Due to scheduled maintenance work on our database systems, there may be short service disruptions on this website between 10:00 and 11:00 CEST on June 14th.
Journal Description
Climate
Climate
is a scientific, peer-reviewed, open access journal of climate science published online monthly by MDPI. The American Society of Adaptation Professionals (ASAP) is affiliated with Climate and its members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), GeoRef, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Meteorology and Atmospheric Sciences) / CiteScore - Q2 (Atmospheric Science)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.7 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.0 (2023);
5-Year Impact Factor:
3.3 (2023)
Latest Articles
Assessment of Run-of-River and Hydropower Plants in Peru: Current and Potential Sites, Historical Variability (1981–2020), and Climate Change Projections (2035–2100)
Climate 2025, 13(6), 125; https://doi.org/10.3390/cli13060125 - 12 Jun 2025
Abstract
Hydropower is the main source of renewable energy and the most feasible for implementation in remote areas without access to conventional energy grids. Therefore, knowledge of actual, potential, and future perspectives of sustainable hydropower projects is decisive for their viability. This study aims
[...] Read more.
Hydropower is the main source of renewable energy and the most feasible for implementation in remote areas without access to conventional energy grids. Therefore, knowledge of actual, potential, and future perspectives of sustainable hydropower projects is decisive for their viability. This study aims to estimate the present and future potential capacity of Peru’s hydropower system and from the potential small hydroelectric plants, specifically Run-of-River class. First, we employed geospatial databases and hydroclimatological products to describe the current hydropower system and potential sites for Run-of-River projects. The findings identified 11,965 potential sites for Run-of-River plants. Second, we executed and validated a hydrological model to estimate historical daily streamflows (1981–2020) and hydropower parameters for actual and potential sites. It was determined there is an installed capacity of 5.2 GW in the current hydropower system and a total potential capacity of 29.1 GW for Run-of-River plants, mainly distributed in the northern and central Andes. Finally, we evaluated future changes driven by ten global climate models under three emission scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5), compared with the baseline period of 1981–2010 with two future time slices. The main results about capacity indicated that operational hydroelectric plants (Run-of-River plants) are projected to decrease by 0.5 to −5.4% (−7.2 to −2.2%) during 2036–2065 and by −9.2 to 3.8% (1.8 to −11.9%) during 2071–2100. These outcomes provide relevant information to support policymakers in addressing sustainable development gaps in the coming decades and stakeholders involved in the implementation and mitigation of climate change impacts on hydropower projects in Peru.
Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
►
Show Figures
Open AccessArticle
The Interplay Between Climate Change Exposure, Awareness, Coping, and Anxiety Among Individuals with and Without a Chronic Illness
by
Shiri Shinan-Altman and Yaira Hamama-Raz
Climate 2025, 13(6), 124; https://doi.org/10.3390/cli13060124 - 11 Jun 2025
Abstract
Climate change poses a significant threat to mental health, including the emergence of climate change anxiety (CCA). In this study, we examined whether exposure to climate-related events was associated with higher CCA through the mediating roles of climate change awareness and ecological coping
[...] Read more.
Climate change poses a significant threat to mental health, including the emergence of climate change anxiety (CCA). In this study, we examined whether exposure to climate-related events was associated with higher CCA through the mediating roles of climate change awareness and ecological coping strategies and whether these pathways differed by chronic illness status. In February 2025, 600 Israeli adults (50% female; mean age ≈ 50) completed an online self-report questionnaire assessing climate change exposure, awareness, coping, and anxiety. Data were analyzed using moderated mediation models, controlling for gender, age, and education. Greater climate change exposure was associated with an increased awareness and higher use of problem-focused coping, which, in turn, predicted elevated CCA. Meaning-focused coping was not associated with anxiety overall; however, among the participants without a chronic illness, it was linked to higher CCA. Climate change awareness alone was not associated with anxiety. A significant serial mediation was found via awareness and problem-focused coping, and a moderated mediation was found via meaning-focused coping among those without a chronic illness. Coping strategies play a key role in climate change anxiety. Although health status may influence this process, tailored interventions should prioritize coping styles in climate adaptation efforts.
Full article
(This article belongs to the Special Issue Confronting the Climate Change and Health Nexus: Interactions, Impacts, and Adaptation Strategies)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatio-Temporal Meteorological Drought Distribution in the Upper Cheliff Basin (Algeria) Using SPI and SPEI Indices
by
Mohamed-Sadek Messis, Katarzyna Kubiak-Wójcicka, Azeddine Mebarki and Abdelaaziz Merabti
Climate 2025, 13(6), 123; https://doi.org/10.3390/cli13060123 - 10 Jun 2025
Abstract
This study investigates the spatio-temporal distribution of meteorological drought in the upper Cheliff basin, Algeria, downstream of the Boughzoul dam, between September 1982 and August 2021. This research use two drought indices—the Standardised Precipitation Index (SPI) and the Standardised Precipitation and Evapotranspiration Index
[...] Read more.
This study investigates the spatio-temporal distribution of meteorological drought in the upper Cheliff basin, Algeria, downstream of the Boughzoul dam, between September 1982 and August 2021. This research use two drought indices—the Standardised Precipitation Index (SPI) and the Standardised Precipitation and Evapotranspiration Index (SPEI)—to evaluate drought trends, frequency, duration, severity, and number of events across various time scales (1 year, 1 month, 3 months, 6 months, 9 months, and 12 months). The results identify five major drought periods (1983/84, 1993/94, 1987/88, 1999/2000–2001/2002, and 2020/21). Both the SPI and the SPEI capture the monthly variability of drought on various time scales, with different intensities. The SPEI identifies a higher number of drought events than the SPI, particularly on shorter time scales (1 and 3 months). However, at longer timescales (6, 9, and 12 months), the number of drought events detected by both indices converges. The correlation between SPI and SPEI (R ranging from 0.73 to 0.93) across the same time scales is notably high, though the lowest correlation was found in the western part of the catchment area. This suggests that for accurate meteorological drought identification in this region, particularly in its intensively irrigated agricultural areas, SPI and SPEI should be considered.
Full article
(This article belongs to the Special Issue Coping with Flooding and Drought)
►▼
Show Figures

Figure 1
Open AccessArticle
Variability and Trends in Spring Precipitation in the Central Sector of the Iberian Peninsula (1941–2020): The Central System and Southern Iberian System
by
David Espín-Sánchez, Fernando Allende-Álvarez, Nieves López-Estébanez and Jorge Olcina-Cantos
Climate 2025, 13(6), 122; https://doi.org/10.3390/cli13060122 - 10 Jun 2025
Abstract
►▼
Show Figures
The reduction in and irregularity of spring precipitation in Iberian latitudes over the past few decades are well-documented. This study analyses the behaviour of the accumulated series of monthly and annual spring precipitation for a broad section of the central-eastern part of the
[...] Read more.
The reduction in and irregularity of spring precipitation in Iberian latitudes over the past few decades are well-documented. This study analyses the behaviour of the accumulated series of monthly and annual spring precipitation for a broad section of the central-eastern part of the peninsula between Plasencia (Western Central System) and the south-eastern part of the Iberian System over the past 70 years. The area was chosen in accordance with the layout of the mountain systems and watersheds that cross the Iberian Peninsula from the west to east. Ten-year series and trends in the precipitation values accumulated between 1951 and 2020 provided by the AEMET were analysed together with their relationship with the pressure values for the same dates modelled by the Copernicus Climate Change Service. The totals obtained show an increasing weight regarding spring precipitation for the eastern sector (40–44%) and a gradual reduction in the west (30%). These percentages show the positive trend of the ten-year values for the easternmost sector. Spring precipitation increases are observed in the easternmost areas (7 mm/decade), while the central and western sectors generally show declining values (−35 mm/decade). The atmospheric pressure at height (Z500) and surface level (Z1000) were analysed together with their relationship with accumulated precipitation, revealing a clear trend of a dominance of high pressures in Z500.
Full article

Figure 1
Open AccessArticle
Climate Evolution of Agricultural and Natural Areas of Southeastern Europe According to Pinna, Johansson and Kerner Climate Indices
by
Ioannis Charalampopoulos and Fotoula Droulia
Climate 2025, 13(6), 121; https://doi.org/10.3390/cli13060121 - 9 Jun 2025
Abstract
►▼
Show Figures
The Southeastern European territory is under severe climatic pressure owing to accelerating dry–thermal trends. The present survey illustrates the spatial and temporal evolution of the climate regime over the natural and agricultural landcover of South-eastern Europe and individual countries (Albania, Bosnia Herzegovina, Bulgaria,
[...] Read more.
The Southeastern European territory is under severe climatic pressure owing to accelerating dry–thermal trends. The present survey illustrates the spatial and temporal evolution of the climate regime over the natural and agricultural landcover of South-eastern Europe and individual countries (Albania, Bosnia Herzegovina, Bulgaria, Croatia, Greece, N. Macedonia, Montenegro, Romania, Serbia, and Slovenia). For this purpose, a high spatial resolution of the Johansson Continentality index, the Kerner Oceanity index and the Pinna Combinative index was first estimated over two climatic periods (1964–1993; 1994–2023). The Johansson index depicts increasing continentality over the southern and eastern regions, majorly by the spatiotemporal expansion of the Continental climate over the agricultural and natural areas of Bulgaria (respectively, from 49.9% to 73.7% and from 13.3% to 36.8%) followed by Serbia, Romania, and Greece. The Kerner index illustrates increasing continentality over most of the study area owing to the spatiotemporal increase in the Sub-Continental climate type over the agricultural and the natural regions of Bosnia Herzegovina (from 68.6% to 84% and from 41.4% to 63.2%), N. Macedonia, Slovenia and the natural areas of Croatia and Serbia. The extension of the Continental over the agricultural and natural areas of Romania is also shown. The Pinna index exhibits an increasing aridity trend, which is more intense in the central and eastern regions. This trend is demonstrated by the higher distribution of the Semi-Dry in the second period mostly over the agricultural and natural areas of Bulgaria (2.4% to 23.1% and 0.7% to 5.8%), and a remarkable expansion of the Moderate Wet climate over both area types of Romania (from 3.3% to 44.8% and from 5.6% to 15.2%) and Bosnia Herzegovina (from 13.7% to 33.5% and from 3.5% to 13.2%). This study’s results highlight the necessity for intensifying adaptation plans and actions aiming at the feasibility of agricultural practices and the conservation of natural areas.
Full article

Figure 1
Open AccessArticle
Effects of Sea Level Rise on Hydrodynamics and Spatial Variation in Mexican Coastal Wetlands Along the Pacific Americas Flyway
by
Román Alejandro Canul Turriza, Violeta Z. Fernández-Díaz, Roselia Turriza Mena, Karla Gabriela Mejía-Piña and Oscar May Tzuc
Climate 2025, 13(6), 120; https://doi.org/10.3390/cli13060120 - 6 Jun 2025
Abstract
Globally, coastal wetlands are among the most dynamic and important environments due to their wide range of environmental services, from which coastal communities benefit. Mexico has coastal wetlands that are a priority in the Pacific Flyway in America, since every year millions of
[...] Read more.
Globally, coastal wetlands are among the most dynamic and important environments due to their wide range of environmental services, from which coastal communities benefit. Mexico has coastal wetlands that are a priority in the Pacific Flyway in America, since every year millions of shorebirds use these wetlands to reproduce and rest during their migration, in addition to various species that live there and are under some protection standard or in danger of extinction. In addition, these Mexican wetlands are also spaces from which important growing coastal communities benefit. However, the conservation of these coastal sites will be compromised in the coming decades by sea level rise and increasing pressure derived from coastal development, which directly impact the potential loss of space and consequently the decrease in migratory bird populations. This work identifies hydrodynamic changes and the effects of sea level rise in five coastal wetlands in Mexico and the Pacific Flyway in America, focusing on the future availability of space and the potential loss of ecosystem services under projected scenarios. The results generated give us a knowledge base to design strategies focused on the conservation and resilience of these wetlands in the face of sea level rise.
Full article
(This article belongs to the Special Issue Coastal Hazards under Climate Change)
►▼
Show Figures

Figure 1
Open AccessReview
Resilience and Decline: The Impact of Climatic Variability on Temperate Oak Forests
by
Iulian Bratu, Lucian Dinca, Cristinel Constandache and Gabriel Murariu
Climate 2025, 13(6), 119; https://doi.org/10.3390/cli13060119 - 3 Jun 2025
Abstract
Oak forests are an important part of temperate European ecosystems, where they are actively improving biodiversity, carbon storage, and ecological stability. However, current concerns such as climatic changes, and especially rising temperatures and changing precipitation patterns, are impacting their resilience. In this context,
[...] Read more.
Oak forests are an important part of temperate European ecosystems, where they are actively improving biodiversity, carbon storage, and ecological stability. However, current concerns such as climatic changes, and especially rising temperatures and changing precipitation patterns, are impacting their resilience. In this context, our study intends to evaluate the impact of climatic variability on temperate oak forests, focusing on the influence of temperature and precipitation. This covers different sites that have different environmental conditions. By using both a bibliometric approach and a systematic analysis of publications that have studied the influence of climate change on oak forests, our study has identified specific species and site responses to climate stressors. Furthermore, we have also evaluated trends in drought sensitivity. All these aspects have allowed us to understand and suggest improvements for the impact of climate change on the resilience and productivity of oak ecosystems. We have analyzed a total number of 346 publications that target the impact of climate change on oak forests. The articles were published between 1976 and 2024, with the majority originating from the USA, Spain, Germany, and France. These studies were published in leading journals from Forestry, Environmental Sciences, and Plant Sciences, among which the most cited journals were Forest Ecology and Management, the Journal of Biogeography, and Global Change Biology. As for the keywords, the most frequent ones were climate change, drought, growth, forest, and oak. However, we have observed a trend towards drought sensitivity, which indicates the intensification of climate changes on oak ecosystems. Moreover, this trend was more present in central and southern regions, which further highlights the impact of regional conditions. As such, certain local factors (soil properties, microclimate) were also taken into account in our study. Our literature review focused on the following aspects: Oak species affected by climate change; Impact of drought on oak forests; Influence of climate change on mixed forests containing oaks; Effects of climate change on other components of oak ecosystems; Radial growth of oaks in response to climate change; Decline of oak forests due to climate change. Our results indicate that oak forests decline in a process caused by multiple factors, with climate change being both a stressor and a catalyst. Across the globe, increasing temperatures and declining precipitation affect these ecosystems in their growth, functions, and resistance to pathogens. This can only lead to an increased forest decline. As such, our results indicate the need to implement forest management plans that take into account local conditions, species, and climate sensitivity. This approach is crucial in improving the adaptivity of oak forests and mitigating the impact of future climate extremes.
Full article
(This article belongs to the Special Issue Forest Ecosystems under Climate Change)
►▼
Show Figures

