Journal Description
Soil Systems
Soil Systems
- formerly Soils - is an international, scientific, peer-reviewed, open access journal on soil science, published quarterly online by MDPI. The Italian Society of Soil Science (SISS) is affiliated with Soil Systems and its members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), AGRIS, PubAg, GeoRef, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Soil Science) / CiteScore - Q1 (Earth-Surface Processes)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 31.6 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.5 (2024);
5-Year Impact Factor:
3.8 (2024)
Latest Articles
Synthetic Bacterial Consortium Induces Dynamic Shifts in Fungal Community and Alters Microbial Network Topology in Barley Soil Under Field Conditions
Soil Syst. 2025, 9(4), 116; https://doi.org/10.3390/soilsystems9040116 (registering DOI) - 19 Oct 2025
Abstract
Microorganisms are fundamental drivers of soil productivity, mediating nutrient cycling and pathogen suppression. In this study, we evaluated changes in the fungal community in the soil of barley (Hordeum vulgare L.) in a field experiment involving the application of a consortium of
[...] Read more.
Microorganisms are fundamental drivers of soil productivity, mediating nutrient cycling and pathogen suppression. In this study, we evaluated changes in the fungal community in the soil of barley (Hordeum vulgare L.) in a field experiment involving the application of a consortium of Paenibacillus pabuli, Priestia megaterium, Pseudomonas koreensis, and Pseudomonas orientalis. Seed pretreatment and seed pretreatment followed by rhizosphere drenching at different growth stages were implemented. Regarding fungal communities in bulk soil, the rhizospheres of untreated and treated plants were characterized based on full-length ribosomal RNA gene (18S-5.8S-28S) metabarcoding sequencing. Despite the compositional shifts, no statistical differences were observed among the alpha diversity metrics. Seed treatment resulted in long-term, targeted suppression of Fusarium graminearum, Fusarium fujikuroi, Fusarium musae, and Fusarium verticillioides from the booting through flowering and dough development stages, outperforming seed pretreatment followed by rhizosphere drenching. A low-modularity network was observed in the rhizosphere of untreated plants. Seed treatment fostered a highly interconnected and uniform network with low hub-betweenness scores. Rhizosphere drenching of pretreated seeds shifted the network topology toward higher hub-betweenness scores, reducing their connectivity by up to 10% in the rhizosphere and bulk soil. These findings provide a framework for optimizing the soil ecosystem for sustainable agriculture.
Full article
(This article belongs to the Topic Interactions between Plants and Soil Microbes in Natural Ecosystem)
►
Show Figures
Open AccessArticle
Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils
by
Daniel F. Petticord, Benjamin T. Uveges, Elizabeth H. Boughton, Brian D. Strahm and Jed P. Sparks
Soil Syst. 2025, 9(4), 115; https://doi.org/10.3390/soilsystems9040115 - 16 Oct 2025
Abstract
►▼
Show Figures
Phosphorus (P) is essential to life yet constrained by finite reserves, heterogeneous distribution, and strong chemical binding to soil minerals. Pedogenesis progressively alters the availability of P: in ‘young’ soils, P associated with Ca and Mg is relatively labile, while in ‘old’ soils,
[...] Read more.
Phosphorus (P) is essential to life yet constrained by finite reserves, heterogeneous distribution, and strong chemical binding to soil minerals. Pedogenesis progressively alters the availability of P: in ‘young’ soils, P associated with Ca and Mg is relatively labile, while in ‘old’ soils, acidification and leaching deplete base cations, shifting P into organic matter and recalcitrant Al- and Fe-bound pools. Podzolized soils (Spodosols) provide a unique lens for studying this transition because podzolization vertically segregates these dynamics into distinct horizons. Organic cycling dominates the surface horizon, while downward translocation of Al, Fe, and humus creates a spodic horizon that immobilizes P through sorption and co-precipitation in amorphous organometal complexes. This spatial separation establishes two contrasting P pools—biologically dynamic surface P and mineral-stabilized deep P—that may be variably accessible to plants and microbes depending on depth, chemistry, and hydrology. We synthesize mechanisms of spodic P retention and liberation, including redox oscillations, ligand exchange, root exudation, and physical disturbance, and contrast these with strictly mineral-driven or biologically dominated systems. We further propose that podzols serve as natural experimental models for ecosystem aging, allowing researchers to explore how P cycling reorganizes as soils develop, how vertical stratification structures biotic strategies for nutrient acquisition, and how deep legacy P pools may be remobilized under environmental change. By framing podzols as a spatial analogue of long-term weathering, this paper identifies them as critical systems for advancing our understanding of nutrient limitation, biogeochemical cycling, and sustainable management of P in diverse ecosystems.
Full article

Figure 1
Open AccessArticle
Improving Chernozem Fertility and Barley Yield Through Combined Application of Phosphorus Fertilizer and Ash–Carbon Amendment
by
Abilzhan Khussainov, Anara Sarsenova, Anar Ayapbergenova, Gulmira Kyzdarbekova and Ekaterina Bazilevskaya
Soil Syst. 2025, 9(4), 114; https://doi.org/10.3390/soilsystems9040114 - 16 Oct 2025
Abstract
Phosphorus deficiency and declining organic matter limit crop productivity in Northern Kazakhstan’s chernozem soils. This study evaluates whether the combined application of phosphorus fertilizer and an ash-carbon amendment from industrial by-products can improve soil fertility and barley yield. In a three-year field experiment
[...] Read more.
