Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = soil CO2 flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3536 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 293
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

23 pages, 2618 KiB  
Article
The Impact of Rice–Frog Co-Cultivation on Greenhouse Gas Emissions of Reclaimed Paddy Fields
by Haochen Huang, Zhigang Wang, Yunshuang Ma, Piao Zhu, Xinhao Zhang, Hao Chen, Han Li and Rongquan Zheng
Biology 2025, 14(7), 861; https://doi.org/10.3390/biology14070861 - 16 Jul 2025
Viewed by 322
Abstract
Reclaimed fields have a low soil fertility and low productivity compared to conventional arable land, necessitating research on productivity enhancement. The rice–frog co-culture model is an ecologically intensive practice that combines biodiversity objectives with agricultural production needs, offering high ecological and economic value. [...] Read more.
Reclaimed fields have a low soil fertility and low productivity compared to conventional arable land, necessitating research on productivity enhancement. The rice–frog co-culture model is an ecologically intensive practice that combines biodiversity objectives with agricultural production needs, offering high ecological and economic value. However, there is a lack of research on this model that has focused on factors other than soil nutrient levels. The present study evaluated the rice–frog co-culture model in a reclaimed paddy field across three experimental plots with varying frog stocking densities: a rice monoculture (CG), low-density co-culture (LRF), and high-density co-culture (HRF). We investigated the effects of the frog density on greenhouse gas emissions throughout the rice growth. The rice–frog co-culture model significantly reduced methane (CH4) emissions, with fluxes highest in the CG plot, followed by the LRF and then HRF plots. This reduction was achieved by altering the soil pH, the cation exchange capacity, the mcrA gene abundance, and the mcrA/pmoA gene abundance ratio. However, there was a contrasting nitrous oxide (N2O) emission pattern. The co-culture model actually increased N2O emissions, with fluxes being highest in the HRF plots, followed by the LRF and then CG plots. The correlation analysis identified the soil nosZ gene abundance, redox potential, urease activity, nirS gene abundance, and ratio of the combined nirK and nirS abundance to the nosZ abundance as key factors associated with N2O emissions. While the co-cultivation model increased N2O emissions, it also significantly reduced CH4 emissions. Overall, the rice–frog co-culture model, especially at a high density, offers a favorable sustainable agricultural production model. Full article
Show Figures

Figure 1

18 pages, 1414 KiB  
Article
Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management
by Qiliang Huang, Nobuko Katayanagi, Masakazu Komatsuzaki and Tamon Fumoto
Agriculture 2025, 15(14), 1525; https://doi.org/10.3390/agriculture15141525 - 15 Jul 2025
Viewed by 402
Abstract
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the [...] Read more.
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the DNDC-Rice model’s performance in simulating soil dynamics, crop growth, and C-N cycling processes in upland systems through various indicators, including soil temperature, water-filled pore space (WFPS), soybean biomass and yield, CO2 and N2O fluxes, and soil organic carbon (SOC). Based on simulated results, the underestimation of cumulative N2O flux (25.6% in FA and 5.1% in RY) was attributed to both underestimated WFPS and the algorithm’s limitations in simulating N2O emission pulses. Overestimated soybean growth increased respiration, leading to the overestimation of CO2 flux. Although the model captured trends in SOC stock, the simulated annual values differed from observations (−9.9% to +10.1%), potentially due to sampling errors. These findings indicate that the DNDC-Rice model requires improvements in its N cycling algorithm and crop growth sub-models to improve predictions for upland systems. This study provides validation evidence for applying DNDC-Rice to upland systems and offers direction for improving model simulation in paddy-upland rotation systems, thereby enhancing its applicability in such contexts. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