Figure 1
Open AccessArticle
Developing Early Warning Systems in Vanuatu: The Influence of Climate Variables on Malaria Incidence and Cattle Heat Stress
by
Jade Sorenson, Emmylou Reeve, Hannah Weinberg, Andrew B. Watkins and Yuriy Kuleshov
Climate 2025, 13(6), 118; https://doi.org/10.3390/cli13060118 - 3 Jun 2025
Abstract
►▼
Show Figures
In the South Pacific, an increase in the frequency of climate hazards has resulted in worsened human and animal health outcomes, revealing the need for strengthened early warning to increase hazard preparedness. As Vanuatu is one of the most at-risk countries to natural
[...] Read more.
In the South Pacific, an increase in the frequency of climate hazards has resulted in worsened human and animal health outcomes, revealing the need for strengthened early warning to increase hazard preparedness. As Vanuatu is one of the most at-risk countries to natural disasters, an early warning system (EWS) for climate hazards is essential to support industries and communities. Notably, climate variability has been found to exacerbate communicable disease burden and compromise livestock health and productivity; however, forecasting of such hazards and their compounding effects has not been developed in Vanuatu. Therefore, our study aims to explore EWSs that monitor and predict the impact of climate variables on malaria incidence and cattle heat stress in Vanuatu. Using monthly precipitation and temperature, a Bayesian model was developed to predict provincial malaria case burden in Vanuatu. Additionally, this study developed a weekly forecasting model to predict periods of cattle heat stress. This model used the Heat Load Index (HLI) as a proxy for heat stress to identify periods of increased heat load and antecedent conditions for cattle heat stress across the provinces. This study was successful in establishing proof-of-concept risk forecasts during selected case study periods: January 2020 and January 2016 for malaria transmission and cattle heat stress, respectively. To contribute towards a future multi-hazard EWS framework for climate hazards in Vanuatu, bulletins for predicted climate-based malaria transmission and cattle heat stress risk were developed to inform key decision makers. Intended to enhance preparedness for malaria outbreaks and cattle heat stress events, this study’s exploration of EWSs can support the resilience of Vanuatu’s public health and agricultural sectors in the face of escalating climate challenges.
Full article

Figure 1
Open AccessArticle
Assessment of Maximum Snow-Water Equivalent in the Uba River Basin (Altai) Using the Temperature-Based Melt-Index Method
by
Nikolay I. Bykov, Roman Yu. Birjukov, Andrey A. Bondarovich, Nurkhat K. Zhakiyev and Alexandr D. Djukarev
Climate 2025, 13(6), 117; https://doi.org/10.3390/cli13060117 - 3 Jun 2025
Abstract
The assessment of the maximum snow-water equivalent in mountains is important for understanding the mechanism of their formation, as well as for hydrological calculations. The low density of the observation network and the high complexity of ground-based snow-measuring operations have led to the
[...] Read more.
The assessment of the maximum snow-water equivalent in mountains is important for understanding the mechanism of their formation, as well as for hydrological calculations. The low density of the observation network and the high complexity of ground-based snow-measuring operations have led to the widespread use of remote methods to obtain such data. In this study, the maximum water reserve of the Uba River basin was calculated for the period of 2020–2023, based on data from the Sentinel-2 satellite regarding the position of the seasonal snow line, obtained using the temperature-based melt-index method. This study determined the snowmelt coefficients for the meteorological stations at Zmeinogorsk, Shemonaikha, and Ridder. Maps were constructed to show the distribution of the maximum snow-water equivalent in the Uba River basin. The spatial differentiation features of the snow cover were revealed, depending on the elevation, slope exposure, and distance from the watersheds. It was established that the altitudinal distribution of snow cover on the northern and southern macro-slopes of the ridges is asymmetric: in the western part of the basin, within the elevation range of 500–1200 m, the maximum water reserves of snow cover are greater on the southern slopes, but they become higher on the northern slopes above 1200 m. In the eastern part of the basin, they are always larger on the northern slopes. The greatest differences in the distribution of snow cover between the slopes occur near the watersheds.
Full article
(This article belongs to the Section Climate and Environment)
►▼
Show Figures

Figure 1
Open AccessArticle
Resolving the Faint Young Sun Paradox and Climate Extremes: A Unified Thermodynamic Closure Theory
by
Hsien-Wang Ou
Climate 2025, 13(6), 116; https://doi.org/10.3390/cli13060116 - 2 Jun 2025
Abstract
►▼
Show Figures
Clouds play a central role in regulating incoming solar radiation and outgoing terrestrial emission; hence, they must be internally constrained to prognose Earth’s temperature. At the same time, planetary fluids are inherently turbulent, so the climate state would tend toward maximum entropy production—a
[...] Read more.
Clouds play a central role in regulating incoming solar radiation and outgoing terrestrial emission; hence, they must be internally constrained to prognose Earth’s temperature. At the same time, planetary fluids are inherently turbulent, so the climate state would tend toward maximum entropy production—a generalized second law of thermodynamics. Incorporating these requirements, I have previously formulated an aquaplanet model to demonstrate that intrinsic water properties may strongly lower the climate sensitivity to solar irradiance, thereby resolving the faint young Sun paradox (FYSP). In this paper, I extend the model to include other external forcings and show that sensitivity to the reduced outgoing longwave radiation by the elevated pCO2 can be several times greater, but the global temperature remains capped at ~40 °C by the exponential increase in saturated vapor pressure. I further show that planetary albedo augmented by a tropical supercontinent may cool the climate sufficiently to cause tropical glaciation. And since the glacial edge is marked by above-freezing temperature, it abuts an open, co-zonal ocean, thereby obviating the “Snowball Earth” hypothesis. Our theory thus provides a unified framework for interpreting Earth’s diverse climates, including the FYSP, the warm extremes of the Cambrian and Cretaceous, and the tropical glaciations of the Precambrian.
Full article

Graphical abstract
Open AccessArticle
Uncertain Box–Cox Regression for Modeling the Spatial Coupling of Extreme Weather Events and Economic Impacts in the Chengdu-Chongqing Region
by
Kun Bai, Jun He, Xiaoqing Fan and Liang Fang
Climate 2025, 13(6), 115; https://doi.org/10.3390/cli13060115 - 1 Jun 2025
Abstract
►▼
Show Figures
In the context of ongoing climate change, extreme weather events are becoming increasingly frequent and unpredictable, posing significant challenges for traditional probability-based methods. This study presents an innovative uncertainty-based Box–Cox regression framework to assess the impacts of climate change factors, specifically temperature and
[...] Read more.
In the context of ongoing climate change, extreme weather events are becoming increasingly frequent and unpredictable, posing significant challenges for traditional probability-based methods. This study presents an innovative uncertainty-based Box–Cox regression framework to assess the impacts of climate change factors, specifically temperature and precipitation, on the volatility of extreme weather events in the Chengdu-Chongqing region. To address data imprecision, we establish a new estimation theorem for the Extended Least Squares Estimator (ELSE), proving its existence, uniqueness, unbiasedness, and variance consistency under uncertainty theory. The Mann–Kendall trend test is applied to detect event frequency trends, and a coupling coordination degree model is employed to evaluate the dynamic relationship between climate resources and economic development. The results show that (1) temperature has a more significant impact on the volatility of extreme weather events than precipitation; (2) the thermal resource–economy coupling degree has remained above 0.45 since 2015, indicating a strengthening relationship but suboptimal coordination; and (3) since 2014, the water resource–economy coupling degree has consistently exceeded 0.5, reaching optimal levels and highlighting the growing importance of water resources in regional development. Based on these findings, we recommend enhancing extreme weather monitoring systems, improving infrastructure resilience, optimizing climate-related resource management, and fostering regional cooperation. This study provides a rigorous theoretical and empirical basis for integrating uncertainty modeling into climate–economy analysis. Future work should further explore alternative modeling strategies and validate conclusions using extended datasets.
Full article

Figure 1
Open AccessArticle
Towards the Conceptual Framing of Inclusive Urban Flood Resilience
by
Dwayne Shorlon Renville, Netra Chhetri, Chingwen Cheng, Linda Francois and Ruijie Zeng
Climate 2025, 13(6), 114; https://doi.org/10.3390/cli13060114 - 1 Jun 2025
Abstract
The governance of cities in low-elevation zones faces many challenges. Notable among these are losses associated with regular pluvial floods and, more so, the threat of impending extreme floods due to climate change and their impacts on residents, especially amongst socially vulnerable groups.
[...] Read more.
The governance of cities in low-elevation zones faces many challenges. Notable among these are losses associated with regular pluvial floods and, more so, the threat of impending extreme floods due to climate change and their impacts on residents, especially amongst socially vulnerable groups. This is exacerbated by the reliance on traditionally exclusive approaches to governance. This paper discusses the flood resilience aspect of urban planning by examining the extent of emphasis on inclusiveness in urban flood resilience literature. We relied on the synthesis of inclusive development and flood resilience literature. The findings suggest that, while inclusive development is a burgeoning aspect of development research, and studies on evaluating urban flood resilience are commonplace, the concept of inclusive urban flood resilience is still in its infancy. Furthermore, we found that while inclusive development is neither static nor finite to allow for measuring it in absolute terms, it can be applied or assessed through any or all of its guiding principles. Consequently, together with the well-established methods of implementing and assessing urban flood resilience, we present a preliminary framework for inclusive urban flood resilience as a guide for future scholarly contributions to this composite field. Scholars and practitioners of urban planning in low-elevation zones are encouraged to move away from top–down siloed approaches that result in exclusions and rely more on integrated, inclusive, and socio-ecological pathways to preserve the integrity of cities.
Full article
(This article belongs to the Special Issue Coping with Flooding and Drought)
►▼
Show Figures