Phosphorus deficiency and declining organic matter limit crop productivity in Northern Kazakhstan’s chernozem soils. This study evaluates whether the combined application of phosphorus fertilizer and an ash-carbon amendment from industrial by-products can improve soil fertility and barley yield. In a three-year field experiment (2018–2020), four P rates (1/10, 1/5, 1/2, and the full recommended dose, Prec) were tested with 100 kg ha−1 of ash–carbon product (“Agrobionov”). Across growth stages, we measured cellulolytic microbial activity, water-stable soil aggregates (%WSA), and grain yield. Relative to the control, P + ash–carbon increased microbial activity by up to 57.6% and %WSA by up to 76%. The highest yield (1.32 t ha−1) occurred with Agrobionov + ½ Prec, a 51.7% increase over the control. These results indicate that pairing moderate P rates with an ash–carbon amendment enhances soil biological and physical properties and improves yield in P-deficient chernozems, supporting the sustainable use of industrial by-products as cost-effective soil amendments. Future work should assess long-term effects on C sequestration, nutrient cycling, and economic feasibility.
Full article
(This article belongs to the Special Issue Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions: 2nd Edition)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Turning Waste into Fertilizer: Aloe vera Leaf Shavings Improve Plant Growth and Support Soil Fertility in Organic Systems
by
Isaiah E. Jaramillo, Carine Cocco, James Jihoon Kang, Chu-Lin Cheng and Engil Pereira
Soil Syst. 2025, 9(4), 113; https://doi.org/10.3390/soilsystems9040113 - 15 Oct 2025
Abstract
The Aloe vera industry discards large amounts of outer leaf tissue (“shavings”), creating an opportunity to repurpose this byproduct as a sustainable fertilizer. This study evaluated whether aloe shavings can serve as a plant-based alternative to compost in organic Aloe vera production. A
[...] Read more.
The Aloe vera industry discards large amounts of outer leaf tissue (“shavings”), creating an opportunity to repurpose this byproduct as a sustainable fertilizer. This study evaluated whether aloe shavings can serve as a plant-based alternative to compost in organic Aloe vera production. A field trial in the Lower Rio Grande Valley of Texas tested three treatments: aloe shavings (applied to supply 39 kg N ha−1), organic compost (39 kg N ha−1), and a non-fertilized control. Laboratory incubations further assessed nitrogen mineralization and microbial respiration. Aloe shavings significantly enhanced vegetative growth: leaf number increased from 5.7 to 12.3 leaves per plant (+115% over the season), and leaf length rose from 20 to 32 cm, with the greatest gains in September and March (p < 0.05). At harvest, plants receiving aloe shavings produced 456 g total leaf weight and 151 g gel weight per plant, compared to 375 g and 108 g in the control. Incubations showed initial nitrogen immobilization (negative mineralization) but subsequent slow release, while microbial respiration was higher in compost (2.3 mg CO2-C kg−1 day−1) than aloe shavings (1.4 mg CO2-C kg−1 day−1). These results highlight aloe shavings as a low-cost, slow-release organic amendment that reduces waste, supports circular economy practices, and enhances Aloe vera growth without mineral nitrogen addition.
Full article
(This article belongs to the Special Issue Soil Fertility Management, Mitigating GHG Emissions and Sustainable Agriculture: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Land Use Modifies the Inherent Effect of Soil Properties on Soil Bacterial Communities in Humid Tropical Watersheds
by
Sunshine A. De Caires, Sabine Reinsch, Duraisamy Saravanakumar, Chaney St. Martin, Mark N. Wuddivira, Bernie J. Zebarth, Fuat Kaya, Mengying Liu, Durga P. M. Chinthalapudi, Shankar Ganapathi Shanmugam and Bobbi Helgason
Soil Syst. 2025, 9(4), 112; https://doi.org/10.3390/soilsystems9040112 - 15 Oct 2025
Abstract
Soil bacterial communities are vital for ecosystem functioning in the humid tropics, yet their response to land-use change remains poorly understood. This knowledge gap is exacerbated by the lack of long-term studies. We employed a space-for-time substitution approach to assess the effects of
[...] Read more.
Soil bacterial communities are vital for ecosystem functioning in the humid tropics, yet their response to land-use change remains poorly understood. This knowledge gap is exacerbated by the lack of long-term studies. We employed a space-for-time substitution approach to assess the effects of land-use intensification on soil bacterial communities across a gradient of anthropogenic disturbance in Trinidad. Three sub-watersheds (Arouca = pristine, Maracas = intermediate, Tacarigua = intensive) were selected, each containing adjacent forest, grassland, and agricultural land uses. We combined geophysical soil apparent electrical conductivity (ECa-directed) sampling with 16S rDNA gene amplicon sequencing to characterize bacterial communities and their relationships with soil and landscape properties. Soil properties were the primary determinant of bacterial community structure, explaining 56% of the variation (p < 0.001), with pH, clay content, hygroscopic water, and nutrient availability as key drivers. Bacterial α-diversity differed significantly among sub-watersheds (p < 0.01), with Tacarigua exhibiting lower richness and diversity compared to Arouca and Maracas, but not across land uses. While a core microbiome of ten bacterial families was ubiquitous across land uses, indicating a stable foundational community, land-use intensification significantly altered β-diversity (p < 0.01 among sub-watersheds). Agricultural soils showed the greatest divergence from forest soils (p < 0.05), with a marked decline in key Proteobacterial families (e.g., Xanthomonadaceae, Pseudomonadaceae) involved in nutrient cycling and plant growth promotion. Although inherent soil properties shape the core microbiome, land-use intensification acts as a strong secondary filter, shifting soil bacterial communities toward more stress-resistant Firmicutes with potentially less diverse functions. Our findings demonstrate the utility of integrating space-for-time substitution with molecular profiling to predict long-term microbial responses to environmental change in vulnerable tropical ecosystems.