20 pages, 2217 KiB  
Article
Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems
by Yanan Liu, Xiaoqing Zhao, Yuchen Cheng, Rui Xie, Tiantian Meng, Liyu Chen, Yongfeng Ren, Chunlei Xue, Kun Zhao, Shuli Wei, Jing Fang, Xiangqian Zhang, Fengcheng Sun and Zhanyuan Lu
Agronomy 2025, 15(7), 1703; https://doi.org/10.3390/agronomy15071703 - 15 Jul 2025
Viewed by 352
Abstract
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG [...] Read more.
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG mitigation potential of organic substitution strategies, this study analyzed GHG fluxes, soil organic carbon (SOC) dynamics, indirect GHG emissions, and Net Primary Productivity (NPP) based on a long-term field positioning experiment initiated in 2016. Six fertilizer regimes were systematically compared: no fertilizer control (CK); only phosphorus and potassium fertilizer (PK); total chemical fertilizer (NPK); 1/3 chemical N substituted with sheep manure (OF1); dual substitution protocol with 1/6 chemical N substituted by sheep manure and 1/6 substituted by straw-derived N (OF2); complete chemical N substitution with sheep manure (OF3). The results showed that OF1 and OF2 maintained crop yields similar to those under NPK, whereas OF3 reduced yield by over 10%; relative to NPK, OF1, OF2, and OF3 significantly increased SOC sequestration rates by 50.70–149.20%, reduced CH4 uptake by 7.9–70.63%, increased CO2 emissions by 1.4–23.9%, decreased N2O fluxes by 3.6–56.2%, and mitigated indirect GHG emissions from farm inputs by 24.02–63.95%. The NGHGB was highest under OF1, 9.44–23.99% greater than under NPK. These findings demonstrate that partial organic substitution increased carbon sequestration, maintained crop yields, whereas high substitution rates increase the risk of carbon emissions. The study results indicate that substituting 1/3 of chemical nitrogen with sheep manure in maize cropping systems represents an effective fertilizer management approach to simultaneously balance productivity and ecological sustainability. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

23 pages, 4607 KiB  
Article
Threshold Soil Moisture Levels Influence Soil CO2 Emissions: A Machine Learning Approach to Predict Short-Term Soil CO2 Emissions from Climate-Smart Fields
by Anoop Valiya Veettil, Atikur Rahman, Ripendra Awal, Ali Fares, Timothy R. Green, Binita Thapa and Almoutaz Elhassan
Sustainability 2025, 17(13), 6101; https://doi.org/10.3390/su17136101 - 3 Jul 2025
Viewed by 555
Abstract
Machine learning (ML) models are widely used to analyze the spatiotemporal impacts of agricultural practices on environmental sustainability, including the contribution to global greenhouse gas (GHG) emissions. Management practices, such as organic amendment applications, are critical pillars of Climate-smart agriculture (CSA) strategies that [...] Read more.
Machine learning (ML) models are widely used to analyze the spatiotemporal impacts of agricultural practices on environmental sustainability, including the contribution to global greenhouse gas (GHG) emissions. Management practices, such as organic amendment applications, are critical pillars of Climate-smart agriculture (CSA) strategies that mitigate GHG emissions while maintaining adequate crop yields. This study investigated the critical threshold of soil moisture level associated with soil CO2 emissions from organically amended plots using the classification and regression tree (CART) algorithm. Also, the study predicted the short-term soil CO2 emissions from organically amended systems using soil moisture and weather variables (i.e., air temperature, relative humidity, and solar radiation) using multilinear regression (MLR) and generalized additive models (GAMs). The different organic amendments considered in this study are biochar (2268 and 4536 kg ha−1) and chicken and dairy manure (0, 224, and 448 kg N/ha) under a sweet corn crop in the greater Houston area, Texas. The results of the CART analysis indicated a direct link between soil moisture level and the magnitude of CO2 flux emission from the amended plots. A threshold of 0.103 m3m−3 was calculated for treatment amended by biochar level I (2268 kg ha−1) and chicken manure at the N recommended rate (CXBX), indicating that if the soil moisture is less than the 0.103 m3m−3 threshold, then the median soil CO2 emission is 142 kg ha−1 d−1. Furthermore, applying biochar at a rate of 4536 kg ha−1 reduced the soil CO2 emissions by 14.5% compared to the control plots. Additionally, the results demonstrate that GAMs outperformed MLR, exhibiting the highest performance under the combined effect of chicken and biochar. We conclude that quantifying soil moisture thresholds will provide valuable information for the sustainable mitigation of soil CO2 emissions. Full article
Show Figures