Figure 1
Open AccessArticle
Locating Urban Area Heat Waves by Combining Thermal Comfort Index and Computational Fluid Dynamics Simulations: The Optimal Placement of Climate Change Infrastructure in a Korean City
by
Sinhyung Cho, Sinwon Cho, Seungkwon Jung and Jaekyoung Kim
Climate 2025, 13(6), 113; https://doi.org/10.3390/cli13060113 - 29 May 2025
Abstract
The intensification of extreme temperature events driven by climate change has heightened the vulnerability of urban areas to heatwaves, making it a critical environmental challenge. In this study, we investigate the spatial characteristics of urban heatwave vulnerability in Jungang-dong, Gangneung—a representative mid-sized coastal
[...] Read more.
The intensification of extreme temperature events driven by climate change has heightened the vulnerability of urban areas to heatwaves, making it a critical environmental challenge. In this study, we investigate the spatial characteristics of urban heatwave vulnerability in Jungang-dong, Gangneung—a representative mid-sized coastal city in South Korea that experiences a strong urban heat island (UHI) effect due to the prevalent land–sea breeze dynamics, high building density, and low green-space ratio. A representative heatwave day (22 August 2024) was selected using AWS data from the Korea Meteorological Administration (KMA), and hourly meteorological conditions were applied to Computational Fluid Dynamics (CFD) simulations to model the urban microclimates. The thermal stress levels were quantitatively assessed using the Universal Thermal Climate Index (UTCI). The results indicated that, at 13:00, the surface temperatures reached 40 °C and the UTCI values peaked at 43 °C, corresponding to a “Very Strong Heat Stress” level. Approximately 17.4% of the study area was identified as being under extreme thermal stress, particularly in densely built-up zones, roadside corridors with high traffic, and pedestrian commercial areas. Based on these findings, we present spatial analysis results that reflect urban morphological characteristics to guide the optimal allocation of urban cooling strategies, including green (e.g., street trees, urban parks, and vegetated roofs), smart, and engineered infrastructure. These insights are expected to provide a practical foundation for climate adaptation planning and thermal environment improvement in mid-sized urban contexts.
Full article
(This article belongs to the Special Issue Climate Adaptation and Mitigation in the Urban Environment)
►▼
Show Figures

Figure 1
Open AccessArticle
Citizens and Scientific Perceptions of Ecosystem Services—Assessing Local Controversies over Climate Mitigation Efforts in Drained Wetlands
by
Thomas Skou Grindsted, Pernille Almlund, Jesper Holm, Gry Lyngsie, Gary Banta, Kristian Syberg, Henrik Hauggaard-Nielsen, Søren Lund and Simon David Herzog
Climate 2025, 13(6), 112; https://doi.org/10.3390/cli13060112 - 29 May 2025
Abstract
Draining wetland landscapes accelerates climate change, and multilateral support is therefore needed to speed up the transition to new land uses. This paper examines perceptions of ecosystem services (ES) in wetland areas in scientific and civic assessments. The case study area is Denmark’s
[...] Read more.
Draining wetland landscapes accelerates climate change, and multilateral support is therefore needed to speed up the transition to new land uses. This paper examines perceptions of ecosystem services (ES) in wetland areas in scientific and civic assessments. The case study area is Denmark’s largest drained wetland system, which is notable for its carbon sequestration potential. The area’s transformation efforts involving public participation offer a unique chance to examine differences between scientific and civic perceptions of ES. This exceptional case is ideal for revealing contextual differences, trade-offs, and controversies between scientific and civic perceptions of ES. Millennium ES Assessment and CICES are used as a conceptual framework for understanding and mapping human–nature interactions in a nature park. However, these systems are, in practice, not sufficiently developed to identify how citizens understand and value ES in real life. Therefore, we analyse perceptions using interviews, collaborative mapping, and media analysis. We compare these to scientific ES mappings based on local data, literature reviews, and fieldwork. The paper concludes that (1) scientific ES asymmetries are important; (2) environmental blind spots in scientific ES are due to its approach to knowledge collection; (3) citizens’ blind spots are due to their everyday life focus and tabooing the issue of local climate mitigation; and (4) science-based ES assessments and accounts are disconnected from local ES controversies. We argue that identifying ES controversies through various scientific methods may improve climate mitigation and restoration efforts if community planning becomes involved.
Full article
(This article belongs to the Section Climate and Environment)
►▼
Show Figures

Figure 1
Open AccessArticle
Semi-Annual Climate Modes in the Western Hemisphere
by
Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Abstract
►▼
Show Figures
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from
[...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time.
Full article

Figure 1
Open AccessReview
From Climate to Cloud: Advancing Fog Detection Through Satellite Imagery
by
Andrés Gabriel Arguedas Chaverri, Rogério Hartung Toppa and Kelly Cristina Tonello
Climate 2025, 13(6), 110; https://doi.org/10.3390/cli13060110 - 27 May 2025
Abstract
The broad spatiotemporal coverage provided by satellite remote sensing is fundamental for monitoring fog events, a phenomenon that impacts transportation, agriculture, and ecosystem functioning. Despite advances in remote sensing technology, significant knowledge gaps remain regarding the application of these techniques to fog detection,
[...] Read more.
The broad spatiotemporal coverage provided by satellite remote sensing is fundamental for monitoring fog events, a phenomenon that impacts transportation, agriculture, and ecosystem functioning. Despite advances in remote sensing technology, significant knowledge gaps remain regarding the application of these techniques to fog detection, especially over terrestrial ecosystems. This scoping review synthesizes the trends in methods used for fog detection by analyzing 38 papers retrieved from Scopus and Web of Science. Only studies that utilized satellite imagery to analyze the spatiotemporal dynamics of fog were included. Articles that employed non-satellite methodologies or focused on processes other than the detection, formation, or identification of fog events were excluded. In addition to a term co-occurrence analysis of abstracts using VOSviewer, this study examines key parameters of the detection methods—including sensor type, spectral bands, temporal resolution, and algorithmic approaches (e.g., threshold methods and deep learning techniques)—to evaluate their evolution and current limitations. Our results reveal that while approximately 53% of studies rely on geostationary satellite data (95% CI: 36.7–68.5%), favored for their high temporal resolution, the remaining 47% employ polar-orbiting sensors (95% CI: 31.5–63.2%) that offer superior spatial resolution. Notably, most research has concentrated on maritime fog detection, with few studies extending these techniques to complex terrestrial environments. The review highlights critical gaps in current approaches and proposes an integrated framework that combines traditional brightness temperature difference methods with emerging machine learning techniques, which could advance fog detection in diverse settings.
Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Wildfire Risk Assessment Using the Fire Weather Index (FWI) in Greece
by
Effie Kostopoulou and George Stavridis
Climate 2025, 13(6), 109; https://doi.org/10.3390/cli13060109 - 26 May 2025
Abstract
This study assesses future wildfire risk in Greece using the Fire Weather Index (FWI), based on data from the Copernicus Climate Change Service. Historical conditions (1971–2000) and future projections (2069–2098) under RCP4.5 and RCP8.5 scenarios were analyzed, with a primary focus on the
[...] Read more.
This study assesses future wildfire risk in Greece using the Fire Weather Index (FWI), based on data from the Copernicus Climate Change Service. Historical conditions (1971–2000) and future projections (2069–2098) under RCP4.5 and RCP8.5 scenarios were analyzed, with a primary focus on the core fire season (May–October) and consideration of April and November to evaluate potential seasonal extension. The results show a significant shift toward higher fire risk classes, with the “very high” category increasing from 24% historically to 31% under RCP4.5 and 37% under RCP8.5, and the “extreme” class rising from 4% to 11% and 16%, respectively. Southern Greece, especially Crete, and the Dodecanese, is projected to experience the most severe increases. These changes, driven by rising temperatures and intensified drought conditions, indicate an increased likelihood of extreme fire events, posing increased risks to ecosystems, infrastructure, and regional economies. The findings highlight the need for targeted adaptation and fire management strategies.
Full article
(This article belongs to the Special Issue Climate Change Impacts at Various Geographical Scales (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Heat Waves in Portugal During the 2001–2024 Period: An Overview
by
A. Virgílio M. Oliveira, António M. Raimundo, Adélio R. Gaspar and Divo A. Quintela
Climate 2025, 13(6), 108; https://doi.org/10.3390/cli13060108 - 26 May 2025
Abstract
►▼
Show Figures
The present contribution addresses the Heat Waves (HWs) which occurred in Portugal’s mainland during the first 24 years of the XXI century: the number of HWs, their frequency, duration and geographic localization, among other impacts, are described. In a complementary perspective, due to
[...] Read more.
The present contribution addresses the Heat Waves (HWs) which occurred in Portugal’s mainland during the first 24 years of the XXI century: the number of HWs, their frequency, duration and geographic localization, among other impacts, are described. In a complementary perspective, due to the significant impacts of the 2003 HW, specifically in terms of mortality, a more detailed analysis of this event is performed. For the present analysis, HWs were identified using a modified version of the Heat Wave Duration Index (HWDI) proposed by the World Meteorological Organization (WMO). During the XXI century, between 2001 and 2024, 95 HWs occurred in the Portuguese mainland. In 2024, eight HWs occurred, followed by 2009, 2015 and 2017, with seven HWs each; in terms of monthly distribution, August (17) and May (16) displayed the highest values. HWs are now included in the World Health Organization agenda of natural hazards, enhancing the importance of these events. It is time to start considering HWs and their significant impacts as an important issue, especially in countries with older populations, like Portugal.
Full article

Figure 1
Open AccessArticle
Regime Change in Top of the Atmosphere Radiation Fluxes: Implications for Understanding Earth’s Energy Imbalance
by
Roger N. Jones and James H. Ricketts
Climate 2025, 13(6), 107; https://doi.org/10.3390/cli13060107 - 24 May 2025
Abstract
►▼
Show Figures
Earth’s energy imbalance (EEI) is a major indicator of climate change. Its metrics are top of the atmosphere radiation imbalance (EEI TOA) and net internal heat uptake. Both EEI and temperature are expected to respond gradually to forcing on annual timescales. This expectation
[...] Read more.
Earth’s energy imbalance (EEI) is a major indicator of climate change. Its metrics are top of the atmosphere radiation imbalance (EEI TOA) and net internal heat uptake. Both EEI and temperature are expected to respond gradually to forcing on annual timescales. This expectation was tested by analyzing regime changes in the inputs to EEI TOA along with increasing ocean heat content (OHC). Outward longwave radiation (OLR) displayed rapid shifts in three observational and two reanalysis records. The reanalysis records also contained shifts in surface fluxes and temperature. OLR, outward shortwave radiation (OSR) and TOA net radiation (Net) from the CERES Energy Balanced and Filled Ed-4.2.1 (2001–2023) record and from 27 CMIP5 historical and RCP4.5 forced simulations 1861–2100, were also analyzed. All variables from CERES contained shifts but the record was too short to confirm regime changes. Contributions of OLR and OSR to net showed high complementarity over space and time. EEI TOA was −0.47 ± 0.11 W m−2 in 2001–2011 and −1.09 ± 0.11 W m−2 in 2012–2023. Reduced OSR due to cloud feedback was a major contributor, coinciding with rapid increases in sea surface temperatures in 2014. Despite widely varying OLR and OSR, 26/27 climate models produced stable regimes for net radiation. EEI TOA was neutral from 1861, shifting downward in the 26 reliable records between 1963 and 1995, with 25 records showing it stabilizing by 2039. To investigate heat uptake, temperature and OHC 1955/57–2023 was analyzed for regime change in the 100 m, 700 m and 2000 m layers. The 100 m layer, about one third of total heat content, was dominated by regimes. Increases became more gradual with depth. Annual changes between the 700 m layer and 1300 m beneath were negatively correlated (−0.67), with delayed oscillations during lag years 2–9. Heat uptake at depth is dynamic. These changes reveal a complex thermodynamic response to gradual forcing. We outline a complex arrangement of naturally evolved heat engines, dominated by a dissipative heat engine nested within a radiative engine. EEI is a property of the dissipative heat engine. This far-from-equilibrium natural engine has evolved to take the path of least resistance while being constrained by its maximum power limit (~2 W m−2). It is open to the radiative engine, receiving solar radiation and emitting scattered shortwave and longwave radiation. Steady states maximize entropy within the dissipative engine by regulating spatial patterns in surface variables that influence outgoing OLR and OSR. Regime shifts to warmer climates balance the cost of greater irreversibility with increased energy rate density. The result is the regulation of EEI TOA through a form of thermodynamic metabolism.
Full article

Figure 1
Open AccessArticle
Decadal Modulation of Summertime Northwestern Pacific Subtropical High Linked to Indian Ocean Basin Warming
by
Takashi Mochizuki and Yuta Ando
Climate 2025, 13(6), 106; https://doi.org/10.3390/cli13060106 - 24 May 2025
Abstract
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in
[...] Read more.
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in recent years, we conducted sensitivity experiments using an atmospheric general circulation model. We particularly focused on decadal-scale differences between the periods of 1982–2001 and 2002–2021, with the contribution of the climatological sea surface temperature (SST) as the background, in combination with the tropical Pacific SST anomaly in relation to the rapid or slow decay of the El Niño Southern Oscillation (ENSO). The results indicate that the IOBW-related SST anomalies in the Indian and tropical Pacific Oceans—which, overall, represent the well-known characteristics of the so-called Indo-western Pacific Ocean Capacitor effects—cooperatively enhanced the NPSH in the earlier period (1982–2001). On the other hand, the suppressed and westward-shifted SST anomalies in the tropical Pacific Ocean and the resultant changes in the diabatic heating of cumulus convection suppressed the NPSH enhancement in recent years (2002–2021). These results indicate that the modulation in the NPSH responses linked to the IOBW is primarily due to the so-called ENSO diversity rather than climatology.
Full article
(This article belongs to the Section Climate Dynamics and Modelling)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Climate Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agronomy, Climate, Earth, Remote Sensing, Water
Advances in Crop Simulation Modelling
Topic Editors: Mavromatis Theodoros, Thomas Alexandridis, Vassilis AschonitisDeadline: 15 July 2025
Topic in
Hydrology, Water, Climate, Atmosphere, Agriculture, Geosciences
Advances in Hydro-Geological Research in Arid and Semi-Arid Areas
Topic Editors: Ahmed Elbeltagi, Quanhua Hou, Bin HeDeadline: 31 July 2025
Topic in
Climate, Diversity, Forests, Plants, Sustainability, Earth
Responses of Trees and Forests to Climate Change
Topic Editors: Qinglai Dang, Ilona Mészáros, Lei WangDeadline: 30 August 2025
Topic in
Energies, Hydrology, Remote Sensing, Water, Climate, Earth, Sustainability
Climate Change and Human Impact on Freshwater Water Resources: Rivers and Lakes
Topic Editors: Leszek Sobkowiak, Arthur Mynett, David PostDeadline: 30 September 2025

Conferences
Special Issues
Special Issue in
Climate
Coastal Hazards under Climate Change
Guest Editors: Vasiliki K. Tsoukala, Michalis K. ChondrosDeadline: 30 June 2025
Special Issue in
Climate
Ecological Modeling for Adaptation to Climate Change
Guest Editor: Tongli WangDeadline: 30 June 2025
Special Issue in
Climate
Changing Rainfall Patterns and Food Insecurity: Vulnerable Regions and Adaptation Strategies
Guest Editor: Sisay DebeleDeadline: 30 June 2025
Special Issue in
Climate
Modelling for the Influences of Climate and Landscape Processes on Hydrology
Guest Editors: Lidija Tadić, Enikő Anna Tamás, Melita MihaljevićDeadline: 30 June 2025
Topical Collections
Topical Collection in
Climate
Adaptation and Mitigation Practices and Frameworks
Collection Editor: Rajib Shaw