Full article
(This article belongs to the Special Issue Land Use and Management on Soil Properties and Processes: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Physical and Chemical Properties of Fire-Affected Soils from the Sagebrush Ecosystem of the Western US: A Laboratory Study
by
Yasaman Raeofy, Vera Samburova, Markus Berli, Eden Furtak-Cole, Brad Sion, Sally Houseman, Kristine Lu, William Curtiss, Andrew J. Andrade, Bianca Martinez, Andrey Y. Khlystov and Hans Moosmüller
Soil Syst. 2025, 9(4), 111; https://doi.org/10.3390/soilsystems9040111 - 13 Oct 2025
Abstract
►▼
Show Figures
This study aims to understand the effects of wildfires in sagebrush ecosystem on soil properties by examining connections between Soil Water Repellency (SWR), reflectance, and chemistry. Ash and burned soil samples were collected after performing laboratory burns of three common sagebrush plants: sagebrush,
[...] Read more.
This study aims to understand the effects of wildfires in sagebrush ecosystem on soil properties by examining connections between Soil Water Repellency (SWR), reflectance, and chemistry. Ash and burned soil samples were collected after performing laboratory burns of three common sagebrush plants: sagebrush, rabbitbrush, and bitterbrush. The collected samples were analyzed for their physical properties, including SWR measured by Water Drop Penetration Time (WDPT) and Apparent Contact Angle (ACA), and solar spectral reflectance in the wavelength range of 350 to 2500 nm. Chemical functional groups of the samples were analyzed using Fourier-Transform Infrared (FTIR) spectroscopy. WDPT and ACA values were in the range of 1 to 600 s and ~10° to 88°, respectively, for all three tested fuels. The FTIR analysis showed a decrease (~2 to 4 times) in the ratio of COO−/C=C signals for the burned soil samples compared to the unburned soil samples. Overall, increase in temperature and ACA levels for the samples of burned and burned soil from a 2 cm depth led to increased formation of non-polar compounds with C=C functional groups, and decarboxylation.
Full article

Graphical abstract
Open AccessArticle
Investigating the Effects of Soil Type and Potassium Fertiliser Timing on Potassium Leaching: A Five-Soil Lysimeter Study
by
Thomas P. McCarthy, John B. Murphy and Patrick J. Forrestal
Soil Syst. 2025, 9(4), 110; https://doi.org/10.3390/soilsystems9040110 - 13 Oct 2025
Abstract
Potassium (K) is essential for grassland productivity, but soil K leaching can reduce fertiliser use efficiency, increasing environmental losses. International evidence suggests soil type and K fertiliser timing influence K leaching, yet limited data exist for Ireland’s diverse soil types. This study investigated
[...] Read more.
Potassium (K) is essential for grassland productivity, but soil K leaching can reduce fertiliser use efficiency, increasing environmental losses. International evidence suggests soil type and K fertiliser timing influence K leaching, yet limited data exist for Ireland’s diverse soil types. This study investigated the effects of K fertiliser timing (autumn, winter, and spring) and soil type on K leaching using a controlled lysimeter facility with five representative Irish soils sown with perennial ryegrass. Potassium fertiliser (125 kg K ha−1) was applied in October, December, or February, with leachate collected from October to April. Soil type affected cumulative K leaching (1.4–9.8 kg ha−1; p ≤ 0.001), with the greatest losses observed in sandy soils. Potassium and nitrogen uptake in spring-harvested grass were also influenced by soil type (p ≤ 0.05), with strong positive correlation between the two nutrients (R2 = 0.78; p ≤ 0.001). Temporally, significant interactions (p ≤ 0.05) between K application timing and sampling date were found for K leachate in three of the five soils tested. Autumn and winter applications tended to increase cumulative leaching risk, especially on coarser-textured soils such as the Oakpark soil (p ≤ 0.05). The study indicates that applying K in early spring will tend to reduce leaching K losses, particularly on sandy soils.
Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Spatial Variability and Temporal Changes of Soil Properties Assessed by Machine Learning in Córdoba, Argentina
by
Mariano A. Córdoba, Susana B. Hang, Catalina Bozzer, Carolina Alvarez, Lautaro Faule, Esteban Kowaljow, María V. Vaieretti, Marcos D. Bongiovanni and Mónica G. Balzarini
Soil Syst. 2025, 9(4), 109; https://doi.org/10.3390/soilsystems9040109 - 10 Oct 2025
Abstract
Understanding the temporal dynamics and spatial distribution of key soil properties is essential for sustainable land management and informed decision-making. This study assessed the spatial variability and decadal changes (2013–2023) of topsoil properties in Córdoba, central Argentina, using digital soil mapping (DSM) and
[...] Read more.
Understanding the temporal dynamics and spatial distribution of key soil properties is essential for sustainable land management and informed decision-making. This study assessed the spatial variability and decadal changes (2013–2023) of topsoil properties in Córdoba, central Argentina, using digital soil mapping (DSM) and machine learning (ML) algorithms. Three ML methods—Quantile Regression Forest (QRF), Cubist, and Support Vector Machine (SVM)—were compared to predict soil organic matter (SOM), extractable phosphorus (P), and pH at 0–20 cm depth, based on environmental covariates related to site climate, vegetation, and topography. QRF consistently outperformed the other models in prediction accuracy and uncertainty, confirming its suitability for DSM in heterogeneous landscapes. Prediction uncertainty was higher in marginal mountainous areas than in intensively managed plains. Over ten years, SOM, P, and pH exhibited changes across land-use classes (cropland, pasture, and forest). Extractable P declined by 15–35%, with the sharpest reduction in croplands (−35.4%). SOM decreased in croplands (−6.7%) and pastures (−3.1%) but remained stable in forests. pH trends varied, with slight decreases in croplands and forests and a small increase in pastures. By integrating high-resolution mapping and temporal assessment, this study advances DSM applications and supports regional soil monitoring and sustainable land-use planning.
Full article
(This article belongs to the Special Issue Use of Modern Statistical Methods in Soil Science)
►▼
Show Figures

Figure 1
Open AccessReview
A New Era in the Discovery of Biological Control Bacteria: Omics-Driven Bioprospecting
by
Valeria Valenzuela Ruiz, Errikka Patricia Cervantes Enriquez, María Fernanda Vázquez Ramírez, María de los Ángeles Bivian Hernández, Marcela Cárdenas-Manríquez, Fannie Isela Parra Cota and Sergio de los Santos Villalobos
Soil Syst. 2025, 9(4), 108; https://doi.org/10.3390/soilsystems9040108 - 10 Oct 2025
Abstract
Biological control with beneficial bacteria offers a sustainable alternative to synthetic agrochemicals for managing plant pathogens and enhancing plant health. However, bacterial biocontrol agents (BCAs) remain underexploited due to regulatory hurdles (such as complex registration timelines and extensive dossier requirements) and limited strain
[...] Read more.
Biological control with beneficial bacteria offers a sustainable alternative to synthetic agrochemicals for managing plant pathogens and enhancing plant health. However, bacterial biocontrol agents (BCAs) remain underexploited due to regulatory hurdles (such as complex registration timelines and extensive dossier requirements) and limited strain characterization. Recent advances in omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have strengthened the bioprospecting pipeline by uncovering key microbial traits involved in biocontrol. Genomics enables the identification of biosynthetic gene clusters, antimicrobial pathways, and accurate taxonomy, while comparative genomics reveals genes relevant to plant–microbe interactions. Metagenomics uncovers unculturable microbes and their functional roles, especially in the rhizosphere and extreme environments. Transcriptomics (e.g., RNA-Seq) sheds light on gene regulation during plant-pathogen-bacteria interactions, revealing stress-related and biocontrol pathways. Metabolomics, using tools like Liquid Chromatography–Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance spectroscopy (NMR), identifies bioactive compounds such as lipopeptides, Volatile Organic Compounds (VOCs), and polyketides. Co-culture experiments and synthetic microbial communities (SynComs) have shown enhanced biocontrol through metabolic synergy. This review highlights how integrating omics tools accelerates the discovery and functional validation of new BCAs. Such strategies support the development of effective microbial products, promoting sustainable agriculture by improving crop resilience, reducing chemical inputs, and enhancing soil health. Looking ahead, the successful application of omics-driven bioprospection of BCAs will require addressing challenges of large-scale production, regulatory harmonization, and their integration into real-world agricultural systems to ensure reliable, sustainable solutions.
Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Olive Pomace-Derived Compost: Phytotoxicity Assessment and Relevance for Soil Systems
by
Qaiser Javed, Mohammed Bouhadi, Igor Palčić, Dominik Anđelini, Danko Cvitan, Nikola Major, Marina Lukić, Smiljana Goreta Ban, Dean Ban, David Heath, Tomaž Rijavec, Aleš Lapanje and Marko Černe
Soil Syst. 2025, 9(4), 107; https://doi.org/10.3390/soilsystems9040107 - 30 Sep 2025
Abstract
►▼
Show Figures
Olive pomace (OP) contains phytotoxic compounds that can impair plant growth and soil quality. Composting provides an effective method for detoxifying olive pomace (OP) and improving its suitability for agricultural use. Therefore, this study investigated the phytotoxic effects of raw olive pomace filtrate
[...] Read more.
Olive pomace (OP) contains phytotoxic compounds that can impair plant growth and soil quality. Composting provides an effective method for detoxifying olive pomace (OP) and improving its suitability for agricultural use. Therefore, this study investigated the phytotoxic effects of raw olive pomace filtrate (OPF) on seed germination in radish (Raphanus sativus L.) and barley (Hordeum vulgare L.), as well as the impact of composted olive pomace (COP) on their growth. Seeds were exposed to OPF at concentrations of 0% (control), 1%, 3%, 5%, 10%, 20%, and 100%. Additionally, three composting treatments were evaluated: R1 (control: OP + barley straw), R2 (OP + barley straw + urea), and R3 (OP + barley straw + sheep litter). Results showed that OPF at concentrations of 10%, 20%, and 100% significantly reduced seed germination, with complete inhibition at concentrations > 10%. The COP treatments showed different physicochemical properties, such as R2 exhibiting better nutrient availability (C/N = 19, oil content = 0.04%). R3 had the highest concentrations of K (40,430.2 mg/kg) and P (6022.68 mg/kg). Results also indicated that R1 significantly reduced radish dry biomass production compared to barley, although R2 performed slightly better than R1 and R3. The findings highlight the need for proper compost stabilization to minimize the phytotoxicity and improve the agricultural potential of COP for improving soil health.
Full article

Graphical abstract
Open AccessArticle
Arsenic Behavior in Paddy Soils: Sorption Capacity and the Role of Algal Addition
by
Diego Arán, Maria Manuela Abreu, Luisa Louro Martins, Miguel Pedro Mourato and Erika S. Santos
Soil Syst. 2025, 9(4), 106; https://doi.org/10.3390/soilsystems9040106 - 25 Sep 2025
Abstract
Rice is one of the world’s most consumed foods, and the cereal that most efficiently uptakes and accumulates As, contributing to human health risk. Flooded rice fields alter Eh-pH conditions and, consequently, the proportion of As(III)/As(V), favoring their accumulation in the crop. The
[...] Read more.
Rice is one of the world’s most consumed foods, and the cereal that most efficiently uptakes and accumulates As, contributing to human health risk. Flooded rice fields alter Eh-pH conditions and, consequently, the proportion of As(III)/As(V), favoring their accumulation in the crop. The use of algae in paddy soils can improve fertility and C-stock and affect chemical conditions and As availability. This study aimed to evaluate the effect of algae application on: As adsorption capacity in paddy soils from Sado, Portugal, changes in pH-Eh conditions in the soil–water environment, and consequent As speciation. Batch-based As adsorption assays were performed with different solid–solution ratios and Chlorella minutissima algae application, and fitted to the Freundlich and Langmuir linear models. In semi-continuous column assays, simulating rice field conditions, the effect of algae on the pH-Eh of soil pore water was evaluated. The soil quality assessment showed pseudo-total contents of As and other elements higher than Portuguese agriculture limits (11 mg As kg−1), but their availability was low, posing no environmental risk. The studied soils had great As adsorption, which increased with algae application (1.07 mg g−1). Algae application favored oxygenation, increasing Eh values, and maintaining As(V) species. This indicated a potential approach to reducing As(III) mobility.
Full article
(This article belongs to the Special Issue Adsorption Processes in Soils and Sediments)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Soil and Water Quality Indices in Agricultural Soils of Manouba Governorate, North-East Tunisia
by
Oumayma Hmidi, Feyda Srarfi, Nadhem Brahim, Carmelo Dazzi and Giuseppe Lo Papa
Soil Syst. 2025, 9(3), 105; https://doi.org/10.3390/soilsystems9030105 - 19 Sep 2025
Abstract
Assessing soil and water quality in irrigated farming is vital for sustainable agriculture management. Low-quality irrigation water, particularly in semi-arid regions, poses environmental challenges and leads to soil salinization. This study was conducted in the Jedaida district, Manouba province, NE Tunisia. Forty-three soil
[...] Read more.
Assessing soil and water quality in irrigated farming is vital for sustainable agriculture management. Low-quality irrigation water, particularly in semi-arid regions, poses environmental challenges and leads to soil salinization. This study was conducted in the Jedaida district, Manouba province, NE Tunisia. Forty-three soil and water samples were collected to develop indices for assessing soil quality. Sixteen indicators were selected using principal component analysis (PCA) for the minimum soil data set (MSD), including electrical conductivity, sand, organic soil carbon, and pH. The linear method shows a correlation with physical and chemical properties, classifying Jedaida soils into three quality metrics: good, moderate, and poor. The non-linear method displays the lowest indicator contribution in Zahira soils, followed by Mansoura soils (high and moderate). MSD combined with linear scoring is the most acceptable method of assessing the soil quality index (SQI). Water quality indices (WQIs) identify the suitability of irrigation. The results show a Kelly’s ratio > 1, a sodium adsorption ratio (SAR) > 10, and a sodium soluble percentage (SSP) varying from 40 to 60%. This highlights the negative effects of long-term irrigation with poor-quality water on soil health. Accordingly, groundwater was found to be unsuitable for irrigating surface soils. This finding emphasizes the importance of selecting suitable irrigation water to ensure soil quality.
Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Simulating Soil Carbon Under Variable Nitrogen Application, Planting, and Residue Management
by
Tajamul Hussain, Charassri Nualsri, Muhammad Fraz Ali and Saowapa Duangpan
Soil Syst. 2025, 9(3), 104; https://doi.org/10.3390/soilsystems9030104 - 19 Sep 2025
Abstract
Effective residue management is crucial for maintaining soil organic carbon (SOC) in upland rice systems, particularly under diverse fertilization and planting management practices. This study investigates the impacts of residue management in upland rice fields using the CQESTR model through simulation of SOC
[...] Read more.
Effective residue management is crucial for maintaining soil organic carbon (SOC) in upland rice systems, particularly under diverse fertilization and planting management practices. This study investigates the impacts of residue management in upland rice fields using the CQESTR model through simulation of SOC dynamics over a 20-year period. The first 10 years served as a spin-up period for carbon pool stabilization in the model, followed by simulations under varying nitrogen (N) application rates and planting date management strategies. Experiments for various N application rates and planting times were conducted during 2018–2019 and 2019–2020. In 2019, 30% and in 2020, 100% of the residue was returned, and these data were used for evaluating model performance. Subsequently, we modeled predictions for residue retention levels of 100%, 70%, 50%, and 30% to assess their effects on SOC. The results indicated a good agreement between the simulated and observed data for model performance evaluation with an MSD value of 9.13. Lack of correlation (0.44) accounted for 5% of MSD, indicating a good agreement between the simulated and observed SOC values. The highest change in SOC was observed at 100% residue return under moderately delayed planting, potentially due to higher crop productivity and residue retention, and moderate climatic conditions. Reduced residue retention gradually declined the SOC stocks, especially under low N input. Delays in planting exacerbated negative impacts, possibly due to low crop productivity and reduced residue return. Despite the limited number of years of data and inconsistent management practices, the overall trends highlight the importance of residue retention under different N fertilization and planting management strategies. This research serves as a preliminary study for sustainable management practices to enhance long-term soil carbon sequestration in upland rice systems in southern Thailand. Long-term evaluations are necessary using the observed data and the CQESTR model application for applicable recommendations.