Figure 1

14 pages, 671 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on Soil N2O Emission and Soil Carbon Storage in Lakeshore Zone
by Sichen Qi, Guoxiu Jia, Weijia Cao, Wentao Zhong, Zhenxing Wang, Lixin Wang, Tiejun Liu, Jianying Guo and Lu Wen
Sustainability 2025, 17(13), 5987; https://doi.org/10.3390/su17135987 - 29 Jun 2025
Viewed by 455
Abstract
This study examined the short-term effects of nitrogen (N) and phosphorus (P) addition on soil N2O flux and organic carbon content in the lakeshore zone of an arid inland lake, Daihai. Treatments included control (N0P0), N addition (N1P0), P addition (N0P1), [...] Read more.
This study examined the short-term effects of nitrogen (N) and phosphorus (P) addition on soil N2O flux and organic carbon content in the lakeshore zone of an arid inland lake, Daihai. Treatments included control (N0P0), N addition (N1P0), P addition (N0P1), and NP co-addition (N1P1). Using the static chamber method and lab analyses, we measured soil N2O flux and organic carbon content at different growth stages. Results showed that, in the early growing season, short-term N and P addition had no significant effect on soil N2O flux, with all treatments acting as N2O sources. However, N and NP treatments significantly increased soil organic carbon (SOC) storage, improving carbon sequestration benefits by 72.7% to 98.1%. During the peak growing season, N and NP treatments significantly enhanced soil N2O emissions, while NP treatment further increased SOC storage, the carbon sequestration benefits of all treatments ranging from 49.0% to 56.5%. At the late growing season, N and P addition had no significant impact on soil N2O flux or organic carbon storage, with all sites acting as N2O sinks and SOC storage showing no significant change across treatments (carbon sequestration benefits ranged from 0.3% to 38.5%). The study highlights that the response of soil N2O flux to short-term N and P addition varies at different growth stages, while overall, N and P addition promotes soil carbon sequestration throughout the growing season in the lakeshore zone. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Impact of Coastal Beach Reclamation on Seasonal Greenhouse Gas Emissions: A Study of Diversified Saline–Alkaline Land Use Patterns
by Jiayi Xie, Ye Yuan, Xiaoqing Wang, Rui Zhang, Rui Zhong, Jiahao Zhai, Yumeng Lu, Jiawei Tao, Lijie Pu and Sihua Huang
Agriculture 2025, 15(13), 1403; https://doi.org/10.3390/agriculture15131403 - 29 Jun 2025
Viewed by 388
Abstract
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. [...] Read more.
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. To address this knowledge gap, this study characterized dynamic exchanges within the soil–plant–atmosphere continuum by employing continuous monitoring across four representative coastal wetland soil–vegetation systems in Jiangsu, China. The results show the carbon dioxide (CO2) and nitrous oxide (N2O) flux exchanges between the system and the atmosphere and soil–vegetation carbon pools, which revealed the drivers of carbon dynamics in the coastal wetland system. The four study sites, converted from coastal wetlands to agricultural lands at different times (years), generally act as CO2 sinks and N2O sources. Higher levels of CO2 sequestration occur as the age of reclamation rises. In terms of time scale, crops lands were found to be CO2 sinks during the growing period but became CO2 sources during the crop fallow period. Although the temporal trend of the N2O flux was generally smooth, reclaimed farmlands acted as net sources of N2O, particularly during the crop-growing period. The RDA and PLS-PM models illustrate that soil salinity, acidity, and hydrothermal conditions were the key drivers affecting the magnitude of the GHG flux exchanges under reclamation. This study demonstrates that GHG emissions from reclaimed wetlands can be effectively regulated through science-based land management, calling for prioritized attention to post-development practices rather than blanket restrictions on coastal exploitation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 7728 KiB  
Article
Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Pepper Yield and Soil GHGs Emissions
by Antonio Manco, Matteo Giaccone, Luca Vitale, Giuseppe Maglione, Maria Riccardi, Bruno Di Matteo, Andrea Esposito, Vincenzo Magliulo and Anna Tedeschi
Horticulturae 2025, 11(6), 708; https://doi.org/10.3390/horticulturae11060708 - 19 Jun 2025
Viewed by 749
Abstract
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under [...] Read more.
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under two nitrogen fertilization methods: granular fertilization versus low-frequency fertigation with urea, each supplying about 63 kg N ha−1. Eight automated static chambers coupled to a cavity ring-down spectrometer monitored soil CO2 and N2O fluxes throughout the season. Cumulative emissions did not differ between treatments (CO2: 811 ± 6 g m−2 vs. 881 ± 4 g m−2; N2O: 0.038 ± 0.008 g m−2 vs. 0.041 ± 0.015 g m−2, fertigation vs. granular), and marketable yield remained at ~11 t ha−1, leaving product-scaled global warming potential (GWP) unchanged. Although representing less than 2% of measured fluxes, “hot moments,” burst emissions exceeding four standard deviations (SD) from the mean, accounted for up to 4% of seasonal CO2 and 19% of N2O. Fertigation doubled the frequency of these events but reduced their peak magnitude, whereas granular application produced fewer but more extreme bursts (>11 SD). Results showed that fertigation did not mitigate GHGs emission nor improve productivity for Mediterranean pepper, mainly due to the low application frequency and the use of a urea fertilizer. Moreover, we can highlight that in horticultural systems, omitting ‘hot moments’ leads to systematic underestimation of emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

21 pages, 10366 KiB  
Article
An Assessment of the Impact of Gypsum Deposit Development on Changes in the Radiation Environment
by Alexander I. Malov, Vitaliy A. Nakhod, Sergey V. Druzhinin and Elena N. Zykova
Appl. Sci. 2025, 15(12), 6639; https://doi.org/10.3390/app15126639 - 12 Jun 2025
Viewed by 491
Abstract
The aim of the conducted research was to assess the impact of gypsum deposit development on changes in the radiation levels of the abiotic components of the environment. For this purpose, a study of the radioactivity of water, bottom sediment, soil, gypsum and [...] Read more.
The aim of the conducted research was to assess the impact of gypsum deposit development on changes in the radiation levels of the abiotic components of the environment. For this purpose, a study of the radioactivity of water, bottom sediment, soil, gypsum and loam samples was performed. Ground-based studies of the distribution of the values of the ambient dose equivalent rate of gamma radiation and radon flux density were also carried out. It was shown that due to the high solubility of gypsum, the degree of karstification of the territory increases under the influence of meteoric waters, and as a result of the intensification of anthropogenic impact, the degree of chemical weathering of rocks increases. This leads to a coordinated change in not only the chemical but also the radiation conditions. In particular, radioactive contamination of quarry waters and areas of increased radon flux density in soil air were established. In bottom sediments, the significant correlations of 137Cs, 238U and 234U activity concentrations with carbonates, organic matter and soluble salts contents, as well as Fe, Zn, Cu, Cr, Pb, Ni, Mo, Cd, Co, Ti and V, indicate a significant role of the anthropogenic factor in the accumulation in bottom sediments. This factor is associated with both regional atmospheric transport (137Cs) and the activity of the mining enterprise in the study area (238U and 234U). Full article
(This article belongs to the Special Issue Advances in Environmental Radioactivity Monitoring and Measurement)
Show Figures

Figure 1

24 pages, 3511 KiB  
Article
Dynamics of Greenhouse Gas Fluxes in Açaí Cultivation: Comparing Amazonian Upland and Floodplain Soils
by Mario Flores Aroni, José Henrique Cattanio and Claudio José Reis de Carvalho
Forests 2025, 16(6), 944; https://doi.org/10.3390/f16060944 - 4 Jun 2025
Viewed by 1363
Abstract
Global warming is driven by the increasing atmospheric emissions of greenhouse gases. Soils are highly sensitive to climate change and can shift from being carbon reservoirs to carbon sources under warmer and wetter conditions. This study is the first to simultaneously measure trace [...] Read more.
Global warming is driven by the increasing atmospheric emissions of greenhouse gases. Soils are highly sensitive to climate change and can shift from being carbon reservoirs to carbon sources under warmer and wetter conditions. This study is the first to simultaneously measure trace gas fluxes in Euterpe oleracea (açaí) plantations in upland areas, contrasting them with floodplain areas managed for açaí production in the eastern Amazon. Flux measurements were conducted during both the rainy and dry seasons using the closed dynamic chamber technique. In upland areas, CO2 fluxes exhibited spatial (plateau vs. lowland) and temporal (hourly, daily, and seasonal) variations. During both the rainy and dry months, CH4 uptake in upland soils was higher in lowland areas compared to the plateau. When comparing the two ecosystems, upland areas emitted more CO2 during the rainy season, while floodplain areas released more CH4 into the atmosphere. Unexpectedly, during the dry season, floodplain soils produced more CO2 and captured more CH4 from the atmosphere compared to upland soils. In upland areas, CO2-equivalent production reached 59.1 Mg CO2-eq ha−1 yr−1, while in floodplain areas, it reached 49.3 Mg CO2-eq ha−1 yr−1. Soil organic matter plays a vital role in preserving water and microorganisms, enhancing ecosystem productivity in uniform açaí plantations and intensifying the transfer of CH4 from the atmosphere to the soil. However, excessive soil moisture can create anoxic conditions, block gas diffusion, reduce soil respiration, and potentially turn the soil from a sink into a source of CH4. Full article
(This article belongs to the Special Issue Forest Dynamics Under Climate and Land Use Change)
Show Figures

Figure 1

36 pages, 10376 KiB  
Article
Genetic K-Means Clustering of Soil Gas Anomalies for High-Enthalpy Geothermal Prospecting: A Multivariate Approach from Southern Tenerife, Canary Islands
by Ángel Morales González-Moro, Luca D’Auria and Nemesio M. Pérez Rodríguez
Geosciences 2025, 15(6), 204; https://doi.org/10.3390/geosciences15060204 - 1 Jun 2025
Viewed by 479
Abstract
High-enthalpy geothermal resources in volcanic settings often lack clear surface manifestations, requiring integrated, data-driven approaches to identify hidden reservoirs. In this study, we apply a multivariate clustering technique—genetic K-Means clustering (GKMC)—to a comprehensive soil gas dataset collected from 1050 sampling sites across the [...] Read more.
High-enthalpy geothermal resources in volcanic settings often lack clear surface manifestations, requiring integrated, data-driven approaches to identify hidden reservoirs. In this study, we apply a multivariate clustering technique—genetic K-Means clustering (GKMC)—to a comprehensive soil gas dataset collected from 1050 sampling sites across the ~100 km2 Garehagua mining license, located in the southern rift zone of Tenerife (Canary Islands). The survey included diffuse CO2 flux measurements and concentrations of key soil gases (He, H2, CH4, O2, N2, Ar isotopes, and 222Rn, among others). Statistical-graphical analysis using the Sinclair method allowed for an objective classification of geochemical anomalies relative to background populations. The GKMC algorithm segmented the dataset into geochemically coherent clusters. One cluster, defined by elevated CO2, helium, and 222Rn levels, showed a clear spatial correlation with inferred tectonic lineaments in the southern rift zone. These anomalies are interpreted as structurally controlled conduits for the ascent of deep magmatic-hydrothermal fluids. The findings support the presence of a concealed geothermal system structurally constrained in the southern region of Tenerife. This study demonstrates that integrating GKMC clustering with soil gas geochemistry offers a robust methodology for detecting hidden geothermal anomalies. By enhancing anomaly detection in areas with subtle or absent surface expression, this approach contributes to reducing exploration risk and provides a valuable decision-support tool for targeting future drilling operations in volcanic terrains. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

23 pages, 6826 KiB  
Article
Digestate Application on Grassland: Effects of Application Method and Rate on GHG Emissions and Forage Performance
by Petr Šařec, Václav Novák, Oldřich Látal, Martin Dědina and Jaroslav Korba
Agronomy 2025, 15(5), 1243; https://doi.org/10.3390/agronomy15051243 - 20 May 2025
Viewed by 568
Abstract
The application of digestate as a fertilizer offers a promising alternative to synthetic inputs on permanent grasslands, with benefits for productivity and environmental performance. This four-year study evaluated the impact of two digestate application methods—disc injection (I) and band spreading (S)—combined with four [...] Read more.
The application of digestate as a fertilizer offers a promising alternative to synthetic inputs on permanent grasslands, with benefits for productivity and environmental performance. This four-year study evaluated the impact of two digestate application methods—disc injection (I) and band spreading (S)—combined with four dose variants (0, 20, 40, and 80 m3·ha−1), including split-dose strategies. Emissions of ammonia (NH3), carbon dioxide (CO2), and methane (CH4) were measured using wind tunnel systems immediately after application. Vegetation status was assessed via Sentinel-2-derived Normalized Difference Vegetation Index, Normalized Difference Water Index, and Modified Soil Adjusted Vegetation Index, and agronomic performance through dry matter yield (DMY), net energy for lactation (NEL), and relative feed value (RFV). NH3 and CO2 emissions increased proportionally with digestate dose, while CH4 responses suggested a threshold effect, but considering solely the disc injection, CH4 flux did not increase markedly with higher application rates. Disc injection resulted in significantly lower emissions of the monitored fluxes than band spreading. The split-dose I_40+40 variant achieved the highest DMY (3.57 t·ha−1) and improved forage quality, as indicated by higher NEL values. The control variant (C, no fertilization) had the lowest yield and NEL. These results confirm that subsurface digestate incorporation in split doses can reduce emissions while supporting yield and forage quality. Based on the findings, disc injection at 40+40 m3·ha−1 is recommended as an effective option for reducing emissions and maintaining productivity in managed grasslands. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

23 pages, 5566 KiB  
Article
The Impact of Beach Wrack on Greenhouse Gas Emissions from Coastal Soils
by Olga Nesterova, Mariia Bovsun, Andrei Egorin, Andrey Yatsuk, Dmitry Kravchenko, Irina Lisina, Igor Stepochkin and Anastasia Brikmans
Climate 2025, 13(5), 91; https://doi.org/10.3390/cli13050091 - 30 Apr 2025
Viewed by 580
Abstract
The existing management strategies of macrophyte beach wrack are not always environmentally sound. In this study, we tried to assess the impact of the presence or absence of macrophyte beach wrack on the CO2 flux and the possibility of creating an environmentally [...] Read more.
The existing management strategies of macrophyte beach wrack are not always environmentally sound. In this study, we tried to assess the impact of the presence or absence of macrophyte beach wrack on the CO2 flux and the possibility of creating an environmentally sound recycling of macrophyte beach wrack based on their removal from the beach and processing into biochar. The study was conducted on the coast of the Sea of Japan in the bay of Kievka. The Picarro G4301 portable laser gas analyzer was used to measure CO2 fluxes in areas with and without macrophyte beach wrack. The CO2 flux was 23 times higher at plots with macrophyte beach wrack, compared with plots without macrophyte beach wrack. In the plots after manual removal of the macrophyte beach wrack, on average, there was a 1.6-fold decrease in flow values compared to the plots with the macrophyte beach wrack. Considering the frequency of emissions in the study area, which is associated with frequent cyclones and storms, it is possible to organize the systematic cleaning of macrophyte beach wrack for the production of biochar. Creating projects based on the conversion of macrophyte beach wrack into biochar can have both environmental and economic benefits. The environmental benefits include the reduction of CO2 flux at plots after manual removal of macrophyte beach wrack; the long-term storage of carbon from macrophyte beach wrack biomass in the form of biochar; and the reduction of CO2 flux from soils (carbon sequestration) with the correct technology of introducing biochar into the soil. However, for a more accurate assessment, monitoring seasonal measurements and economic calculations of the entire technological chain of production, risks, and footprint are necessary. Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
Show Figures

Figure 1

25 pages, 3380 KiB  
Article
Organic Amendments Enhance Agroecosystem Multifunctionality via Divergent Regulation of Energy Flow Uniformity in Soil Nematode Food Webs
by Tianyuan Huang, Jinghua Huang, Jing Zhang, Guoqing Li and Shiwei Zhao
Agronomy 2025, 15(5), 1048; https://doi.org/10.3390/agronomy15051048 - 26 Apr 2025
Viewed by 544
Abstract
Applying organic amendments enhances agroecosystem multifunctionality (EMF), yet its mechanisms via soil food-web energetics remain unclear. A field experiment was conducted on China’s Loess Plateau in a winter wheat system, comparing mineral fertilizer with straw, biochar, and liquid organic fertilizer to assess their [...] Read more.
Applying organic amendments enhances agroecosystem multifunctionality (EMF), yet its mechanisms via soil food-web energetics remain unclear. A field experiment was conducted on China’s Loess Plateau in a winter wheat system, comparing mineral fertilizer with straw, biochar, and liquid organic fertilizer to assess their impacts on nematode communities and EMF (plant performance and carbon, nitrogen, phosphorus cycling). Using high-throughput sequencing and energy flux modeling, we found that straw and biochar enhanced nematode diversity and co-occurrence network complexity, while liquid organic fertilizer reduced network complexity. Straw balanced fungal- and bacterial-driven energy pathways, enhancing energy flow uniformity (1.05) and EMF. However, its high C:N ratio requires mineral fertilizers to alleviate nitrogen limitations, ensuring stable bacterial energy fluxes and preventing functional trade-offs. Biochar elevated total energy flux but prioritized bacterial- and herbivore-driven pathways, reducing energy flow uniformity (0.76) and functional balance. Liquid organic fertilizer favored omnivores-predators, destabilizing lower trophic functions with minimal functional gains. Amendment properties (C:N ratio, pH) shaped nematode-mediated energy distribution, linking biodiversity to multifunctionality. Overall, straw is optimal for supporting EMF when combined with mineral fertilizers, while biochar and liquid fertilizer require tailored management to mitigate functional trade-offs. These findings advance sustainable strategies for dryland agroecosystems in the Loess Plateau region and similar environments. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 5286 KiB  
Article
Daily Variation of Soil Greenhouse Gas Fluxes in Rubber Plantations Under Different Levels of Organic Fertilizer Substitution
by Wangxin Zhang, Qingmian Chen, Hongyu Ran, Wen Lu, Wenxian Xu, Waqar Ali, Qiu Yang, Wenjie Liu, Mengyang Fang and Huai Yang
Forests 2025, 16(4), 706; https://doi.org/10.3390/f16040706 - 21 Apr 2025
Viewed by 389
Abstract
It has been widely recognized that replacing chemical fertilizers with organic fertilizers (organic substitution) could significantly increase the long-term productivity of the land and potentially enhance resilience to climate change. Nevertheless, there is limited information on the accurate monitoring of soil greenhouse gas [...] Read more.
It has been widely recognized that replacing chemical fertilizers with organic fertilizers (organic substitution) could significantly increase the long-term productivity of the land and potentially enhance resilience to climate change. Nevertheless, there is limited information on the accurate monitoring of soil greenhouse gas (GHG) fluxes at different levels of organic substitution in rubber plantations. Before accurate estimation of soil GHG fluxes can be made, it is important to investigate diurnal variations and suitable sampling times. In this study, six treatment groups of rubber plantations in the Longjiang Farm of Baisha Li autonomous county, Hainan Island, including the control (CK), conventional fertilizer (NPK), and organic substitution treatments in which organic fertilizer replaced 25% (25%M), 50% (50%M), 75% (75%M), and 100% (100%M) of chemical nitrogen fertilizer were selected as study objectives. The soil GHG fluxes were observed by static chamber-gas chromatography for a whole day (24 h) during both wet and dry seasons. The results showed the following: (1) There was a significant single-peak daily variation of GHGs in rubber plantation soils. (2) The soil GHG fluxes observed from 9:00–12:00 are closer to the daily average fluxes. (3) Organic fertilizer substitution influenced soil CO2 and N2O fluxes and had no significant effect on soil CH4 fluxes. Fluxes of soil CO2 and N2O increased firstly and then decreased gradually when the substitution ratios exceeded 50% or 75%. (4) Soil CO2 and N2O fluxes were positively correlated with soil temperature and soil moisture, and CH4 fluxes were negatively correlated with soil temperature and soil moisture in both wet and dry seasons. The study indicated that understanding the daily pattern of GHG changes in rubber forest soils under different levels of organic fertilizer substitution and the optimal observation time could improve the accurate assessment of long-timescale observation studies. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop