4.3 & | 9.1 | 4.2 | |
9-5 | +30 mL 2 N KCl solution | 36 # | 0.15 | 3.5 & | - | - | |
Total desorbed rate | 84.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, Z.; Zan, C.; Li, Y.; Zhang, Y.; Huang, T. Experimental Study on the Impact of Sorption-Desorption on Nitrate Isotopes. Water 2024, 16, 2807. https://doi.org/10.3390/w16192807
Zhao Y, Li Z, Zan C, Li Y, Zhang Y, Huang T. Experimental Study on the Impact of Sorption-Desorption on Nitrate Isotopes. Water. 2024; 16(19):2807. https://doi.org/10.3390/w16192807
Chicago/Turabian StyleZhao, Yajing, Zhenbin Li, Chaoyao Zan, Yiman Li, Yan Zhang, and Tianming Huang. 2024. "Experimental Study on the Impact of Sorption-Desorption on Nitrate Isotopes" Water 16, no. 19: 2807. https://doi.org/10.3390/w16192807
APA StyleZhao, Y., Li, Z., Zan, C., Li, Y., Zhang, Y., & Huang, T. (2024). Experimental Study on the Impact of Sorption-Desorption on Nitrate Isotopes. Water, 16(19), 2807. https://doi.org/10.3390/w16192807