Full article
(This article belongs to the Special Issue Integrated Soil Management: Food Supply, Environmental Impacts, and Socioeconomic Functions: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Conservation Agriculture for Sustainable Soil Health Management: A Review of Impacts, Benefits and Future Directions
by
Fatihu Kabir Sadiq, Ojone Anyebe, Fatima Tanko, Aisha Abdulkadir, Bonface O. Manono, Tiroyaone Albertinah Matsika, Fahad Abubakar and Suleiman Kehinde Bello
Soil Syst. 2025, 9(3), 103; https://doi.org/10.3390/soilsystems9030103 - 18 Sep 2025
Abstract
►▼
Show Figures
Conservation agriculture (CA) is widely recognized as the cornerstone of sustainable agriculture. It prioritizes minimizing soil disturbance, maintaining permanent soil cover, and diversifying crop species to restore soil health and ecosystem resilience. This review synthesizes the effects of CA on the soil’s physical–chemical
[...] Read more.
Conservation agriculture (CA) is widely recognized as the cornerstone of sustainable agriculture. It prioritizes minimizing soil disturbance, maintaining permanent soil cover, and diversifying crop species to restore soil health and ecosystem resilience. This review synthesizes the effects of CA on the soil’s physical–chemical and biological properties. It demonstrates its effectiveness in improving soil structure, enhancing organic carbon sequestration, promoting microbial activity, increasing water-use efficiency, and reducing erosion and nutrient losses. The paper then highlights the broad environmental, economic, and social benefits of CA. These include biodiversity conservation, reduced greenhouse gas emissions, improved yields, and increased food system resilience. The review explores the synergistic role of technological innovations such as precision agriculture, remote sensing, and digital tools in scaling CA for higher productivity and sustainability. The review then examines how socioeconomic conditions, institutional frameworks, and policy interventions shape CA adoption and impact. Despite its growing adoption, CA’s successful implementation will require strategies adapted for local needs, capacity-building, and supportive, inclusive policies. Finally, the review identifies key CA research gaps and future directions. This provides a comprehensive foundation to advance CA as a climate-smart, resilient, and sustainable pathway to ensure global food security and environmental stewardship.
Full article

Figure 1
Open AccessArticle
Impacts of Sugarcane Vinasses on the Structure and Composition of Bacterial Communities in Brazilian Tropical Oxisols
by
Paulo Roger Lopes Alves, German Andres Estrada-Bonilla, Antonio Marcos Miranda Silva, Thiago Gumiere, Ademir Durrer Bigaton, Daniel Bini, Cristiane Alcantara dos Santos and Elke Jurandy Bran Nogueira Cardoso
Soil Syst. 2025, 9(3), 102; https://doi.org/10.3390/soilsystems9030102 - 15 Sep 2025
Abstract
►▼
Show Figures
This study explored how different sugarcane vinasses influence the structure and composition of soil bacterial communities in two tropical Oxisols with contrasting textures. In a controlled microcosm experiment with sugarcane seedlings, two concentrations of three vinasse types were applied, and bacterial communities were
[...] Read more.
This study explored how different sugarcane vinasses influence the structure and composition of soil bacterial communities in two tropical Oxisols with contrasting textures. In a controlled microcosm experiment with sugarcane seedlings, two concentrations of three vinasse types were applied, and bacterial communities were monitored over 10, 30, and 60 days using T-RFLP and 16S rRNA gene sequencing. Across all treatments, vinasse application led to clear changes in bacterial community structure in both soils, regardless of the time point. Certain bacterial groups, such as Sphingobacteriia, Alphaproteobacteria, and Gammaproteobacteria, became more abundant—likely responding to increased carbon availability, higher pH, and greater soil moisture. At the same time, other groups declined, possibly due to excess nutrients like potassium and sulfur. Notably, these shifts occurred even when standard biochemical indicators suggested no major impact, highlighting the sensitivity of microbial community-level responses. These findings point to the importance of looking beyond traditional soil quality metrics when assessing the environmental effects of organic residue applications. Incorporating microbial indicators can offer a more nuanced understanding of how practices like vinasse reuse affect soil functioning in tropical agroecosystems.
Full article

Figure 1
Open AccessArticle
Soil Solution Viscosity Reduces CO2 Emissions in Tropical Soils: Implications for Climate Change Mitigation
by
Arianis Ibeth Santos-Nicolella, Kleve Freddy Ferreira Canteral, Wanderson Benerval De Lucena, Maria Elisa Vicentini, Alan Rodrigo Panosso, Kurt Spokas, Glauco de Souza Rolim, Thaís Rayane Gomes da Silva and Newton La Scala, Jr.
Soil Syst. 2025, 9(3), 101; https://doi.org/10.3390/soilsystems9030101 - 13 Sep 2025
Abstract
►▼
Show Figures
Soil CO2 emissions, driven primarily by microbial respiration, represent a major component of terrestrial carbon flux and play a crucial role in global climate change. Although several soil physicochemical factors regulating microbial activity are well known, the role of soil solution viscosity
[...] Read more.
Soil CO2 emissions, driven primarily by microbial respiration, represent a major component of terrestrial carbon flux and play a crucial role in global climate change. Although several soil physicochemical factors regulating microbial activity are well known, the role of soil solution viscosity remains largely unexplored. This study evaluated how polyethylene glycol (PEG6000)-induced increases in soil solution viscosity affect microbial activity-derived CO2 emissions in a Rhodic Ferralsol (eutric). Three concentrations of PEG6000 (50, 75, and 100 g L−1), corresponding to viscosities of 1.93, 2.76, and 3.88 cP, respectively, were compared to a water-based control (1.11 cP). Soil CO2 emissions, soil O2 capture, temperature, and water content were measured over a 60-day period using standard methods. Results showed significant reductions in cumulative CO2 emissions of 20%, 25%, and 12% for PEG6000 treatments, respectively, compared to the control. Decreased O2 capture at viscosities of 1.93 and 2.76 cP (50 and 75 g L−1, respectively) indicated reduced microbial activity. These findings reveal a previously underappreciated biophysical mechanism regulating soil carbon emissions. Understanding and managing soil solution viscosity could offer a novel strategy to mitigate CO2 emissions in tropical soils, thus contributing to climate change mitigation and sustainable soil management, particularly in highly weathered tropical ecosystems.
Full article

Graphical abstract
Open AccessArticle
Soil Amendment with Biochar Reduces the Uptake and Translocation of Perfluoroalkyl Substances by Horticultural Plants Grown in a Polluted Area
by
Ilaria Battisti, Anna Rita Trentin, Andrea Sabia, Antonio Masi and Giancarlo Renella
Soil Syst. 2025, 9(3), 100; https://doi.org/10.3390/soilsystems9030100 - 13 Sep 2025
Abstract
►▼
Show Figures
Environmental pollution by poly- and perfluoroalkyl substances (PFAS) can impact human health through drinking water and the ingestion of contaminated agri-food. Plants can take up PFAS from polluted soils or irrigation waters, and soil amended with biochar has been proposed as a practical
[...] Read more.
Environmental pollution by poly- and perfluoroalkyl substances (PFAS) can impact human health through drinking water and the ingestion of contaminated agri-food. Plants can take up PFAS from polluted soils or irrigation waters, and soil amended with biochar has been proposed as a practical and sustainable option to effectively reduce the PFAS transfer from soils to plants. We evaluated the potential of biochar, the byproduct of biomass pyrolysis, to reduce or prevent PFAS uptake from contaminated soil and water in a field trial conducted in a PFAS-contaminated area, where tomato and red chicory plants were grown in succession. The PFAS content in irrigation water, soil, and tomato and red chicory plants was determined by liquid chromatography coupled to mass spectrometry before and after each cultivation trial. Compared to those grown in unamended soil, tomato plants grown in the biochar-amended soil showed a significantly lower uptake of perfluorobutane sulfonic acid (PFBS), perfluoroheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) in the leaves (−70%, −45%, and −84%, respectively), and significantly less (−61%) perfluorobutanoic acid (PFBA) in the fruits. Compared to unamended soils, leaves of red chicory plants grown in biochar-amended soil accumulated less PFBS (−74%) in the early growth stage and less PFBA (−34%) at plant maturity. The presented results confirmed previous reports on the potential soil amendment with biochar as a sustainable and effective measure for reducing PFAS uptake by horticultural crops cultivated in PFAS-polluted areas and PFAS concentration in their edible parts. Implications of this approach are also discussed.
Full article

Graphical abstract
Open AccessArticle
Organic and Conventional Management Effects on Soil Organic Carbon and Macro-Nutrients Across Land Uses in the Bhutanese Himalayas
by
Yadunath Bajgai, Ameeta Adhikari, Rattan Lal and Tashi Wangdi
Soil Syst. 2025, 9(3), 99; https://doi.org/10.3390/soilsystems9030099 - 13 Sep 2025
Abstract
Soil health and fertility are essential components of sustainable land management. In Bhutan, where agricultural practices range from organic to conventional systems, and natural vegetation areas persist across varied elevations. Understanding how these factors influence soil properties is essential for advancing sustainable agriculture
[...] Read more.
Soil health and fertility are essential components of sustainable land management. In Bhutan, where agricultural practices range from organic to conventional systems, and natural vegetation areas persist across varied elevations. Understanding how these factors influence soil properties is essential for advancing sustainable agriculture and fostering environmental stewardship. Thus, the objectives of this study were to evaluate some soil chemical properties across land use practices and their relationship to soil texture. Soil organic carbon (SOC) and macro-nutrients in three land use types (organic fields—OrgF; conventional fields—ConF; and natural vegetation—NatV) were studied across high-, mid-, and low-altitude sites in the Wangdue Phodrang, Chhukha, and Dagana districts of Bhutan. The effects of land use practices on soil properties varied with altitude. While available P responded significantly at both high- and mid-altitude locations (p < 0.01), SOC content was influenced only at high altitude (p < 0.001). In contrast, soil pH (p < 0.01) and available K (p < 0.001) showed clear sensitivity to land use at low altitude but were unaffected at higher elevations. Total N content and C:N ratios remained relatively stable across management practices within each altitude category. Silt and clay content had positive relationship with SOC (R2 ≥ 0.13), whereas sand content had a significant negative relationship (R2 = 0.23, p < 0.001). These findings are pertinent to providing guidelines for sustainable land management, improving agricultural practices, and shaping policies to protect and restore soil health across varied agro-ecological zones.
Full article
(This article belongs to the Special Issue Land Use and Management on Soil Properties and Processes: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data
by
Jinxi Chen, Yuanbo Jiang, Wenjing Yu, Guangping Qi, Yanxia Kang, Minhua Yin, Yanlin Ma, Yayu Wang, Jiapeng Zhu, Yanbiao Wang and Boda Li
Soil Syst. 2025, 9(3), 98; https://doi.org/10.3390/soilsystems9030098 - 12 Sep 2025
Abstract
Soil moisture plays a critical role in the global water cycle, the exchange of matter and energy within ecosystems, and the movement of water in plants. Accurate monitoring of soil moisture is essential for drought early warning systems, irrigation decision-making, and crop growth
[...] Read more.
