Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,050)

Search Parameters:
Keywords = ferritization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 8403 KB  
Article
Effects of Two-Way Cold Rolling and Subsequent Annealing on the Microstructure and Tensile Properties of Low-Carbon Steel with Different Initial Microstructures
by Toshio Ogawa, Hidetomo Hayashi and Hiroyuki Dannoshita
Materials 2026, 19(3), 466; https://doi.org/10.3390/ma19030466 (registering DOI) - 24 Jan 2026
Abstract
We investigated the effects of two-way cold rolling and subsequent annealing on the microstructure and tensile properties of low-carbon steel with different initial microstructures. Two types of hot-rolled sheet specimens were prepared: specimen P, consisting of ferrite and pearlite, and specimen M, consisting [...] Read more.
We investigated the effects of two-way cold rolling and subsequent annealing on the microstructure and tensile properties of low-carbon steel with different initial microstructures. Two types of hot-rolled sheet specimens were prepared: specimen P, consisting of ferrite and pearlite, and specimen M, consisting of martensite. The hot-rolled sheets were cold-rolled in two directions and subsequently annealed. Two-way cold rolling promoted shear-band formation compared with one-way cold rolling. Furthermore, the two-way cold-rolled specimens showed higher strain homogeneity than the one-way cold-rolled specimens. When annealed below the Ac1 temperature, two-way cold rolling accelerated recrystallization in specimen P, but not in specimen M. In the intercritically annealed specimen P, two-way cold rolling increased the average size of recrystallized ferrite grains while reducing their aspect ratio. In addition, the strength–ductility balance of the two-way cold-rolled specimen P was similar to that of the one-way cold-rolled specimen P. In contrast, in the intercritically annealed specimen M, two-way cold rolling reduced the average size and the aspect ratio of recrystallized ferrite grains. As a result, the strength–ductility balance of the two-way cold-rolled specimen M was improved by approximately 15% compared with that of the one-way cold-rolled specimen. This improvement was attributed to the formation of fine and equiaxed recrystallized ferrite grains. The present findings provide a basis for applying two-way cold rolling as a microstructure-control strategy in high-strength steels. Full article
Show Figures

Graphical abstract

14 pages, 5632 KB  
Article
Microstructural Characteristics and Tensile Behavior of Vacuum-Fusion-Welded Joints in 2507 Duplex Stainless-Steel Pipes
by Xia Cao, Lichu Zhou, Lili Zhai and Hong Gao
Coatings 2026, 16(1), 146; https://doi.org/10.3390/coatings16010146 - 22 Jan 2026
Viewed by 13
Abstract
To address the performance deficiencies in welded joints in 2507 duplex stainless-steel pipes under demanding service conditions such as deep-sea operation, this study investigates drawn 2507 duplex stainless-steel pipes. Vacuum-fusion welding coupled with ER2507 wire filling is employed to fabricate the joints. The [...] Read more.
To address the performance deficiencies in welded joints in 2507 duplex stainless-steel pipes under demanding service conditions such as deep-sea operation, this study investigates drawn 2507 duplex stainless-steel pipes. Vacuum-fusion welding coupled with ER2507 wire filling is employed to fabricate the joints. The joint microstructure and tensile behavior are systematically analyzed using microstructural characterization techniques (electron backscatter diffraction and transmission electron microscopy) and uniaxial tensile testing. The results indicate that the joint exhibits a graded microstructure along the welding direction: base metal-heat affected zone-weld metal. The austenite phase fraction in the fusion zone decreases to 27.6%. The joint achieves an ultimate tensile strength of 833.3 MPa and a total elongation of close to 23%, demonstrating an excellent combination of strength and ductility. During tensile deformation, the ferrite and austenite phases undergo coordinated deformation. Strain is distributed relatively uniformly at low strain levels but localized preferentially within the fusion zone at high strain levels. Fractographic analyses reveal a ductile fracture mode. This research provides theoretical support and technical reference for optimizing welding processes and assessing the service safety of 2507 duplex stainless-steel pipes in deep-sea pipeline-engineering applications. Full article
24 pages, 9665 KB  
Article
Multi-Physics Based Optimal Design of an Axial-Flux Ferrite Consequent-Pole Motor for Permanent Magnet Reduction Using 3D Finite Element Analysis
by Hyeon-Jun Kim and Soo-Whang Baek
Appl. Sci. 2026, 16(2), 1094; https://doi.org/10.3390/app16021094 - 21 Jan 2026
Viewed by 58
Abstract
This paper proposes a multiphysics-based optimal design process for a 750 W axial-flux ferrite consequent-pole (AFCP) pump motor aimed at reducing permanent magnet usage. To mitigate the high computational cost associated with repetitive numerical analyses, a metamodel (surrogate model)-based optimization framework is adopted. [...] Read more.
This paper proposes a multiphysics-based optimal design process for a 750 W axial-flux ferrite consequent-pole (AFCP) pump motor aimed at reducing permanent magnet usage. To mitigate the high computational cost associated with repetitive numerical analyses, a metamodel (surrogate model)-based optimization framework is adopted. A consequent-pole (CP) structure is applied to an initial ferrite axial-flux permanent magnet (AFPM) motor, and ten key design variables are selected for optimization. The electromagnetic performance corresponding to variations in these variables is evaluated using three-dimensional finite element analysis (3D FEA), and the resulting dataset is used to construct metamodels. In AFPM motors incorporating ferrite permanent magnets and a CP structure, electromagnetic performance, thermal saturation, and structural stability collectively limit reliable operation. Therefore, a multiphysics-based evaluation is essential. The optimal design is assessed through electromagnetic, thermal, and structural finite element analyses. According to the 3D FEA results, the optimal model achieves a 46.85% reduction in permanent magnet volume while improving efficiency by 0.75%, reaching 95.53%, compared to the initial model. The torque ripple and peak-to-peak cogging torque are reduced by 28.81% and 31.37%, reaching 0.08 Nm and 0.06 Nm, respectively. In addition, the total harmonic distortion (THD) of the back-electromotive force waveform decreases from 12.4% to 2.53%. Stable operating characteristics are confirmed through demagnetization, thermal, and structural analyses, demonstrating that the proposed optimal design process successfully achieves both permanent magnet reduction and overall performance improvement in ferrite-based AFCP motors. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 3961 KB  
Article
Effect of Ni Addition on the Phase Balance and Grain Boundary Character Distribution in 2507 Super Duplex Stainless Steel Fabricated via LPBF
by Przemysław Snopiński, Beatrice Ardayfio, Mengistu Dagnaw, Mariusz Król, Michal Kotoul and Zbigniew Brytan
Symmetry 2026, 18(1), 198; https://doi.org/10.3390/sym18010198 - 21 Jan 2026
Viewed by 58
Abstract
Super duplex stainless steels (SDSSs) can be effectively fabricated via Laser Powder Bed Fusion (LPBF), yet achieving the necessary phase balance remains a critical metallurgical challenge. The rapid solidification rates inherent to the LPBF process typically result in a predominantly ferritic microstructure. Since [...] Read more.
Super duplex stainless steels (SDSSs) can be effectively fabricated via Laser Powder Bed Fusion (LPBF), yet achieving the necessary phase balance remains a critical metallurgical challenge. The rapid solidification rates inherent to the LPBF process typically result in a predominantly ferritic microstructure. Since CSL boundaries—specifically high-symmetry ∑3 twins—form preferentially in the austenite phase, achieving a high fraction of these boundaries in the ferritic as-built LPBF state remains a significant challenge. To address this limitation, we implemented a feedstock modification strategy by mechanically blending 2507 SDSS powder with 3 and 6 wt.% elemental nickel prior to LPBF processing. The microstructural evolution, phase distribution, and boundary character were comprehensively evaluated using Electron Backscatter Diffraction (EBSD). Analysis revealed that the addition of nickel did not compromise densification, with all samples achieving relative densities exceeding 99.2%. While the base alloy remained 98.5% ferritic, the addition of 6 wt.% Ni successfully promoted the formation of approximately 31.1 wt.% austenite, characterized by intragranular laths formed via a massive-like transformation mechanism6. Crucially, despite the theoretical increase in Stacking Fault Energy (SFE) associated with high nickel content, the restored austenite phase exhibited a significant fraction of high-symmetry CSL ∑3 twin boundaries (rising to 7.05%). These findings demonstrate that compositional modification can overcome the kinetic limitations of the LPBF process, facilitating the development of a favorable Grain Boundary Character Distribution (GBCD). Full article
(This article belongs to the Special Issue Symmetry Studies in Metals & Alloys)
Show Figures

