Skip Content
You are currently on the new version of our website. Access the old version .

AgriEngineering

AgriEngineering is an international, peer-reviewed, open access journal on the engineering science of agricultural and horticultural production, published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Agricultural Engineering)

All Articles (1,130)

  • Systematic Review
  • Open Access

Drone-Based Data Acquisition for Digital Agriculture: A Survey of Wireless Network Applications

  • Rogerio Ballestrin,
  • Jean Schmith and
  • Carlos Eduardo Pereira
  • + 2 authors

The increasing deployment of Internet of Things (IoT) sensors in precision agriculture has created critical challenges related to wireless communication range, energy efficiency, and data transmission latency, particularly in large-scale rural operations. This systematic survey, conducted following the PRISMA 2020 guidelines, investigates how drones, acting as mobile data collectors and communication gateways, can enhance the performance of agricultural wireless sensor networks (WSNs). The literature search was carried out in the Scopus and IEEE Xplore databases, considering peer-reviewed studies published in English between 2014 and 2025. After duplicate removal, 985 unique articles were screened based on predefined inclusion and exclusion criteria related to relevance, agricultural application, and communication technologies. Following full-text evaluation, 64 studies were included in this review. The survey analyzes how drones can be efficiently integrated with WSNs to improve data collection, addressing technical and operational challenges such as energy constraints, communication range limitations, propagation losses, and data latency. It further examines the primary applications of drone-based data acquisition supporting efficiency and sustainability in agriculture, identifies the most relevant wireless communication protocols and Technologies and discusses their trade-offs and suitability. Finally, it considers how drone-assisted data collection contributes to improved prediction models and real-time analytics in digital agriculture. The findings reveal persistent challenges in energy management, coverage optimization, and system scalability, but also highlight opportunities for hybrid architectures and the use of intelligent reflecting surfaces (IRSs) to improve connectivity. This work provides a structured overview of current research and future directions in drone-assisted agricultural communication systems.

26 January 2026

Word cloud of keywords.

Jixin fruit (Malus domesticaJixin’) is a high-value specialty fruit of significant economic importance in northeastern and northwestern China. Automatic recognition of fruit maturity is a critical prerequisite for intelligent harvesting. However, challenges inherent to field environments—including heterogeneous ripeness levels among fruits on the same plant, gradual color transitions during maturation that result in ambiguous boundaries, and occlusion by branches and foliage—render traditional image recognition methods inadequate for simultaneously achieving high recognition accuracy and computational efficiency. Although existing deep learning models can improve recognition accuracy, their substantial computational demands and high hardware requirements preclude deployment on resource-constrained embedded devices such as harvesting robots. To achieve the rapid and accurate identification of Jixin fruit maturity, this study proposes Multi-Attention DeepLabV3+ (MA-DeepLabV3+), a streamlined semantic segmentation framework derived from an enhanced DeepLabV3+ model. First, a lightweight backbone network is adopted to replace the original complex structure, substantially reducing computational burden. Second, a Multi-Scale Self-Attention Module (MSAM) is proposed to replace the traditional Atrous Spatial Pyramid Pooling (ASPP) structure, reducing network computational cost while enhancing the model’s perception capability for fruits of different scales. Finally, an Attention and Convolution Fusion Module (ACFM) is introduced in the decoding stage to significantly improve boundary segmentation accuracy and small target recognition ability. Experimental results on a self-constructed Jixin fruit dataset demonstrated that the proposed MA-DeepLabV3+ model achieves an mIoU of 86.13%, mPA of 91.29%, and F1 score of 90.05%, while reducing the number of parameters by 89.8% and computational cost by 55.3% compared to the original model. The inference speed increased from 41 frames per second (FPS) to 81 FPS, representing an approximately two-fold improvement. The model memory footprint is only 21 MB, demonstrating potential for deployment on embedded devices such as harvesting robots. Experimental results demonstrate that the proposed model achieves significant reductions in computational complexity while maintaining high segmentation accuracy, exhibiting robust performance particularly in complex scenarios involving color gradients, ambiguous boundaries, and occlusion. This study provides technical support for the development of intelligent Jixin fruit harvesting equipment and offers a valuable reference for the application of lightweight deep learning models in smart agriculture.

23 January 2026

Geographic location of the data collection site. (a): Yongji County; (b): Jilin Province.

Projects integrating Science, Technology, Engineering, and Mathematics (STEM) are essential to interdisciplinary research. This study presents a STEM (Science, Technology, Engineering, and Mathematics) methodology with the primary objective of designing, constructing, and validating a functional cannabinoid extraction device. To inform the device’s drying parameters, the dehydration kinetics of female hemp buds or flowering buds (FHB) were first analyzed using infrared drying at 100 °C for different durations. The plants were cultivated and harvested in accordance with good agricultural practices using Dinamed CBD Autoflowering seeds. The FHB were harvested and prepared by manually separating them from the stems and leaves. Six 5 g samples were prepared, each with a slab geometry of varying surface area and thickness. Two of these samples were ground: one into a fine powder and the other into a coarse powder. Mathematical fits were obtained for each resulting curve using either an exponential decay model or the logarithmic equation calculate the equilibrium moisture (mE). The Moisture Rate (MR) was calculated, and by modelling with the logarithmic equation, the constant k and the effective diffusivity (Deff) were determined with the analytical solution of Fick’s second law. The Deff values (ranging from 10−7 to 10−5) were higher than previously reported. The coarsely ground powder sample yielded the highest k and Deff values and was selected for oil extraction. The device was then designed using Quality Function Deployment (QFD), specifically the House of Quality (HoQ) matrix, to systematically translate user requirements into technical specifications. A 200 g sample of coarsely ground, dehydrated FHB was prepared for ethanol extraction. Chemical results obtained by Liquid Chromatography coupled with Photodiode Array Detection (LC-PDA) revealed the presence of THC, CBN, CBC, and CBG. The extraction device design was validated using previous results showing the presence of CBD and CBDA. The constructed device successfully extracted cannabinoids, including Δ9-THC, CBG, CBC, and CBN, from coarsely ground FHB, validating the integrated STEM approach. This work demonstrates a practical framework for developing accessible agro-technical devices through interdisciplinary collaboration.

22 January 2026

Sample weighing 5 g containing flowers with slab diameters of (A) S2 and (B) S3.

Large language models (LLMs) offer new opportunities for agricultural education and decision support, yet their adoption is limited by domain-specific terminology, ambiguous retrieval, and factual inconsistencies. This work presents AgroLLM, a domain-governed agricultural knowledge system that integrates structured textbook-derived knowledge with Retrieval-Augmented Generation (RAG) and a Domain Knowledge Processing Layer (DKPL). The DKPL contributes symbolic domain concepts, causal rules, and agronomic thresholds that guide retrieval and validate model outputs. A curated corpus of nineteen agricultural textbooks was converted into semantically annotated chunks and embedded using Gemini, OpenAI, and Mistral models. Performance was evaluated using a 504-question benchmark aligned with four FAO/USDA domain categories. Three LLMs (Mistral-7B, Gemini 1.5 Flash, and ChatGPT-4o Mini) were assessed for retrieval quality, reasoning accuracy, and DKPL consistency. Results show that ChatGPT-4o Mini with DKPL-constrained RAG achieved the highest accuracy (95.2%), with substantial reductions in hallucinations and numerical violations. The study demonstrates that embedding structured domain knowledge into the RAG pipeline significantly improves factual consistency and produces reliable, context-aware agricultural recommendations. AgroLLM offers a reproducible foundation for developing trustworthy AI-assisted learning and advisory tools in agriculture.

21 January 2026

The workflow illustrating the transformation of agricultural textual data into embedding vectors used by AgroLLM for knowledge retrieval and response generation.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Application of Artificial Neural Network in Agriculture
Reprint

Application of Artificial Neural Network in Agriculture

Editors: Ray E. Sheriff, Chiew Foong Kwong
Emerging Agricultural Engineering Sciences, Technologies, and Applications
Reprint

Emerging Agricultural Engineering Sciences, Technologies, and Applications

Volume II
Editors: Muhammad Sultan, Yuguang Zhou, Redmond R. Shamshiri, Muhammad Imran

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
AgriEngineering - ISSN 2624-7402