Soil moisture plays a critical role in the global water cycle, the exchange of matter and energy within ecosystems, and the movement of water in plants. Accurate monitoring of soil moisture is essential for drought early warning systems, irrigation decision-making, and crop growth assessment. The use of drone-based multispectral remote sensing technology for estimating the soil moisture content offers advantages such as wide coverage, high accuracy, and efficiency. However, the soil background can often interfere with the accuracy of these estimations. In specific environments, such as areas with strong winds, removing soil background noise may not necessarily enhance the precision of estimates. This study utilizes unmanned aerial vehicle (UAV) multispectral imagery and employs a vegetation index threshold method to remove soil background noise. It systematically analyzes the response relationship between spectral reflectance, spectral indices, and the soil moisture content in the top 0–10 cm layer of alfalfa; constructs K-Nearest Neighbors (KNN), Random Forest Regression (RFR), ridge regression (RR), and XG-Boost inversion models; and comprehensively evaluates model performance. The results indicate the following: (1) The XG-Boost model validation set had the highest R2 value (0.812) when spectral reflectance was used as the input variable, which was significantly better than the other models (R2 = 0.465 to 0.770), and the RFR model validation set had the highest R2 value when the spectral index was used as the input variable (0.632), which was significantly better than the other models (R2 = 0.366 to 0.535). (2) After removing soil background noise, the accuracy of the soil moisture estimates for each model did not show significant changes; specifically, the R2 value for the XG-Boost model decreased to 0.803 when using spectral reflectance as the input, and the R2 value for the RFR model dropped to 0.628 when using spectral indices. (3) Before and after removing the soil background noise, the spectral reflectance can provide more accurate data support for the inversion of the soil moisture content than the spectral index, and the XG-Boost model is the most effective in the inversion of the soil moisture content when using the spectral reflectance as the input variable. The research findings provide both theoretical and technical support for the retrieval of the surface soil moisture content in alfalfa using drone-based multispectral remote sensing. Additionally, they offer evidence that validates large-scale soil moisture remote sensing monitoring.
Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Heavy Metal Concentrations in Debrecen’s Urban Soils: Implications for Upcoming Industrial Projects
by
Zsolt Zoltán Fehér, Tamás Magyar, Florence Alexandra Tóth and Péter Tamás Nagy
Soil Syst. 2025, 9(3), 97; https://doi.org/10.3390/soilsystems9030097 - 9 Sep 2025
Abstract
►▼
Show Figures
Monitoring the concentration of heavy metals in urban soils is of a paramount importance for several reasons. These inorganic pollutants can pose a significant health risk to living organisms, as they are toxic even at low concentrations and can be present in the
[...] Read more.
Monitoring the concentration of heavy metals in urban soils is of a paramount importance for several reasons. These inorganic pollutants can pose a significant health risk to living organisms, as they are toxic even at low concentrations and can be present in the soil for a long period of time. This study assesses the spatial distribution, concentration levels, and potential anthropogenic and natural sources of eight typical heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) occurring in urban surface soils across Debrecen, Hungary. A total of 295 topsoil samples were collected; heavy metal concentrations were determined by energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The results were interpreted using descriptive statistics, correlation analysis, hierarchical clustering, factor analysis, ordinary kriging interpolation, and spatial-discriminant analysis. The dual origin of the metal contaminants was revealed: As, Co, Pb, and Zn showed strong anthropogenic signatures associated with traffic, urban waste, and construction materials, whereas Cr and Ni were associated with natural geogenic sources. Cd reflected both lithogenic and point-source urban pollution. The current evaluation incorporated Hungarian and Dutch regulatory benchmarks to identify exceedances of environmental quality thresholds. It was found that only Cd and Cr exceeded the Hungarian target values, on average. Linear discriminant analysis based on pollution maps highlighted contamination hotspots around traffic corridors and newly industrialized zones. The importance of high-resolution soil monitoring in the rapidly urbanizing city is highlighted. Given its anticipated industrial and transportation developments, accumulations of heavy metals are probably going to be further exacerbated; therefore, the results provide a critical baseline for future environmental assessments and long-term monitoring.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agronomy, Metabolites, Microorganisms, Plants, Soil Systems
Interactions between Plants and Soil Microbes in Natural Ecosystem
Topic Editors: Chao Zhang, Jie WangDeadline: 31 October 2025
Topic in
Agriculture, Agronomy, Nitrogen, Soil Systems, Sustainability
Carbon and Nitrogen Cycling in Agro-Ecosystems and Other Anthropogenically Maintained Ecosystems—2nd Edition
Topic Editors: Jan Frouz, Adnan Mustafa, Jie LiDeadline: 30 November 2025
Topic in
Agriculture, Agronomy, Crops, Horticulturae, Sustainability, Grasses, Plants, Soil Systems
Soil Fertility and Plant Nutrition for Sustainable Agriculture—2nd Edition
Topic Editors: Othmane Merah, Purushothaman Chirakkuzhyil Abhilash, Hailin Zhang, Dionisios GasparatosDeadline: 31 December 2025
Topic in
Agriculture, Agronomy, Ecologies, IJPB, Plants, Soil Systems
The Role of Plant-Soil Interactions on Crop Yields and Carbon Sequestration
Topic Editors: Jifu Ma, Meng Zhou, Caiqing QinDeadline: 31 July 2026

Special Issues
Special Issue in
Soil Systems
Soil Organic Matter: Recent Advancements in Exploring Its Dynamics, Stabilization and Prediction
Guest Editors: Érika Flávia Machado Pinheiro, Marcos CeddiaDeadline: 31 October 2025
Special Issue in
Soil Systems
Migration and Transformation Processes and Environmental Effects of Microplastics in Soil
Guest Editor: Zahra SobhaniDeadline: 31 October 2025
Special Issue in
Soil Systems
Use of Modern Statistical Methods in Soil Science
Guest Editor: Jarosław ZawadzkiDeadline: 31 October 2025
Special Issue in
Soil Systems
Land Use and Management on Soil Properties and Processes: 2nd Edition
Guest Editors: Adilson Pacheco De Souza, Frederico Terra De AlmeidaDeadline: 10 December 2025