Figure 1

18 pages, 4148 KB  
Article
Optimizing S20C Steel and SUS201 Steel Welding Using Stainless Steel Filler and MIG Method
by Van Huong Hoang, Thanh Tan Nguyen, Minh Tri Ho, Pham Tran Minh Trung, Nguyen Van Sung, Van-Thuc Nguyen and Van Thanh Tien Nguyen
Metals 2026, 16(1), 110; https://doi.org/10.3390/met16010110 - 18 Jan 2026
Viewed by 123
Abstract
The reliable joining of dissimilar stainless steel and carbon steel remains a critical challenge in Metal Inert Gas (MIG) welding due to complex thermal–metallurgical interactions and the formation of brittle phases at the weld interface. In this study, a Taguchi-based design of experiments [...] Read more.
The reliable joining of dissimilar stainless steel and carbon steel remains a critical challenge in Metal Inert Gas (MIG) welding due to complex thermal–metallurgical interactions and the formation of brittle phases at the weld interface. In this study, a Taguchi-based design of experiments was employed to systematically optimize MIG welding parameters for SUS201/S20C dissimilar joints using a SUS201 filler wire, with particular attention to the welding current, voltage, travel speed, and electrode stick-out. The welding process was performed using an automatic welding robot. Tensile specimens were tested on a universal testing machine. Microstructural analysis was performed using a metallurgical microscope. The microstructure reveals that the development of the carbon side’s large ferrite and the stainless steel side’s δ-ferrite both significantly degrade joint quality. Among all process parameters, electrode stick-out is identified as the most influential parameter governing both tensile and bending performance, highlighting a critical process sensitivity that has received limited attention in prior studies. Optimized parameter combinations are required to maximize tensile and flexural responses. The highest tensile strength is 450.96 MPa. These findings advance the understanding of parameter–microstructure–property relationships in dissimilar MIG welding. Future work applying numerical welding simulations and advanced evaluation techniques is recommended. Full article
Show Figures

Figure 1

24 pages, 6689 KB  
Article
Reversible Joining Technology for Polyolefins Using Electromagnetic Energy and Homologous Hot-Melt Adhesives Containing Metallic and Ferrite Additives
by Romeo Cristian Ciobanu, Mihaela Aradoaei, George Andrei Ursan, Alina Ruxandra Caramitu, Virgil Marinescu and Rolland Luigi Eva
Polymers 2026, 18(2), 228; https://doi.org/10.3390/polym18020228 - 15 Jan 2026
Viewed by 175
Abstract
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly [...] Read more.
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly evenly distributed within the polymer matrix. Experimental models with Fe suggested that Fe nanopowders are more difficult to disperse within the polymer matrix, frequently resulting in agglomeration. For ferrite powder, there were fewer agglomerations noticed, and the dispersion was more uniform compared to similar composites containing Fe particles. Regarding water absorption, the extent of swelling was greater in the composites that included Al. Because of toluene’s affinity for the matrices, the swelling measurements stayed elevated even with reduced exposure times, and the composites with ferrite showed the lowest swelling compared to those with metallic particles. A remarkable evolution of the dielectric loss factor peak shifting towards higher frequencies with rising temperatures was observed, which is particularly important when the materials are exposed to thermal activation through electromagnetic energy. The reversible bonding experiments were performed on polyolefin samples which were connected longitudinally by overlapping at the ends; specialized hot-melts were employed, using electromagnetic energy at 2.45 GHz, with power levels between 140 and 850 × 103 W/kg and an exposure duration of up to 2 min. The feasibility of bonding polyolefins using homologous hot-melts that include metallic/ferrite elements was verified. Composites with both matrices showed that the hot-melts with Al displayed the highest mechanical tensile strength values, but also had a relatively greater elongation. All created hot-melts were suitable for reversible adhesion of similar polyolefins, with the one based on HDPE and Fe considered the most efficient for bonding HDPE, and the one based on PP and Al for PP bonding. When bonding dissimilar polyolefins, it seems that the technique is only effective with hot-melts that include Al. According to the reversible bonding diagrams for specific substrates and hot-melt combinations, and considering the optimization of energy consumption in relation to productivity, the most cost-effective way is to utilize 850 × 103 W/kg power with a maximum exposure time of 1 min. Full article
(This article belongs to the Special Issue Polymer Joining Techniques: Innovations, Challenges, and Applications)
Show Figures

Figure 1

35 pages, 4505 KB  
Review
Surface-Modified Magnetic Nanoparticles for Photocatalytic Degradation of Antibiotics in Wastewater: A Review
by Melissa Ariza Gonzalez, Supawitch Hoijang, Dang B. Tran, Quoc Minh Tran, Refia Atik, Rafiqul Islam, Sugandika Maparathne, Sujitra Wongthep, Ramtin Yarinia, Ruwanthi Amarasekara, Pailinrut Chinwangso and T. Randall Lee
Appl. Sci. 2026, 16(2), 844; https://doi.org/10.3390/app16020844 - 14 Jan 2026
Viewed by 181
Abstract
Recent advancements in nanotechnology and materials science have enabled the development of magnetic photocatalysts with improved efficiency, stability, and reusability, offering a promising approach for wastewater treatment. The integration of magnetic nanoparticles (MNPs) into photocatalytic processes has gained significant attention as a sustainable [...] Read more.
Recent advancements in nanotechnology and materials science have enabled the development of magnetic photocatalysts with improved efficiency, stability, and reusability, offering a promising approach for wastewater treatment. The integration of magnetic nanoparticles (MNPs) into photocatalytic processes has gained significant attention as a sustainable method for addressing emerging pollutants—such as antibiotics and pharmaceutical compounds—which pose environmental and public health risks, including the proliferation of antibiotic resistance. Surface modification techniques, specifically applied to MNPs, are employed to enhance their photocatalytic performance by improving surface reactivity, reducing nanoparticle agglomeration, and increasing photocatalytic activity under both visible and ultraviolet (UV) light irradiation. These modifications also facilitate the selective adsorption and degradation of target contaminants. Importantly, the modified nanoparticles retain their magnetic properties, allowing for facile separation and reuse in multiple treatment cycles via external magnetic fields. This review provides a comprehensive overview of recent developments in surface-modified MNPs for wastewater treatment, with a focus on their physicochemical properties, surface modification strategies, and effectiveness in the removal of antibiotics from aqueous environments. Furthermore, the review discusses advantages over conventional treatment methods, current limitations, and future research directions, emphasizing the potential of this technology for sustainable and efficient water purification. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in the Environmental Sciences)
Show Figures

