Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics
Abstract
:1. Introduction
2. Theory
3. Nanofiber Synthesis
4. Spinel Ferrite–Ferroelectric Coaxial Fibers
4.1. Cobalt Ferrite–PZT Core–Shell Nanofibers
4.2. CoFe2O4-BaTiO3 Core–Shell Nanofibers
4.3. NiFe2O4-PZT Core–Shell Nanofibers
4.4. NiFe2O4-BTO Core–Shell Nanofibers
4.5. Nickel Zinc Ferrite–PZT Core–Shell Fibers
5. Hexagonal Ferrite and Ferroelectric Core–Shell Fibers
5.1. M-Type Hexaferrite-Based Core–Shell Nanofibers
5.2. Y-Type and W-Type Hexaferrite-Based Core–Shell Nanofibers
6. Discussion
7. Follow-Up Research
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Vopson, M.M. Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 2015, 40, 223–250. [Google Scholar] [CrossRef]
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Li, Z.; Nan, C.W. Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 2011, 23, 1062–1087. [Google Scholar] [CrossRef]
- Palneedi, H.; Annapureddy, V.; Priya, S.; Ryu, J. Status and perspectives of multiferroic magnetoelectric composite materials and applications. In Actuators; MDPI: Basel, Switzerland, 2016; Volume 5, p. 9. [Google Scholar]
- Liang, X.; Chen, H.; Sun, N.X. Magnetoelectric materials and devices. APL Mater. 2021, 9, 041114. [Google Scholar] [CrossRef]
- Rado, G.T.; Folen, V.J. Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains. Phys. Rev. Lett. 1961, 7, 310. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Kimura, T. Magnetoelectric hexaferrites. Annu. Rev. Condens. Matter Phys. 2012, 3, 93–110. [Google Scholar] [CrossRef]
- Priya, S.; Islam, R.; Dong, S.; Viehland, D. Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 2007, 19, 149. [Google Scholar] [CrossRef]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Chu, Z.; PourhosseiniAsl, M.; Dong, S. Review of multi-layered magnetoelectric omposite materials and devices applications. J. Phys. D Appl. Phys. 2018, 51, 243001. [Google Scholar] [CrossRef]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef]
- Martin, L.W.; Crane, S.P.; Chu, Y.H.; Holcomb, M.B.; Gajek, M.; Huijben, M.; Yang, C.H.; Balke, N.; Ramesh, R. Multiferroics and magnetoelectrics: Thin films and nanostructures. J. Phys. Cond. Matter 2008, 20, 434220. [Google Scholar] [CrossRef]
- Adnan Islam, R.; Priya, S. Progress in dual (piezoelectric-magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter Phys. 2012, 2012, 320612. [Google Scholar] [CrossRef]
- Mu, H.; Chen, S.; Chen, C.; Li, H.; Gao, R.; Deng, X.; Cai, W.; Fu, C. Research progress on the magnetoelectric coupling effect of core–shell structured composite multiferroic materials. J. Mater. Sci. Mater. Electron. 2024, 35, 2235. [Google Scholar] [CrossRef]
- Lu, X.; Kim, Y.; Goetze, S.; Li, X.; Dong, S.; Werner, P.; Alexe, M.; Hesse, D. Magnetoelectric coupling in ordered arrays of multilayered heteroepitaxial BaTiO3/CoFe2O4 nanodots. Nano Lett. 2011, 11, 3202–3206. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, F.; Yao, J.; Fan, H.; Li, P.; Li, Z.; Song, X.; Zhang, X.; Qin, M.; Zeng, M.; et al. Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 2016, 10, 1025–1032. [Google Scholar] [CrossRef]
- Gao, X.; Rodriguez, B.J.; Liu, L.; Birajdar, B.; Pantel, D.; Ziese, M.; Alexe, M.; Hesse, D. Microstructure and properties of well-ordered multiferroic Pb(Zr,Ti)O3/CoFe2O4 nanocomposites. ACS Nano 2010, 4, 1099–1107. [Google Scholar] [CrossRef]
- Ahlawat, A.; Roth, R.; Rata, D.; Dorr, K.; Khan, A.A.; Deshmukh, P.; Shirolkar, M.M.; Satapathy, S.; Choudhary, R.J.; Phase, D.M. Magneto-electric coupled ordered PMN-PT/NiFe2O4 composite nanostructures. Appl. Phys. Lett. 2021, 119, 152901. [Google Scholar] [CrossRef]
- Vrejoiu, I.; Morelli, A.; Biggemann, D.; Pippel, E. Ordered arrays of multiferroic epitaxial nanostructures. Nano Rev. 2011, 2, 7364. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Rossell, M.D.; Campanini, M.; Erni, R.; Puigmarti-Luis, J.; Chen, X.Z.; Pané, S. Magnetoelectric coupling in micropatterned BaTiO3/CoFe2O4 epitaxial thin film structures: Augmentation and site-dependency. Appl. Phys. Lett. 2021, 119, 012901. [Google Scholar] [CrossRef]
- Raidongia, K.; Nag, A.; Sundaresan, A.; Rao, C.N.R. Multiferroic and magnetoelectric properties of core-shell CoFe2O4@ BaTiO3 nanocomposites. Appl. Phys. Lett. 2010, 97, 062904. [Google Scholar] [CrossRef]
- Koo, Y.S.; Song, K.M.; Hur, N.; Jung, J.H.; Jang, T.H.; Lee, H.J.; Koo, T.Y.; Jeong, Y.H.; Cho, J.H.; Jo, Y.H. Strain-induced magnetoelectric coupling in BaTiO3/Fe3O4 core/shell nanoparticles. Appl. Phys. Lett. 2009, 94, 032903. [Google Scholar] [CrossRef]
- Kumar, A.S.; Lekha, C.C.; Vivek, S.; Saravanan, V.; Nandakumar, K.; Nair, S.S. Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3-CoFe2O4 core-shell nanocomposite. J. Magn. Magn. Mater. 2016, 418, 294–299. [Google Scholar] [CrossRef]
- Song, H.; Listyawan, M.A.; Ryu, J. Core–shell magnetoelectric nanoparticles: Materials, synthesis, magnetoelectricity, and applications. In Actuators; MDPI: Basel, Switzerland, 2022; Volume 11, p. 380. [Google Scholar]
- Bauer, M.J.; Wen, X.; Tiwari, P.; Arnold, D.P.; Andrew, J.S. Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires. Microsyst. Nanoeng. 2018, 4, 37. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Imrane, H.; Chen, Y.; Goodrich, T.; Cai, Z.; Ziemer, K.S.; Huang, J.Y.; Sun, N.X. Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 2007, 90, 152501. [Google Scholar] [CrossRef]
- Johnson, S.H.; Finkel, P.; Leaffer, O.D.; Nonnenmann, S.S.; Bussmann, K.; Spanier, J.E. Magneto-elastic tuning of ferroelectricity within a magnetoelectric nanowire. Appl. Phys. Lett. 2011, 99, 182901. [Google Scholar] [CrossRef]
- Xie, T.; Qin, W. Multiferroic Nanohybrid MAPbI3/P3HT Nanowire Complex. J. Phys. Chem. C 2016, 120, 24498–24502. [Google Scholar] [CrossRef]
- Boughey, C.; Calahorra, Y.; Datta, A.; Kar-Narayan, S. Coaxial nickel–poly (vinylidene fluoride trifluoroethylene) nanowires for magnetoelectric applications. ACS Appl. Nano Mater. 2018, 2, 170–179. [Google Scholar] [CrossRef]
- Imai, A.; Cheng, X.; Xin, H.L.; Eliseev, E.A.; Morozovska, A.N.; Kalinin, S.V.; Takahashi, R.; Lippmaa, M.; Matsumoto, Y.; Nagarajan, V. Epitaxial Bi5Ti3FeO15-CoFe2O4 pillar-matrix multiferroic nanostructures. ACS Nano 2013, 7, 11079–11086. [Google Scholar] [CrossRef]
- Chen, A.; Dai, Y.; Eshghinejad, A.; Liu, Z.; Wang, Z.; Bowlan, J.; Knall, E.; Civale, L.; MacManus-Driscoll, J.L.; Taylor, A.J.; et al. Competing Interface and Bulk Effect–Driven Magnetoelectric Coupling in Vertically Aligned Nanocomposites. Adv. Sci. 2019, 6, 1901000. [Google Scholar] [CrossRef]
- Dong, G.; Wang, T.; Liu, H.; Zhang, Y.; Zhao, Y.; Hu, Z.; Ren, W.; Ye, Z.G.; Shi, K.; Zhou, Z.; et al. Strain-induced magnetoelectric coupling in Fe3O4/BaTiO3 nanopillar composites. ACS Appl. Mater. Interfaces 2022, 14, 13925–13931. [Google Scholar] [CrossRef]
- Dong, G.; Zhou, Z.; Guan, M.; Xue, X.; Chen, M.; Ma, J.; Hu, Z.; Ren, W.; Ye, Z.G.; Nan, C.W.; et al. Thermal driven giant spin dynamics at three-dimensional heteroepitaxial interface in Ni0.5Zn0.5Fe2O4/BaTiO3-pillar nanocomposites. ACS Nano 2018, 12, 3751–3758. [Google Scholar] [CrossRef]
- Zheng, J.C.; Shen, X.Q.; Min, C.Y.; Meng, X.F.; Liang, Q.R. Fabrication and characterization of heterostructural CoFe2O4/Pb(Zr0.52Ti0.48)O3 nanofibers by electrospinning. J. Comp. Mater. 2010, 44, 2135–2144. [Google Scholar] [CrossRef]
- Prathipkumar, S.; Hemalatha, J. Magnetoelectric response and tunneling magnetoresistance behavior of flexible P (VDF-H FP)/Cobalt ferrite nanofiber composite films. Ceram. Int. 2020, 46, 258–269. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Popov, M.; Zhang, R.; Sharma, K.; Janes, C.; Mukundan, A.; Srinivasan, G. Magnetic field assisted self-assembly of ferrite-ferroelectric core-shell nanofibers and studies on magneto-electric interactions. Appl. Phys. Lett. 2014, 104, 052910. [Google Scholar] [CrossRef]
- Liu, N.; Du, P.; Zhou, P.; Tanguturi, R.G.; Qi, Y.; Zhang, T. Magnetoelectric coupling in CoFe2O4-Pb(Zr0.2Ti0.8)O3 coaxial nanofibers. J. Am. Ceram. Soc. 2021, 104, 948–954. [Google Scholar] [CrossRef]
- Sreenivasulu, G.; Zhang, J.; Zhang, R.; Popov, M.; Petrov, V.; Srinivasan, G. Multiferroic core-shell nanofibers, assembly in a magnetic field, and studies on magneto-electric interactions. Materials 2018, 11, 18. [Google Scholar] [CrossRef]
- Wu, W.; Jin, X.; Tiliman, A.; Zhang, F.; Bai, G.; He, Y.; Jin, G.; Wang, B.; Zhang, X.; Wang, R. A flexible, highly sensitive, and anti-strain interference sensing fabric based on conjugated electrospinning core–shell conductive nanofiber yarns for ultra-stable pressure sensing and human–machine interaction. Chem. Engg. J. 2025, 503, 158602. [Google Scholar] [CrossRef]
- Molavi, A.M.; Alizadeh, P. Electrospinning of multiferroic CoFe2O4@Ba(Zr0. 2Ti0. 8)O3–0.5 (Ba0. 7Ca0. 3) TiO3 nano-structured fibers via two different routes. Mater. Character. 2021, 172, 110880. [Google Scholar] [CrossRef]
- Zhu, Q.; Xie, Y.; Zhang, J.; Liu, Y.; Zhan, Q.; Miao, H.; Xie, S. Multiferroic CoFe2O4-BiFeO3 core-shell nanofibers and their nanoscale magnetoelectric coupling. J. Mater. Res. 2014, 29, 657–664. [Google Scholar] [CrossRef]
- Dastjerdi, O.D.; Shokrollahi, H.; Mirshekari, S. A review of synthesis, characterization, and magnetic properties of soft spinel ferrites. Inorg. Chem. Commun. 2023, 153, 110797. [Google Scholar] [CrossRef]
- Pullar, R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progr. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- Petrov, V.M.; Zhang, J.; Qu, H.; Zhou, P.; Zhang, T.; Srinivasan, G. Theory of magnetoelectric effects in multiferroic core–shell nanofibers of hexagonal ferrites and ferroelectrics. J. Phys. D Appl Phys 2018, 51, 284004. [Google Scholar] [CrossRef]
- Schileo, G. Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol–gel routes. Progr. Solid State Chem. 2013, 41, 87–98. [Google Scholar] [CrossRef]
- Khan, U.; Irfan, M.; Li, W.J.; Adeela, N.; Liu, P.; Zhang, Q.T.; Han, X.F. Diameter-dependent multiferroic functionality in hybrid core/shell NWs. Nanoscale 2016, 8, 14956–14964. [Google Scholar] [CrossRef]
- Dabas, S.; Kumar, M.; Singh, D.V.; Chaudhary, V.; Sharma, S. Progress in Multiferroic and Magnetoelectric Materials for Emerging Technologies in Next Generation Sensing Devices. J. Electrochem. Soc. 2025, 172, 027512. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Sheng, J.; Zhang, T.; Chi, Q.; Chen, Q.; Fei, W. Multiferroic properties and magnetic anisotropy in P (VDF-TrFE) composites with oriented CoFe2O4 nanofibers. J. Phys. Chem. C 2021, 125, 8840–8852. [Google Scholar] [CrossRef]
- Liu, H.; Wu, N.; Zhang, X.; Wang, B.; Wang, Y. Research progress on electrospun high-strength micro/nano ceramic fibers. Ceram. Inter. 2022, 48, 34169–34183. [Google Scholar] [CrossRef]
- Wang, D.-H.; Su, J.; Liu, Y.-M.; Yu, Y.; Su, Y.; Xie, G.-X.; Jiang, L.-L.; Zhou, L.-N.; Zhu, D.-Y.; Chen, S.-H.; et al. Recent advances in electrospun magnetic nanofibers and their applications. J. Mater. Chem. C 2022, 10, 4072–4095. [Google Scholar] [CrossRef]
- Kashid, P.; Suresh, H.K.; Mathad, S.N.; Shedam, R.; Shedam, M. A review on synthesis, properties and applications on cobalt ferrite. Int. J. Adv. Sci. Eng 2022, 9, 2567–2583. [Google Scholar] [CrossRef]
- Narang, S.B.; Pubby, K. Nickel spinel ferrites: A review. J. Magn. Magn. Mater. 2021, 519, 167163. [Google Scholar] [CrossRef]
- Xie, S.H.; Li, J.Y.; Qiao, Y.; Liu, Y.Y.; Lan, L.N.; Zhou, Y.C.; Tan, S.T. Multiferroic CoFe2O4–Pb (Zr0.52Ti0.48) O3 nanofibers by electrospinning. Appl. Phys. Lett. 2008, 92, 062901. [Google Scholar] [CrossRef]
- Xie, S.; Ma, F.; Liu, Y.; Li, J. Multiferroic CoFe 2 O 4–Pb (Zr 0.52 Ti 0.48) O 3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 2011, 3, 3152–3158. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.W.; Yimnirun, R.; Unruan, S. Electrospun barium titanate/cobalt ferrite composite fibers with improved magnetoelectric performance. RSC Adv. 2014, 4, 55217–55223. [Google Scholar] [CrossRef]
- Ge, B.; Zhang, J.; Saha, S.; Acharya, S.; Kshirsagar, C.; Menon, S.; Jain, M.; Page, M.R.; Srinivasan, G. Evidence for a Giant Magneto-Electric Coupling in Bulk Composites with Coaxial Fibers of Nickel-Zinc Ferrite and PZT. J. Comp. Sci. 2024, 8, 309. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ahart, M.; Somayazulu, M.; Cohen, R.E.; Ganesh, P.; Dera, P.; Mao, H.K.; Hemley, R.J.; Ren, Y.; Liermann, P.; Wu, Z. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008, 451, 545–548. [Google Scholar] [CrossRef]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; Academic Press: London, UK, 1971. [Google Scholar]
- Zhai, J.Y.; Cai, N.; Liu, L.; Lin, Y.H.; Nan, C.W. Dielectric behavior and magnetoelectric properties of lead zirconate titanate/Co-ferrite particulate composites. Mater. Sci. Eng. B 2003, 99, 329–331. [Google Scholar] [CrossRef]
- Harshe, G.; Dougherty, J.P.; Newnham, R.E. Magnetoelectric effect in composite materials. Proc. SPIE 1993, 1919, 224. [Google Scholar]
- Bochenek, D.; Niemiec, P.; Brzezińska, D.; Dercz, G.; Ziółkowski, G.; Jartych, E.; Grotel, J.; Suchanicz, J. Magnetoelectric properties of multiferroic composites based on BaTiO3 and nickel-zinc ferrite material. Materials 2024, 17, 1905. [Google Scholar] [CrossRef] [PubMed]
- Shvartsman, V.V.; Alawneh, F.; Borisov, P.; Kozodaev, D.; Lupascu, D.C. Converse magnetoelectric effect in CoFe2O4-BaTiO3 composites with a core-shell structure. Smart Mater. Struct. 2011, 20, 075006. [Google Scholar] [CrossRef]
- Fu, B.; Lu, R.; Gao, K.; Yang, Y.; Wang, Y. Substrate clamping effect onto magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 core-shell nanofibers via coaxial electrospinning. Eur. Phys. Lett. 2015, 112, 27002. [Google Scholar] [CrossRef]
- Liu, Y.; Sreenivasulu, G.; Zhou, P.; Fu, J.; Filippov, D.; Zhang, W.; Zhou, T.; Zhang, T.; Shah, P.; Page, M.R.; et al. Converse magneto-electric effects in a core-shell multiferroic nanofiber by electric field tuning of ferromagnetic resonance. Sci. Rep. 2020, 10, 20170. [Google Scholar] [CrossRef]
- Yadav, S.K.; Hemalatha, J. Direct magnetoelectric and magnetodielectric studies of electrospun Ba2Ni2Fe12O22-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers. J. Magn. Magn. Mater. 2022, 564, 170174. [Google Scholar] [CrossRef]
- Prasad, P.D.; Hemalatha, J. Energy harvesting performance of magnetoelectric poly (vinylidene fluoride)/NiFe2O4 nanofiber films. J. Magn. Magn. Mater. 2021, 532, 167986. [Google Scholar] [CrossRef]
- Van den Boomgaard, J.; Born, R.A.J. A sintered magnetoelectric composite material BaTiO3-Ni (Co, Mn) Fe2O4. J. Mater. Sci. 1978, 13, 1538–1548. [Google Scholar] [CrossRef]
- Agarwal, S.; Caltun, O.F.; Sreenivas, K. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites. Sol. Stat. Commun. 2012, 152, 1951–1955. [Google Scholar] [CrossRef]
- Zhang, H.; Or, D.S.W.; Chan, H.L.W. Multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb(Zr0.53Ti0.47)O3 ceramic composites. J. Appl. Phys. 2008, 104, 104109. [Google Scholar] [CrossRef]
- Murthy, S.R.; Rao, T.S. Magnetostriction of Ni-Zn and Co-Zn ferrites. Phys. Status Solidi A 1985, 90, 631–635. [Google Scholar] [CrossRef]
- Gupta, R.; Kotnala, R.K. A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J. Mater. Sci. 2022, 57, 12710–12737. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, P.; Fu, J.; Iyengar, M.; Liu, N.; Du, P.; Xiong, Y.; Moiseienko, V.; Zhang, W.; Zhang, J.; et al. Strain-mediated magneto-electric interactions in hexagonal ferrite and ferroelectric coaxial nanofibers. MRS Commun. 2020, 10, 230–241. [Google Scholar] [CrossRef]
- Kumar, A.; Narayan, B.; Pachat, R.; Ranjan, R. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite. Phy. Rev. B 2018, 97, 064103. [Google Scholar] [CrossRef]
- Singh, A.; Singh, V.; Bamzai, K.K. Structural and magnetic studies on (x) PbTiO3–(1− x) SrFe12O19 composite multiferroics. Mater. Chem. Phys. 2015, 155, 92–98. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, P.; Ge, B.; Liu, J.; Zhang, J.; Zhang, W.; Zhang, T.; Srinivasan, G. Strain-mediated magneto-electric effects in coaxial nanofibers of Y/W-type hexagonal ferrites and ferroelectrics. J. Comp. Sci. 2021, 5, 268. [Google Scholar] [CrossRef]
- Pullar, R.C.; Bdikin, I.K.; Bhattacharya, A.K. Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. J. Eur. Ceram. Soc. 2012, 32, 905–913. [Google Scholar] [CrossRef]
- Guan, G.; Zhang, K.; Gong, L.; Chen, X.; Li, X.; Wang, Q.; Wang, Y.; Xiang, J. Electromagnetic wave absorption enhancement of double-layer structural absorbers based on carbon nanofibers and hollow Co2Y hexaferrite microfibers. J. Alloy. Comp. 2020, 814, 152302. [Google Scholar] [CrossRef]
- Yadav, S.K.; Hemalatha, J. Synthesis and characterization of magnetoelectric Ba2Zn2Fe12O22–PbZr0. 52Ti0. 48O3 electrospun core–shell nanofibers for the AC/DC magnetic field sensor application. Appl. Phys. A 2024, 130, 67. [Google Scholar] [CrossRef]
- Liu, X.M.; Fu, S.Y.; Huang, C.J. Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites. Mater. Sci. Eng. B 2005, 121, 255–260. [Google Scholar] [CrossRef]
- Dai, Y.R.; Bao, P.; Zhu, J.S.; Wan, J.G.; Shen, H.M.; Liu, J.M. Internal friction study on CuFe2O4/PbZr0.53Ti0.47O3 composites. J. Appl. Phys. 2004, 96, 5687–5690. [Google Scholar] [CrossRef]
- Sapkota, B.; Hasan, M.T.; Martin, A.; Mahbub, R.; Shield, J.E.; Rangari, V. Fabrication and magnetoelectric investigation of flexible PVDF-TrFE/cobalt ferrite nanocomposite films. Mater. Res. Express 2022, 9, 046302. [Google Scholar] [CrossRef]
- Ren, S.Q.; Weng, L.Q.; Song, S.H.; Li, F.; Wan, J.G.; Zeng, M. BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response. J. Mater. Sci. 2005, 40, 4375–4378. [Google Scholar] [CrossRef]
- Ramanaa, M.V.; Reddy, N.R.; Sreenivasulu, G.; Murty, B.S.; Murthy, V.R.K. Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4−δ/PbZr0.52Ti0.48O3 composites–dielectric, piezoelectric and magnetic properties. Curr. Appl. Phys. 2009, 9, 1134–1139. [Google Scholar] [CrossRef]
- Zeng, M.; Wan, J.G.; Wang, Y.; Yu, H.; Liu, J.M.; Jiang, X.P.; Nan, C.W. Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 2004, 95, 8069–8073. [Google Scholar] [CrossRef]
- Bochenek, D.; Chrobak, A.; Dercz, G. Influence of the sintering method on the properties of a multiferroic ceramic composite based on PZT-type ferroelectric material and Ni-Zn ferrite. Materials 2022, 15, 8461. [Google Scholar] [CrossRef]
- Wu, D.; Gong, W.; Deng, H.; Li, M. Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing. J. Phys. D Appl. Phys. 2007, 40, 5002. [Google Scholar] [CrossRef]
- Guerra, J.D.; Betal, S.; Pal, M.; Garcia, J.E.; Oliveira, A.J.; M’Peko, J.C.; Hernandes, A.C.; Guo, R.; Bhalla, A.S. Magnetoelectric response in (1−x)PbZr0.65Ti0.35O3–xBaFe12O19 multiferroic ceramic composites. J. Am. Ceram. Soc. 2015, 98, 1542–1547. [Google Scholar] [CrossRef]
- Pereira, L.N.; Pastoril, J.C.A.; Dias, G.S.; Dos Santos, I.A.; Guo, R.; Bhalla, A.S.; Cotica, L.F. Designing Multifunctional Multiferroic Composites for Advanced Electronic Applications. Electronics 2024, 13, 2266. [Google Scholar] [CrossRef]
- Nair, S.S.; Pookat, G.; Saravanan, V.; Anantharaman, M.R. Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications. J. Appl. Phys. 2013, 114, 064309. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, X.; Xia, B.; Chu, B. Magnetoelectric response in laminated BaFe12O19/Pb(Zr,Ti)O3 composites. J. Appl. Phys. 2023, 133, 244101. [Google Scholar] [CrossRef]
- Hadouch, Y.; Mezzane, D.; Amjoud, M.B.; Laguta, V.; Hoummada, K.; Dolocan, V.O.; Jouiad, M.; Lahcini, M.; Uršič, H.; Fišinger, V.; et al. Multiferroic CoFe2O4–Ba0. 95Ca0.05Ti0.89Sn0.11O3 Core–Shell Nanofibers for Magnetic Field Sensor Applications. ACS Appl. Nano Mater. 2023, 6, 10236–10245. [Google Scholar] [CrossRef]
- Arash, S.; Kharal, G.; Chavez, B.L.; Ferson, N.D.; Mills, S.C.; Andrew, J.S.; Crawford, T.M.; Wu, Y. Multiferroicity and Semi-Cylindrical Alignment in Janus Nanofiber Aggregates. Adv. Func. Mater. 2025, 35, 2412690. [Google Scholar] [CrossRef]
- Durgaprasad, P.; Hemalatha, J. Magnetoelectric investigations on poly (vinylidene fluoride)/CoFe2O4 flexible electrospun membranes. J. Magn. Magn. Mater. 2018, 448, 94–99. [Google Scholar] [CrossRef]
- Prasad, P.D.; Hemalatha, J. Enhanced dielectric and ferroelectric properties of cobalt ferrite (CoFe2O4) fiber embedded polyvinylidene fluoride (PVDF) multiferroic composite films. Mater. Res. Express 2019, 6, 094007. [Google Scholar] [CrossRef]
- Prathipkumar, S.; Hemalatha, J. Magnetoelectric behavior and magnetic field-tuned energy storage capacity of SrFe12O19 nanofiber reinforced P (VDF-HFP) composite films. J. Magn. Magn. Mater. 2022, 555, 169378. [Google Scholar] [CrossRef]
Material | 4πMs (kG) | λ (10−6) | q33 (10−12 m/A) | d33 (10−12 m/V) | ε33/ε0 |
---|---|---|---|---|---|
PZT | - | 400 | 1750 | ||
BTO | - | 260 | 2500 | ||
NFO | 3.3 | −30 | −680 | 10 | |
Co2W | 2.3 | −74 | −170 | - | 10 |
Zn2W | 1.5 | −15 | −20 | - | 10 |
Zn2Y | 2.58 | −10 | −7 | - | 10 |
Ni2Y | 7.51 | −19 | −625 | - | 10 |
Material | Connectivity | MEVC (mVcm−1Oe−1) | Reference |
---|---|---|---|
Bulk Composites 0.3 CoFe2O4–0.7BiFeO3 | 0-3 | 285 | [83] |
CuFe2O4-PbZr0.53Ti0.47O3 | 0-3 | 425 | [84] |
PZT-CFO | 0-3 | 549 | [85] |
BTO-CFO | 0-3 | 2540 | [86] |
PZT-Ni0.83Co0.15Cu0.02Fe1.9O4 | 0-3 | 3150 | [87] |
PZT-NFO | 0-3 | 6700 | [88] |
PZT- NZFO | 0-3 | 1.3 × 104 | [89] |
PZT-NFO | 0-3 | 2.9 × 104 | [90] |
BaM-PZT | 0-3 | 95 | [91] |
Layered Composites PZT-NFO | 2-2 | 1500 | [92] |
BTO-CFO | 2-2 | 944,000 | [93] |
BaM-PZT | 2-2 | 5 | [94] |
Fiber films | |||
SrM-PZT | 1-1 | 22 | [76] |
SrM-BTO | 1-1 | 14.7 | [76] |
Ni2Y-PZT/BTO Zn2Y-PZT/BTO Co2W-PZT/BTO Zn2W-PZT/BTO NFO-BTO NZFO-PZT Single fiber CFO-BTO | 1-1 1-1 1-1 1-1 1-1 1-1 1-1 | 11.5 16.5 12.3 10.4 0.45 20 3.5 × 104 | [79] [79] [79] [79] [41] [59] [67] |
CFO-PZT | 1-1 | 2.95 × 104 | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Acharya, S.; Liu, Y.; Zhou, P.; Page, M.R.; Srinivasan, G. Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics. Appl. Sci. 2025, 15, 5162. https://doi.org/10.3390/app15095162
Saha S, Acharya S, Liu Y, Zhou P, Page MR, Srinivasan G. Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics. Applied Sciences. 2025; 15(9):5162. https://doi.org/10.3390/app15095162
Chicago/Turabian StyleSaha, Sujoy, Sabita Acharya, Ying Liu, Peng Zhou, Michael R. Page, and Gopalan Srinivasan. 2025. "Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics" Applied Sciences 15, no. 9: 5162. https://doi.org/10.3390/app15095162
APA StyleSaha, S., Acharya, S., Liu, Y., Zhou, P., Page, M. R., & Srinivasan, G. (2025). Review of Magnetoelectric Effects on Coaxial Fibers of Ferrites and Ferroelectrics. Applied Sciences, 15(9), 5162. https://doi.org/10.3390/app15095162