Formation of Widmanstätten Ferrite and Grain Boundary Ferrite in a Hypereutectoid Pearlitic Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- WF laths arranged parallel and at a certain angle from with the original γ-grain boundary, accompanied by the formation of ferrite and pearlite at 607 °C. The WF, GB-α and adjacent pearlite ferrite have a K–S orientation due to the coherent interface being able to move displacively at lower transformation temperatures.
- Two-stage pearlite kinetics was found at 707 °C. Meanwhile, grain boundary abnormal structures are suppressed at 707 °C, which is attributed to the suppression of the formation of grain boundary cementite, and thus is beneficial to obtain a balanced pearlite lamellar structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baek, H.M.; Hwang, S.K.; Joo, H.S.; Im, Y.Y.; Son, I.H.; Bae, C.M. The effect of a non-circular drawing sequence on delamination characteristics of pearlitic steel wire. Mater. Des. 2014, 62, 137–148. [Google Scholar]
- Maruyama, N.; Tarui, T.; Tashiro, H. Atom probe study on the ductility of drawn pearlitic steels. Scr. Mater. 2002, 46, 599–603. [Google Scholar] [CrossRef]
- Jafari, M.; Bang, C.W.; Han, J.C.; Kim, K.M.; Na, S.H.; Park, C.G.; Lee, B.J. Evolution of microstructure and tensile properties of cold drawn hyper-eutectoid steel wires during post-deformation annealing. J. Mater. Sci. Technol. 2020, 41, 1–11. [Google Scholar]
- Li, Y.J.; Choi, P.P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 2012, 60, 4005–4016. [Google Scholar]
- Li, Y.J.; Raabe, D.; Herbig, M.; Choi, P.P.; Goto, S.; Kostka, A.; Yarits, H.; Borchers, C.; Kirchheim, R. Segregation Stabilizes Nanocrystalline Bulk Steel with Near Theoretical Strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.J.; Choi, P.; Borchers, C.; Westerkamp, S.; Goto, S.; Raabe, D.; Kirchheim, R. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater. 2011, 59, 3965–3977. [Google Scholar]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Influence of severe plastic deformation on the structure and properties of ultrahigh-carbon steel wire. In Investigations and Applications of Severe Plastic Deformation; Lowe, T.C., Valiev, R.Z., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 357–366. [Google Scholar]
- Taleff, E.M.; Syn, C.K.; Lesuer, D.R.; Sherby, O.D. Pearlite in ultrahigh carbon steels: Heat treatments and mechanical properties. Metall. Mater. Trans. A 1996, 27, 111–118. [Google Scholar]
- Carsi, M.; Penalba, F.; Ruano, O.A.; Sherby, O.D. High strain rate torsional behavior of an ultrahigh carbon steel (1.8 Pct C-1.6 Pct Al) at elevated temperature. Metall. Mater. Trans. A 1997, 28, 1913–1920. [Google Scholar] [CrossRef]
- Park, K.T.; Cho, S.K.; Choi, J.K. Pearlite morphology in the hypereutectoid steels. Scr. Mater. 1997, 37, 661–666. [Google Scholar] [CrossRef]
- Han, K.; Edmonds, D.V.; Smith, G.D.W. Optimization of mechanical properties of high-carbon pearlitic steels with Si and V additions. Metall. Mater. Trans. A 2001, 32, 1313–1324. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Mottishaw, T.D.; Smith, G.D.W.; Edmonds, D.V. Effects of vanadium addition on nucleation and growth of pearlite in high carbon steel. Mater. Sci. Tech. 1994, 10, 955–963. [Google Scholar] [CrossRef]
- Shimizu, K.; Kawabe, N. Size dependence of delamination of high-carbon steel wire. ISIJ Int. 2001, 41, 183–191. [Google Scholar] [CrossRef]
- Oki, Y.; Ibarak, N.; Ochiai, K.; Minamida, T.; Makii, K. Microstructure influence on ultra high tensile steel cord filament delamination. Kobe Steel Eng. Rep. 2000, 50, 37–40. [Google Scholar]
- Hillert, M. The Formation of Pearlite; Interscience: New York, NY, USA, 1962; p. 197. [Google Scholar]
- Miyamoto, G.; Karube, Y.; Furuhara, T. Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels. Acta Mater. 2016, 103, 370–381. [Google Scholar] [CrossRef]
- Nagao, M.; Yaguchi, H.; Ibaraki, N.; Ochiai, K. Suppression of secondary ferrite formation by boron addition in high carbon steel wires. Tetsu-to-Hagane 2003, 89, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshi, H.; Honeycombe, R. Steels: Microstructure and Properties; Butterworth-Heinemann: Amsterdam, The Netherlands, 2017; pp. 203–216. [Google Scholar]
- Chairuangsri, T.; Edmonds, D.V. Abnormal ferrite in hyper-eutectoid steels. Acta Mater. 2000, 48, 1581–1591. [Google Scholar] [CrossRef]
- Offerman, S.E.; Van Dijk, N.H.; Sietsma, J.; Grigull, S.; Lauridsen, E.M.; Margulies, L.; Poulsen, H.F.; Rekveldt, M.T.; Zwaag, S.V.D. Grain nucleation and growth during phase transformations. Science 2002, 298, 1003–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Min, N.; Li, W. Formation of Widmanstätten Ferrite and Grain Boundary Ferrite in a Hypereutectoid Pearlitic Steel. Metals 2022, 12, 493. https://doi.org/10.3390/met12030493
Zhao S, Min N, Li W. Formation of Widmanstätten Ferrite and Grain Boundary Ferrite in a Hypereutectoid Pearlitic Steel. Metals. 2022; 12(3):493. https://doi.org/10.3390/met12030493
Chicago/Turabian StyleZhao, Sixin, Na Min, and Wei Li. 2022. "Formation of Widmanstätten Ferrite and Grain Boundary Ferrite in a Hypereutectoid Pearlitic Steel" Metals 12, no. 3: 493. https://doi.org/10.3390/met12030493
APA StyleZhao, S., Min, N., & Li, W. (2022). Formation of Widmanstätten Ferrite and Grain Boundary Ferrite in a Hypereutectoid Pearlitic Steel. Metals, 12(3), 493. https://doi.org/10.3390/met12030493