Figure 1

17 pages, 8724 KB  
Article
Microstructure and Property of the Weld Heat-Affected Zone of T4003 Ferritic Stainless Steel with Different Mo Contents
by Yunlong Duan, Yang Hui, Xuefeng Lu, Jie Sheng and Xingchang Tang
Metals 2026, 16(1), 90; https://doi.org/10.3390/met16010090 - 14 Jan 2026
Viewed by 198
Abstract
In the present contribution, Hot-rolled and annealed ferritic stainless steel T4003 with three distinct Mo contents (0%, 0.1%, and 0.2%) served as the research subject. Weldability tests were implemented by means of gas metal arc welding. Coupled with microstructural characterization, mechanical property assessments, [...] Read more.
In the present contribution, Hot-rolled and annealed ferritic stainless steel T4003 with three distinct Mo contents (0%, 0.1%, and 0.2%) served as the research subject. Weldability tests were implemented by means of gas metal arc welding. Coupled with microstructural characterization, mechanical property assessments, and electrochemical corrosion tests, the regulatory mechanism of Mo on the microstructure and properties of the HAZ was systematically elucidated. Results demonstrate that the influence of Mo content on the evolution of the coarse-grained region structure of heat affected zone becomes significant. The addition of 0.1% Mo refines the grains, increasing the fraction of lath martensite to 70–75% while limiting the maximum width of the coarse-grained zone to 0.64 mm. Meantime, the addition promotes the precipitation of (Nb, Ti, Mo) (C, N) composite carbonitrides, enhancing overall performance through synergistic grain refinement and second-phase strengthening. The sample with 0.1% Mo exhibits an average low-temperature impact energy of 16.3 J at −40 °C, with the highest Vickers hardness in the HAZ, favorable strength–plasticity synergy of the welded joint, and optimal corrosion resistance. The coarse-grained zone of the 0.2% Mo sample is dominated by coarse δ-ferrite and features a larger width, and the HAZ shows inferior mechanical properties and corrosion resistance. The precipitated phases in the 0.2% Mo segregate along the grain boundaries and distribute in a chain-like distribution, exacerbating the deterioration of material properties. These findings provide a technical reference for optimizing the composition design of T4003 ferritic stainless steel and ensuring its safe application in railway freight vehicles. Full article
Show Figures

Graphical abstract

22 pages, 14195 KB  
Article
Study of Phase Transformations of Iron Minerals During Electrochemical Reduction of Unmilled Bauxite Particles in an Alkaline Media and Subsequent High-Pressure Bayer Process Leaching
by Andrei Shoppert, Dmitrii Valeev, Irina Loginova and Denis Pankratov
Minerals 2026, 16(1), 74; https://doi.org/10.3390/min16010074 - 13 Jan 2026
Viewed by 261
Abstract
This article focuses on studying the phase transformation of bauxite iron minerals during electrolytic reduction processes in alkaline solutions (400 g/L Na2O), with the aim of improving aluminum extraction in the subsequent Bayer process. The research employs electrolytic reduction to convert [...] Read more.
This article focuses on studying the phase transformation of bauxite iron minerals during electrolytic reduction processes in alkaline solutions (400 g/L Na2O), with the aim of improving aluminum extraction in the subsequent Bayer process. The research employs electrolytic reduction to convert the refractory minerals in unmilled bauxite (alumogoethite (Fe,Al)OOH, alumohematite (Fe,Al)2O3, chamosite (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8) into magnetite, elemental iron (Fe) and to minimize aluminum (Al) extraction during electrolysis. Preliminary thermodynamic research suggests that the presence of hematite (α-Fe2O3) and chamosite in boehmitic bauxite increases the iron concentration in the solution. Cyclic voltammetry revealed that, in the initial stage of electrolysis, overvoltage at the cathode decreases as metallic iron deposited and conductive magnetite form on the surface of the particles. After 60 min, the reduction efficiency begins to decrease. The proportion of the current used for magnetization and iron deposition on the cathode decreased from 89.5% after 30 min to 67.5% after 120 min. After 120 min of electrolytic reduction, the magnetization rate exceeded 65%; however, more than 60% of the Al was extracted simultaneously. Al extraction after electrolysis and subsequent Bayer leaching exceeded 91.5%. Studying the electrolysis product using SEM-EDS revealed the formation of a dense, iron-containing reaction product on the particles’ surface, preventing diffusion of the reaction products (sodium ferrite and sodium aluminate). Mössbauer spectroscopy of the high-pressure leaching product revealed that the primary iron-containing phases of bauxite residue are maghemite (γ-Fe2O3), formed during the hydrolysis of sodium ferrite. Full article
(This article belongs to the Special Issue Advances in Process Mineralogy)
Show Figures

Graphical abstract

15 pages, 4172 KB  
Article
Comparative Study on Heat Transfer Through Three Candidate Alloys for Fuel Element Cladding
by Marioara Abrudeanu, Nicanor Cimpoesu, Madalina Gabriela Stanciulescu Paunoiu, Andrei Galatanu, Magdalena Galatanu, Florentina Popa, Alexandra Georgiana Jinga, Ionut Cosmin Pirvu, Anita Haeussler, Radu Stefanoiu, Aurelian Denis Negrea and Mircea Ionut Petrescu
Appl. Sci. 2026, 16(2), 800; https://doi.org/10.3390/app16020800 - 13 Jan 2026
Viewed by 130
Abstract
The paper presents a comparative experimental study of heat-transfer behavior in three alloys considered candidate materials for nuclear reactors: the austenitic stainless steel 316L, Zircaloy-4 (currently used in CANDU reactors), and an ODS alloy with a ferritic matrix. The investigation was conducted across [...] Read more.
The paper presents a comparative experimental study of heat-transfer behavior in three alloys considered candidate materials for nuclear reactors: the austenitic stainless steel 316L, Zircaloy-4 (currently used in CANDU reactors), and an ODS alloy with a ferritic matrix. The investigation was conducted across five temperature intervals, each sample being subjected to a thermal shock through short-term overheating to the upper limit of its respective interval. The variation of thermal diffusivity in the three alloys was determined as a function of both measurement temperature and applied thermal shock, and trends in heat-transfer behavior were compared across the five temperature ranges. The experimental results show that up to 400 °C, Zircaloy-4 exhibits the highest thermal diffusivity, followed by the ODS alloy, with the lowest values measured for 316L steel. At approximately 450 °C, the ratio between 316L and the ODS alloy reverses. Beyond this point, increasing the temperature up to 900 °C is accompanied by a continuous rise in thermal diffusivity for both 316L stainless steel and Zircaloy-4. In contrast, for the ODS steel, increasing temperature leads to a continuous decrease in thermal diffusivity, reaching a minimum near the Curie point. The novelty of the study lies in the comparative assessment of the influence of temperature on the heat-transfer process in three alloys relevant to nuclear energy, covering the operating temperature ranges of CANDU and ALFRED reactors, as well as potential accidental overheating up to 900 °C. A particular feature of the work is the prior application of a short-duration overheating step produced using solar energy. The results are relevant not only for nuclear reactors but also for other high-temperature applications in corrosive environments. Full article
Show Figures

Figure 1

23 pages, 8010 KB  
Article
Uncertainty-Aware Virtual Physics-Based Chloride Resistance Analysis of Metakaolin-Blended Concrete
by Yuguo Yu, David Gardiner, Jie Sun and Kiru Pasupathy
Modelling 2026, 7(1), 16; https://doi.org/10.3390/modelling7010016 - 12 Jan 2026
Viewed by 133
Abstract
Metakaolin (MK) obtained from calcined kaolinitic clay is a highly reactive pozzolanic ingredient for use as an emerging supplementary cementitious material (SCM) in modern sustainable binder productions. It provides elevated alumina to promote formations of Alumina Ferrite Monosulfate (AFm) and Calcium-Aluminium-Silicate-Hydrate (C-A-S-H) phases, [...] Read more.
Metakaolin (MK) obtained from calcined kaolinitic clay is a highly reactive pozzolanic ingredient for use as an emerging supplementary cementitious material (SCM) in modern sustainable binder productions. It provides elevated alumina to promote formations of Alumina Ferrite Monosulfate (AFm) and Calcium-Aluminium-Silicate-Hydrate (C-A-S-H) phases, enhancing the chloride binding capacity. However, due to inherent material uncertainty and lack of approach in quantifying hydration kinetics and chloride binding capacity across varied mixes, robustly assessing the chloride resistance of metakaolin-blended concrete remains challenging. In light of this, a machine learning-aided framework that encompasses physics-based material characterisation and ageing modelling is developed to bridge the knowledge gap. Through applying to laboratory experiments, the impacts of uncertainty on the phase assemblage of hydrated system and chloride penetration are quantified. Moreover, the novel Extended Support Vector Regression (XSVR) method is incorporated and verified against a crude Monte Carlo Simulation (MCS) to demonstrate the capability of achieving effective and efficient uncertainty-aware chloride resistance analyses. With the surrogate model established using XSVR, quality control of metakaolin towards durable design optimisation against chloride-laden environments is discussed. It is found that the fineness and purity of adopted metakaolin play important roles. Full article
(This article belongs to the Special Issue The 5th Anniversary of Modelling)
Show Figures

Figure 1

13 pages, 7587 KB  
Article
Risk Assessment of Stress Corrosion Cracking in 42CrMo Substrates Induced by Coating Failure of the Screw Rotor
by Yuhong Jiang, Hualin Zheng, Chengxiu Yu, Jiancheng Luo, Wei Liu, Zhiming Yu, Hanwen Zhang and Dezhi Zeng
Coatings 2026, 16(1), 97; https://doi.org/10.3390/coatings16010097 - 12 Jan 2026
Viewed by 178
Abstract
Cracking occurred in the surface coating of a screw rotor during shale gas well operations. To determine whether the coating cracks could contribute to the failure of the 42CrMo substrate, the microstructure and morphology of surface cracks and local corrosion pits were examined [...] Read more.
Cracking occurred in the surface coating of a screw rotor during shale gas well operations. To determine whether the coating cracks could contribute to the failure of the 42CrMo substrate, the microstructure and morphology of surface cracks and local corrosion pits were examined and analyzed using a metallographic microscope, an SEM, and an EDS. To investigate the cross-sectional morphology and elemental distribution of corrosion pits, EDS mapping was performed. The composition of the corrosion products was characterized using Raman spectroscopy and XPS. In addition, four-point bend stress corrosion tests were conducted on screw rotor specimens under simulated service conditions. The results indicate that the P and S contents in the screw rotor substrate exceeded the specified limits, whereas its tensile and impact strengths satisfied the standard requirements. The microstructure consisted of tempered sorbite and ferrite, along with a small amount of sulfide inclusions. The corrosion products on the fracture surface were primarily identified as FeOOH, Fe3O4, and Cr(OH)3. All specimens failed during the four-point bend tests. The chlorine (Cl) content in the corroded regions reached up to 8.05%. These findings demonstrate that the crack resistance of the 42CrMo screw rotor was markedly reduced under the simulated service conditions of 130 °C in a saturated, oxygenated 25% CaCl2 solution. The study concludes that stress concentration induced by sulfide inclusions in the screw rotor, together with the combined effects of chloride ions, dissolved oxygen, and applied load, promotes the initiation and propagation of stress corrosion cracking. Therefore, it is recommended to strictly control the chemical composition and inclusion content of the screw rotor material and to reduce the oxygen content of the drilling fluid, thereby mitigating the risk of corrosion-induced cracking of the rotor. Full article
(This article belongs to the Special Issue Advanced Coating Protection Technology in the Oil and Gas Industry)
Show Figures

Figure 1

17 pages, 5783 KB  
Article
Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels
by Dohyung Kim and Byung-Hyun Shin
Metals 2026, 16(1), 82; https://doi.org/10.3390/met16010082 - 12 Jan 2026
Viewed by 153
Abstract
The stainless-steel phase of austenite, ferrite, and duplex was affected by the high temperature corrosion. So, the study of corrosion behavior in high temperatures at 700 °C is important because it is connected to life and maintenance. Various stainless steels (AISI no. 409 [...] Read more.
The stainless-steel phase of austenite, ferrite, and duplex was affected by the high temperature corrosion. So, the study of corrosion behavior in high temperatures at 700 °C is important because it is connected to life and maintenance. Various stainless steels (AISI no. 409 L, 430 L, 304L, 316L, 2205, 2507) are used to identify the most suitable material for high-temperature SOFC applications. The study was checked to surface, microstructure, and corrosion behavior after corrosion at 700 °C during 120 h. The surface and microstructure are checked using FE-SEM and XRD. The electrochemical behavior and corrosion behavior are checked for open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization test by a potentiostat. The potentiodynamic polarization results revealed that the pitting potential (Epit) varied significantly depending on the material, with values of 0.21 V for AISI 304L and 1.14 V for AISI 2507. The breakdown behavior of the passive film exhibited material-dependent characteristics, which were found to be consistent with the observed trends in high-temperature corrosion. Full article
Show Figures

