
materials

Article

Effect of Bainite to Ferrite Yield Strength Ratio on the
Deformability of Mesostructures for Ferrite/Bainite
Dual-Phase Steels

Gui-Ying Qiao 1,2, Zhong-Tao Zhao 2, Xian-Bo Shi 3, Yi-Yin Shan 3,*, Yu Gu 4 and Fu-Ren Xiao 2,*

����������
�������

Citation: Qiao, G.-Y.; Zhao, Z.-T.; Shi,

X.-B.; Shan, Y.-Y.; Gu, Y.; Xiao, F.-R.

Effect of Bainite to Ferrite Yield

Strength Ratio on the Deformability

of Mesostructures for Ferrite/Bainite

Dual-Phase Steels. Materials 2021, 14,

5352. https://doi.org/10.3390/

ma14185352

Academic Editor: Andrea Di Schino

Received: 10 August 2021

Accepted: 10 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Lab of Applied Chemistry of Hebei Province, School of Environment and Chemical Engineering,
Yanshan University, Qinhuangdao 066004, China; qiaoguiying@ysu.edu.cn

2 Key Lab of Metastable Materials Science&Technology, Hebei Key Lab for Optimizing Metal Product
Technology and Performance, College of Materials Science Engineering, Yanshan University,
Qinhuangdao 066004, China; zhaozhongtao@hotmail.com

3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110072, China; xbshi@imr.ac.cn
4 School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466000, China;

202guyu@163.com
* Correspondence: yyshan@imr.ac.cn (Y.-Y.S.); frxiao@ysu.edu.cn (F.-R.X.)

Abstract: The strength and plasticity balance of F/B dual-phase X80 pipeline steels strongly depends
on deformation compatibility between the soft phase of ferrite and the hard phase of bainite; thus, the
tensile strength of ferrite and bainite, as non-negligible factors affecting the deformation compatibility,
should be considered first. In this purely theoretical paper, an abstract representative volume elements
(RVE) model was developed, based on the mesostructure of an F/B dual-phase X80 pipeline steel.
The effect of the yield strength difference between bainite and ferrite on tensile properties and the
strain hardening behaviors of the mesostructure was studied. The results show that deformation first
occurs in ferrite, and strain and stress localize in ferrite prior to bainite. In the modified Crussard-
Jaoul (C-J) analysis, as the yield strength ratio of bainite to ferrite (σy,B/σy,F) increases, the transition
strain associated with the deformation transformation from ferrite soft phase deformation to uniform
deformation of ferrite and bainite increases. Meanwhile, as the uncoordinated deformation of ferrite
and bainite is enhanced, the strain localization factor (SLF) increases, especially the local strain
concentration. Consequently, the yield, tensile strength, and yield ratio (yield strength/tensile
strength) increase with the increase in σy,B/σy,F. Inversely, the strain hardening exponent and
uniform elongation decrease.

Keywords: F/B dual-phase steel; strength difference in bainite to ferrite; deformability; deformation
compatibility; simulation

1. Introduction

With the rapid increase in demand for clean energy, such as natural gas, long-distance
gas transportation pipelines are developing towards larger diameters and higher operating
pressures to maximize transport efficiency, promoting the rapid development of high-
strength pipeline steel. Thus, high-strength X80 grade steels have been applied in high-
throughput long-distance gas transportation pipelines [1–3]. Although the traditional
acicular ferrite (or low-carbon bainite) high-strength pipeline steels have good strength,
toughness, and weldability balance, their plasticity does not meet the requirements of
long-distance gas transportation pipelines to prevent deformation collapse caused by
geological and ocean current movement in hazardous geological areas. Therefore, plasticity
improvement of pipeline steel has become the focus of research on high-strength pipeline
steel [4,5].

The mechanical properties of steel strongly depend on its microstructure. The duplex-
phase microstructure steels take advantage of the mechanical properties of different steels’
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mechanical properties to obtain better comprehensive mechanical properties than single-
phase structured steel. Thus, the duplex-phase design has become the first option in
improving the comprehensive mechanical properties of steels, and a new type of fer-
rite/bainite (F/B) dual-phase X80 pipeline steel with excellent deformability has been
proposed and widely researched [6–8].

Usually, the F/B dual-phaseX80 pipeline steels are produced by an advanced thermo-
mechanical controlled process (TMCP) [9,10]. The TMCP parameters, including reheating
temperature, beginning rolling temperature, rolling reduction, finishing rolling tempera-
ture, beginning quick cooling temperature, cooling rate, and finishing cooling temperature,
strongly affect the microstructure of F/B dual-phase X80 pipeline steels, such as the volume
fraction, distribution, morphology and mechanical properties of each phase [9–13]. Thus,
the F/B steels’ microstructure effects on mechanical properties, strain hardening behavior,
microscopic deformation, and failure mechanism have been studied [14,15]. However,
those research works focused on the volume fraction of bainite effects on the strength, yield
ratio, uniform elongation, and strain hardening exponent. On the contrary, our research has
shown that the mechanical properties andstrainhardening behavior of the F/B dual-phase
X80 pipeline steel are independent of the volume fraction of bainite [16] and dependent
on the morphology and distribution of bainite [17]. This is because the deformation ofthe
low-strength ferrite occurs more easily during plastic deformation; concomitantly, strain
and stress concentration occurs at the F/B interface, and the plastic deformation occurs
in bainite to accommodate the high deformation properties of ferrite when the stress con-
centration near the F/B interface is higher than the yield strength of bainite [18]. In this
sense, the strength and plasticity difference between ferrite and bainite is another key
factor affecting the mechanical properties of F/B dual-phase pipeline steels. During the
F/B pipeline steel TMCP processes, the ferrite transformation occurs during the cooling
process, inthetime between the finishing of rolling and beginning of quick cooling, i.e.,
relaxation time. Then, the bainite is obtained during the subsequent rapid cooling [9].
Previous research shows that the finishing rolling temperature and beginning quick cooling
temperature, i.e., relaxation time, are very important in determining the volume fractions
of ferrite and bainite [12,13]. The C content in undercooled austenite increases as the ferrite
transformation and amount increases; simultaneously, the subsequent rapid cooling rate
affects the microstructure and mechanical properties of the bainite [19]. As a result, the
bainite change in strength and plasticity causes the variation in the strength and plasticity
of the F/B dual-phase pipeline steels. Therefore, the difference between ferrite and bainite
is another critical factor affecting the mechanical properties of F/B dual-phase pipeline
steels. Nevertheless, few studies exist on the effect of the difference between ferrite and
bainite on the strength and deformability of the F/B dual-phase pipeline steels.

In this work, abstract representative volume elements (RVE) of FEM models were
developed based on the mesostructure of the F/B dual-phase pipeline steel. Subsequently,
the effects of ferrite and bainite on the F/B dual-phase pipeline steel tensile properties
were investigated. Moreover, the strain and stress distributions of ferrite and bainite
in the mesostructure of F/B steel were simulated, and the difference in tensile strength
between the ferrite and bainite on the strain localization factor (SLF) is discussed. This
work aims to reveal the mechanism by which the difference in tensile strength between
ferrite and bainite affects the deformation compatibility in the mesostructure and to help
optimize the microstructure of the F/B dual-phase pipeline steels to obtain strength and
deformability balance.

2. FEM Model Generation and Analysis

Previous works have shown that the representative volume elements (RVE) based on
mesostructure and abstract RVE models are effective methods for studying the mechanism
of plastic deformation behavior of multi-phase steel [20,21]. According to our previous
work [16,17], the F/B dual-phase X80 pipeline steel microstructure consists of elongated bai-
nite distributed in a banded ferrite matrix with a bainite volume fraction of 41% (Figure 1a).
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The mesostructure-based abstract RVE model was built as shown in Figure 1b. In the
abstract RVE model, 40% bainite volume fraction was selected because the optimal volume
fraction of bainiteranges from 40% to 48% [16].
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Figure 1. (a) Optical microstructure of dual-phase X80 pipeline steel and (b) abstract RVE model
based on mesostructure.

Since it is challengingto obtain the mechanical properties of individual phases in the
microstructure with the same volume fraction of bainite, based on the previous results
and considering the hardness range of bainite, the mechanical properties of the individual
phases of ferrite and bainite were simulated and determined, as shown in Table 1. The
five models correspond to different bainite strengths. In the models, the Young’s modulus
(E) and Poisson’s ratio (µ) are assumed to be the same, while strain hardening index (n) and
yield strength (σy,B) are emphasized. The yield strength ratio of bainite to ferrite (σy,B/σy,F)
was determined to be from 2.11 to 3.30. In comparison, the actual F/B dual-phase X80
pipeline steel σy,B/σy,F is about 2.3.

Table 1. Parameters of mechanical properties of bainite and yield strength ratio of bainite to ferrite.

Models E (GPa) µ n σy,B (MPa) σy,B/σy,F

A 190 0.300 0.069 780 2.11
B 190 0.300 0.062 863 2.37
C 190 0.300 0.056 976 2.65
D 190 0.300 0.051 1087 2.94
E 190 0.300 0.047 1163 3.20

Finite element analysis shows the direct distribution of stress and strain in the
mesostructure. In this work, the microscopic stress and strain in the singlephase were
calculated by the method in reference [22]. After obtainingthe stress and strain in the single
phase, the mesostructure stress and strain of abstract RVE were calculated by the method
in reference [23].

3. Results
3.1. Mechanical Properties of Models with Different σy,B/σy,F

The stress-strain curves and mechanical properties of the models with a bainite to
ferrite yield strength ratio of (σy,B/σy,F) obtained by the simulation are shown in Figure 2.
The yield strength (σy) and tensile strength (σt) increase with the increase in σy,B/σy,F, where
the yield strength (σy) increase was higher than the yield strength (σt). As the σy,B/σy,F
increases from 2.11 to 3.20, the tensile strength increases from 755 MPa to 859 MPa, an
increase of 13%; meanwhile, the yield strength increases from 565 MPa to 668 MPa, for an
18% increase. As a result, the yield ratio (yield strength/tensile strength) increases from
0.748 to 0.778. Meanwhile, with the same σy,B/σy,F increase, the uniform elongation (UE)
decreases from 10.5% to 8.8%.
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3.2. Effects of σy,B/σy,F on Strain Hardening Behavior

The results, as stated above, show that the difference inmechanical properties between
bainite and ferrite can notablyaffect the strength and plasticity of F/B dual-phase pipeline
steel. Thisphenomenon may be attributed to the influence of σy,B/σy,F on the deformation
compatibility of the two phases during deformation. The plasticity of steelrelates to the
strain hardening behavior. Therefore, the strain hardening behaviors of the models with
different σy,B/σy,F were analyzed by Hollomon and modified Crussard-Jaoul analyses.

The Hollomon analysis is one ofthe easiest ways to analyze the strain hardening ability
of a material. The relationship of actual stress and actual strain curves of metal materials
can be described as [24]:

σ = Kεn (1)

where σ is the true stress, ε is the actual strain, n is the strain hardening exponent, and K is the
hardening coefficient. Taking the logarithm of both sides of Equation (1), it can be expressed as:

lnσ = nlnε + lnK (2)

Equation (2) shows there is a linear relationship between lnσ and lnε, and the slope
of the lnσ − lnε curve is the strain hardening exponent in the Hollomon analysis. The
lnσ − lnε curves of the models with different σy,B/σy,F are shown in Figure 3a.The strain
hardening exponentgenerally refers to the plastic deformation stage; thus, the slope of the
relationship curves of lnσ vs. lnε in the uniform plastic deformation stage is taken, and then
the effect of σy,B/σy,F on the strain hardening exponent of each model is obtained, as shown
in Figure 3b. The strain hardening exponent of the models decreases with the increase in
σy,B/σy,F, meaning that the uniform elongation decreases, as shown in Figure 2b.

The Hollomon analysis provides the relationship of strain hardening exponent and
deformability with the σy,B/σy,F for the F/B dual-phase pipeline steels; however, it cannot
explain the micro-mechanism of effect σy,B/σy,F on the strain hardening behaviorfor the F/B
dual-phase pipeline steelmodels. Therefore, modified C-J analysis was used in this work,
as it has been proved to be sensitive for characterizing the strain hardening capability [25].
The modified C-J analysis and the deduced form are shown in Equations (3) and (4) [25]:

εp = ε0 + Cσm (3)

ln
(

dσ

dεp

)
= (1 − m)lnσ − lnCm (4)

where σ is the true stress, εp is the actual plastic strain, ε0 is the initial true strain, m is
the inverse of strain hardening exponent, and C is the material constant. The relationship
between lnσ with ln

(
dσ
dεp

)
was calculated as shown in Figure 4a. The strain hardening

behavior of models with different σy,B/σy,F can be divided into three stages. Each stage is
associated with the dislocation evolution and deformation for each phase [26]. Stage I is
characterized by dislocations glide, entanglement, and concentration in ferrite near the F/B



Materials 2021, 14, 5352 5 of 12

interface. With increasing load, the dislocations and slip systems in bainite are activated
and propagated; as a result, uniform deformation occurs in ferrite and bainite, which is
the characteristic of stage II. In stage III, the strain hardening ability of the steel decreases
because some micropores begin to form, and the flow stress begins to decrease; thus, the
flow stress is unaltered by dislocations [26,27].
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Modified C-J analysis provides the slope of each stage by linear fitting, and the slope
is 1-m, which is used to describe the strain hardening capability of the models. The higher
value of 1/m represents a higher strain hardening capability [26,27]. The strain hardening
capacity of each stage in the modified C-J analytical model is shown in Table 2. From
Table 2, the 1/m value in stage II is higher than stagesI and III. Therefore, the deformation
in stage II determined the deformability of the models. In addition, with the increase
in σy,B/σy,F of models, the value of 1/m representing the strain hardening capability
decreases, consistent with the results from the Hollomon analysis (Figure 3b).

The σy,B/σy,F effects on the transition strain from stage I to II, and from II to III of the
models are shown in Figure 4b. The difference in theeffect of σy,B/σy,F on the transition
strain from stage I to II, and transition strain from II to III can be determined. With the
σy,B/σy,F increase, the transition strain from stage I to II increases, while the transition
strain from stage II to III slightly decreases.

Table 2. Strain hardening capability of models.

Model σy,B/σy,F
Stage I Stage II Stage III

1−m 1/m 1−m 1/m 1−m 1/m

A 2.11 −6.481 0.134 −2.158 0.317 −18.059 0.052
B 2.37 −7.807 0.114 −2.618 0.276 −13.498 0.069
C 2.65 −7.250 0.121 −3.281 0.234 −17.684 0.054
D 2.94 −7.124 0.123 −4.469 0.183 −18.067 0.052
E 3.20 −8.771 0.102 −4.896 0.170 −17.352 0.054
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According to the deformation mechanism of dual-phase steel, the deformation always
occurs in the soft matrix phase, and then the stress transfers into the secondary hard
phase [26]. The efficiency of strain transition from stage I to II helps reduce the discrepancy
of plastic deformation between the soft phase and the hard phase. The low transition
strain means that the co-deformation can take place earlier. Therefore, the discrepancy of
plastic deformation between the ferrite and bainite in the model increases when σy,B/σy,F
is higher (Figure 4b) because it needs more deformation in ferrite to generate more strain
and stress concentration near the F/B interface bainite deformation. Conversely, the higher
strain and stress concentration near the F/B interface increases the tendency of micro-
crack initiation near the F/B interface, resulting in the strain transition from stage II to III
decreasing (Figure 4b); consequently, the uniform deformation decreases. Therefore, the
strain and stress concentration in the models should be considered to understand the effect
of σy,B/σy,F on the deformation mechanism of the F/B dual-phase X80 pipeline steel.

3.3. Effect of σy,B/σy,F on Strain Localizationin the Models

Figure 5 shows the distribution of equivalent strain variation within the intermediate
structure as applied load up to tensile strength, i.e., the applied strain reaches maximum
uniform strain. The distribution of equivalent strain within the mesostructure is ununi-
form. The max shear strain bands along a 45◦ angle to the loading direction appear in
the mesostructure; meanwhile, the strong strain localization occurs in the ferrite near
the interface between ferrite and bainite. The σy,B/σy,F does not affect the distribution
characteristics of equivalent strains within the mesostructure because the models have
some bainite volume fraction, whereas the σy,B/σy,F affects the strain localization between
ferrite and bainite. With the increase in σy,B/σy,F, the difference inaverage and localized
equivalent plastic strain between the ferrite and bainite exhibits an increasing tendency.
The statistical results of the probability distribution function (PDF) calculated from Figure 5
confirm this.

Figure 6 shows the PDF of equivalent plastic strain using the calculations shown in
Figure 5. The σy,B/σy,F has a minor effect on the strain distribution of ferrite. Nevertheless,
the range of strain distribution in bainite diminishes with the increase in σy,B/σy,F. When
σy,B/σy,F is 2.1, the strain in bainite distributes in the range from 0 to 0.2, while the strain
of over 40% bainite is concentrated at about 0.1. The strain in ferrite distributes in the
range from 0 to 0.3, and the strain of about 30%ferrite is distributed at about 0.13. Whenthe
σy,B/σy,F is 3.1, the strain in bainite distributes in the range from 0 to 0.2, and the strain of
over 65% bainite is about 0.05. Meanwhile, the strain in ferrite remains distributed in the
range from 0 to 0.3, while the strain of about 30% ferrite is distributed at approximately 0.05.
From the simulation and PDF of equivalent plastic strain results (Figure 6), it is assumed
that the σy,B/σy,F in models affect the plastic strain localization between the ferrite and
bainite, affecting the mesostructure’s deformation compatibility. Thus, the results can be
analyzed by the strain localization factor (SLF). The SLF can quantitatively reveal the strain
localization and deformation compatibility between two phases in dual-phase steel. The
SLF was defined as follows [28]:

SLF =
n

∑
i=1

(εi,FFi,F − εi,BFi,B) (5)

where εi,F and εi,B are the equivalent plastic strain of i-th bin for ferrite and bainite, re-
spectively, and the Fi,F and Fi,B are the area frequency of εi,F and εi,B, respectively. The
low value of SLF corresponds to the lower difference in plastic strain between different
phases, while the high value of SLF corresponds to the increasing difference in plastic
strain between different phases.
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The σy,B/σy,F effect on the SLF is shown in Figure 7. The SLF increases with the
increase in σy,B/σy,F. The results indicate that the increasing σy,B/σy,F will enhance the
strain localization in mesostructure, as illustrated in Figure 8. Figure 8 shows the strain
distribution along with the deformed band in Figure 5. The deformed band was considered
the area with the most intense deformation. Moreover, the strength difference between
bainite and ferrite in mesostructure will intensify the uneven strain distribution. The largest
equivalent strain appears in ferrite in the front of the bainite corner, and the degree of
strain localization in this location significantly increases with the increase in the σy,B/σy,F
in models, as shown in Figure 8b. The localized strain increases from 0.6 to 1.4 when the
σy,B/σy,F rises from 2.11 to 3.20. The higher strain localization facilitates the micro-crack
initiation at this location and decreases the deformability.
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4. Discussion

The simulated results for the F/B dual-phase pipeline steels show that the yield
strength difference between bainite and ferrite greatly affects the tensile properties. The
yield strength, tensile strength, and yield ratio increase with the σy,B/σy,F increase in
models, while the uniform elongation decreases (Figure 2). In addition, the strain hardening
exponent as calculated by the Hollomon analysis also decreases (Figure 3). The effect of
the difference between bainite and ferrite (σy,B/σy,F) on the tensile properties of F/B dual-
phase pipeline steels is attributed to the deformation compatibility between the soft phase
of ferrite and hardness phase of bainite.
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For the F/B dual-phase steels, as the load is applied during the tensile deformation
process, the deformation occurs in the soft phase of ferrite, i.e., the dislocations firstly
glide under maximum shear stress along an angle of 45◦ to loading direction [29,30]; this
is why the deformation bands appear in the models (Figure 5). Bainite will inhibit the
dislocations glide, and the dislocations are arranged and entangled in ferrite in front of the
grain boundary between bainite and ferrite. As a result, the strain and stress concentration
accumulate in this region, and the deformation in ferrite is restrained [18]. With the
increasing load, the accumulated strain and stress increase. As the accumulated stress
is higher than the yield strength of bainite, the dislocations and slip systems in bainite
are activated and propagated; as a result, uniform strain or deformation of the soft phase
of ferrite and hard phase of bainite continues in either a coordinated or uncoordinated
manner, and overall yielding in F/B dual-phase steels occurs [26,31]. In this case, the
critical stress and strain to activate bainite deformation in models will increase with the
increasing yield strength of bainite. Thus, it suggests that the yield strength difference
between bainite and ferrite may affect the transition strain from single ferrite deformation
to two-phase uniform deformation and the yield strength of overall yield in two phases.
The suggestion agrees with the simulated results in this work. As the σy,B/σy,F increases
from 2.11 to 3.20, the transition strain from single ferrite deformation to two-phase uniform
deformation increases from 2.0% to 4.2% (Figure 4b); consequently, the yield strength of
the model for the F/B dual-phase steel increases from 565 MPa to 668 MPa (Figure 2).

Moreover, the increasing yield strength of bainite affects the critical transition strain
from a single-phase ferrite deformation to two-phase uniform deformation in models, the
deformation compatibility between ferrite and bainite, and the deformability of F/B dual-
phase steels. As the deformation enters the uniform deformation stage, although the bainite
also begins to deform, the incoordinate deformation between bainite and ferrite still exists
in the model because the bainite has a low plasticity and strain hardening exponent. Greater
plastic deformation of ferrite than bainite is required to support the deformation of bainite
continuously. Therefore, with tensile deformation increase, the deformation difference
between ferrite and bainite in the models increases (Figure 5b). Moreover, increasing the
strength of bainite also promotes the deformation difference between ferrite and bainite in
the models. As shown in Figures 5 and 6, even though the applied strain almost reached
maximum uniform deformation, the plastic deformation mainly remains concentrated
in the ferrite. Meanwhile, the deformation difference between ferrite and bainite in the
models increases with σy,B/σy,F increase; as a result, the SLF increases (Figure 7). On the
other hand, increasing the σy,B/σy,F restricts the plastic deformation in ferrite between the
two bainite grains, the PDF of equivalent plastic strain abates (Figure 6), and the severe
strain localization occurs in ferrite in front of the bainite grain corner to coordinate the
plastic deformation (Figure 8).

Many researchers believe that the tensile fracture mechanism of dual-phase steels
is related to the initiation, growth, and connection of micro-voids formed during the
deformation [29,30]. Liu et al. [18] found that the crystal slip in ferrite occurs relatively
more easily during plastic deformation. At the same time, the stress concentration at the
ferrite/bainite interface drives bainite rotation to accommodate the deformation of ferrite.
Thus, voids are initiated at the F/B interface or in ferrite when the stress concentration
satisfiesthe fracture strength criteria. Meanwhile, the high-stress concentration in bainite
may lead to initiate voids and to bainite fracture. From this point of view, with the
increase in bainite strength in the models, the bainite is difficult to rotate to accommodate
the deformation of ferrite under the stress concentration. The high strain and stress
concentration in ferrite near the ferrite/bainite interface is facilitated (Figure 8), and the
initiation of micro-voids is accelerated. Hence, the uniform elongation of F/B dual-phase
steel decreases with the increase in the σy,B/σy,F (Figure 2).

In the results stated above, the difference in strength between ferrite and bainite in
the models strongly affects the strength and plasticity of F/B dual-phase pipeline steels.
With the bainite strength increase, the strength and yield ratio of F/B dual-phase pipeline
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steels significantly increase, while the strain hardening exponent and uniform elongation
decrease. The effect of change in the strength difference between ferrite and bainite on
the tensile properties for F/B dual-phase pipeline steels is attributed to the difference in
deformation compatibility of two phases. Increasing the strength of bainite increases the
critical stress of the dislocations glide in bainite and the transition strain from single-phase
ferrite deformation to two phases of uniform deformation; thus, the yield strength is
improved. On the other hand, with the increasing strength difference between ferrite and
bainite, the ferrite deformation between the two elongated bainite grains is restricted, and
the strain localization factor between ferrite and bainite increases, mainly in areas of stress
and strain concentration, which may accelerate the micro-voids formation and decrease
the uniform elongation. The results suggest that the volume fraction and morphology of
bainite may be other factors to affect the deformation of ferrite and the strain localization
in ferrite near the bainite [16,17]. Therefore, the combined influence of strength, volume
fraction, and morphology of bainite on the strength, yield ratio, strain hardening exponent,
and uniform elongation of F/B dual-phase pipeline steels should be researched further.

5. Conclusions

The yield strength difference between bainite and ferrite (namely, the ratio of bainite to
ferrite (σy,B/σy,F)) in the mesostructure for the F/B DP steels on deformation compatibility
has been studied by abstract RVE models. The main conclusions from this work are
as follows:

1. For mesostructure of the F/B DP steel with different σy,B/σy,F, the yield and tensile
strength increase from 565 MPa and 755 MPa to 668 MPa and 859 MPa, respectively,
when the σy,B/σy,F increases from 2.11 to 3.20. Simultaneously, the yield ratio in-
creases from 0.748 to 0.778; consequently, the uniform elongation decreases from
10.5% to 8.8%.

2. Increasing the strength of bainite enhances the critical stress required for dislocation
glide in bainite. As a result, the transition strain from single-phase ferrite deformation
to simultaneous deformation of ferrite and bainite, i.e., the strain at which uniform
deformation begins, increases the yield strength.

3. Increasing the strength of bainite increases the strain localization factor (SLF), espe-
cially the local strain, and decreases the deformation compatibility of mesostructure,
which decreases the strain hardening exponent and increases the tendency of micro-
voids formation; therefore, the uniform elongation decreases.
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