Figure 1

21 pages, 10735 KB  
Article
Effect of Annealing Temperature on the Microstructure, Texture, and Properties of Hot-Rolled Ferritic Stainless Steel with Preferential α-Fiber Orientation
by Rongxun Piao, Jinhui Zhang, Gang Zhao and Junhai Wang
Materials 2026, 19(2), 293; https://doi.org/10.3390/ma19020293 - 11 Jan 2026
Viewed by 384
Abstract
For hot-rolled ferritic stainless steels with preferential α-fiber texture, the strong α-fiber texture is retained after annealing, greatly affecting the texture and plastic formability during the subsequent cold-rolling process. For optimizing the texture of hot-rolled steels toward the favorable γ-fiber type, it is [...] Read more.
For hot-rolled ferritic stainless steels with preferential α-fiber texture, the strong α-fiber texture is retained after annealing, greatly affecting the texture and plastic formability during the subsequent cold-rolling process. For optimizing the texture of hot-rolled steels toward the favorable γ-fiber type, it is essential to control the annealing temperature in the annealing process. To investigate the evolution of the microstructure, texture, and properties of hot-rolled ferritic stainless steel with preferential α-fiber orientation, a series of annealing tests was performed at the lab scale at 800, 840, 880, 910, 930, and 950 °C for 3 min. The microstructure, texture, and grain boundary characteristics of the tested samples were analyzed using optical microscopy (OM) and electron back-scattered diffraction (EBSD). The mechanical properties and plastic strain ratio (r-value) were determined through universal tensile testing. The results show that at temperatures above 840 °C, more than 93% of recrystallization occurs, leading to significant microstructural refinement. The α-fiber texture intensity typically diminishes with rising temperature, whereas the γ-fiber texture initially weakens during the early stages of recrystallization (below 840 °C) and subsequently exhibits a slight increase at higher temperatures. The improved formability of the material is mainly attributed to microstructural refinement and texture refinement, as reflected by the I(γ)/I(α) texture intensity ratio. At an annealing temperature of 930 °C, the I(γ)/I(α) ratio peaks at 0.85, static toughness is maximized, the strain-hardening exponent (n) reaches a high value of 0.28, and the maximum average plastic strain ratio (r¯) is 0.96. This result represents the optimum balance between mechanical properties and formability, making it suitable for subsequent cold-rolling. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

14 pages, 2314 KB  
Article
Influence of Mo and Ni Alloying on Recrystallization Kinetics and Phase Transformation in Quenched and Tempered Thick Steel Plates
by Xabier Azpeitia, Unai Mayo, Nerea Isasti, Eric Detemple, Hardy Mohrbacher and Pello Uranga
Materials 2026, 19(2), 290; https://doi.org/10.3390/ma19020290 - 10 Jan 2026
Viewed by 217
Abstract
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase [...] Read more.
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase transformation kinetics. This study investigates the effect of Mo (0.25–0.50 wt%) and Ni (0–1.00 wt%) additions on static recrystallization and transformation behavior using laboratory thermomechanical simulations representative of thick plate rolling conditions. Multipass and double-hit torsion tests were performed to determine the non-recrystallization temperature (Tnr) and quantify softening kinetics, while dilatometry was employed to construct Continuous Cooling Transformation (CCT) diagrams and assess hardenability. Results indicate that Mo significantly increases Tnr and delays recrystallization through a solute drag mechanism, whereas Ni exerts a minor but measurable effect, likely associated with stacking fault energy rather than classical solute drag. Both elements reduce ferrite and bainite transformation temperatures, enhancing hardenability; however, Mo alone cannot suppress ferrite formation at practical cooling rates, requiring combined Mo–Ni additions to achieve fully martensitic microstructures. These findings provide insight into alloy design for thick plate applications and highlight the limitations of existing predictive models for Ni-containing steels. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop