Warming Enhances CO2 Flux from Saline–Alkali Soils by Intensifying Moisture–Temperature Interactions in the Critical Zone
Abstract
1. Introduction
Location | Flux Range (μmol·s−1·m−2) | Key Driver | Citation |
---|---|---|---|
Chihuahuan Desert | 20–154.7 | Soil Moisture, Temperature, Precipitation | [24] |
Mojave Desert | 0.39–1.49 | Soil Temperature, Soil Moisture | [18] |
Sonoran Desert | 110–476.6 | Soil Temperature, Moisture, Vegetation | [34] |
Taklamakan Desert | −0.56 to 1.24 | Inorganic Carbon, Soil Moisture | [15] |
Gurbantunggut Desert | −0.28 to 1.2 | Carbonates, Moisture | [19,20] |
2. Materials and Methods
2.1. Site Description
2.2. Soil Characterization
2.3. Experimental Design
2.4. Data Processing
3. Results
3.1. Fluctuation of CO2 Flux at Different Experimental Stages
3.2. Warming Reshapes Moisture–Temperature Interactions in Saline–Alkali Soils
3.3. Estimation of CO2 Flux Estimation Scheme for Saline Alkali Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schindler, D.W. The Mysterious Missing Sink. Nature 1999, 398, 105–107. [Google Scholar] [CrossRef]
- Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The Land-to-Ocean Loops of the Global Carbon Cycle. Nature 2022, 603, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Chen, J.; Piao, S.; Ciais, P.; Luo, Y.; Wan, S. Terrestrial Carbon Cycle Affected by Non-Uniform Climate Warming. Nat. Geosci. 2014, 7, 173–180. [Google Scholar] [CrossRef]
- Wang, S.-J.; Cao, L.; Li, N. Responses of the Ocean Carbon Cycle to Climate Change: Results from an Earth System Climate Model Simulation. Adv. Clim. Change Res. 2014, 5, 123–130. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T. Why Was the Arid and Semiarid Northwest China Getting Wetter in the Recent Decades? J. Geophys. Res. Atmos. 2017, 122, 9060–9075. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Wang, W.; Jiang, J.; Cai, M.; Xu, Y. Evolution Characteristics of Groundwater and Its Response to Climate and Land-Cover Changes in the Oasis of Dried-up River in Tarim Basin. J. Hydrol. 2021, 594, 125644. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Mamtimin, A.; He, Q. Characteristics of Land-Atmosphere Interaction Parameters in Hinterland of the Taklimakan Desert. Sci. Rep. 2020, 10, 9260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, K.; Qian, H.; Gao, Y.; Fang, Y.; Xiao, S.; Tang, S.; Zhang, Q.; Qu, W.; Ren, W. Characterization of Soil Salinization and Its Driving Factors in a Typical Irrigation Area of Northwest China. Sci. Total Environ. 2022, 837, 155808. [Google Scholar] [CrossRef]
- Joos, F. Imbalance in the Budget. Nature 1994, 370, 181–182. [Google Scholar] [CrossRef]
- Bruce, J.P.; Frome, M.; Haites, E.; Janzen, H.; Lal, R.; Paustian, K. Carbon Sequestration in Soils. J. Soil Water Conserv. 1999, 54, 382–389. [Google Scholar] [CrossRef]
- Lal, R. Sequestration of Atmospheric CO2 in Global Carbon Pools. Energy Environ. Sci. 2008, 1, 86–100. [Google Scholar] [CrossRef]
- White, A.; Cannell, M.G.; Friend, A.D. Climate Change Impacts on Ecosystems and the Terrestrial Carbon Sink: A New Assessment. Glob. Environ. Change 1999, 9, S21–S30. [Google Scholar] [CrossRef]
- Wang, Y.; Hsieh, Y.-P. Uncertainties and Novel Prospects in the Study of the Soil Carbon Dynamics. Chemosphere 2002, 49, 791–804. [Google Scholar] [CrossRef]
- Wofsy, S.C. Where Has All the Carbon Gone? Science 2001, 292, 2261–2263. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.-Y.; Stevenson, B.A.; Zheng, X.-J.; Li, Y. An Inorganic CO2 Diffusion and Dissolution Process Explains Negative CO2 Fluxes in Saline/Alkaline Soils. Sci. Rep. 2013, 3, 2025. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, J.; Zhou, C.; Yang, X.; Ali, M.; Li, C.; Pan, H.; Huo, W.; Yu, H.; Liu, X. Taklimakan Desert Carbon-Sink Decreases under Climate Change. Sci. Bull. 2020, 65, 431–433. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.; Zhou, C.; Yang, X.; Mamtimin, A.; Zheng, X.; Huo, W.; Ji, F.; Han, D.; Meng, L. Desert Abiotic Carbon Sequestration Weakening by Precipitation. Environ. Sci. Technol. 2023, 57, 7174–7184. [Google Scholar] [CrossRef]
- Soper, F.M.; McCalley, C.K.; Sparks, K.; Sparks, J.P. Soil Carbon Dioxide Emissions from the Mojave Desert: Isotopic Evidence for a Carbonate Source. Geophys. Res. Lett. 2017, 44, 245–251. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.F. On the Apparent CO2 Absorption by Alkaline Soils. Biogeosci. Discuss. 2014, 11, 2665–2683. [Google Scholar]
- Bekin, N.; Agam, N. Rethinking the Deployment of Static Chambers for CO2 Flux Measurement in Dry Desert Soils. Biogeosciences 2023, 20, 3791–3802. [Google Scholar] [CrossRef]
- Liu, J.; Feng, W.; Zhang, Y.; Jia, X.; Wu, B.; Qin, S.; Fa, K.; Lai, Z. Abiotic CO2 Exchange between Soil and Atmosphere and Its Response to Temperature. Environ. Earth Sci. 2015, 73, 2463–2471. [Google Scholar] [CrossRef]
- Liu, J.; Fa, K.; Zhang, Y.; Wu, B.; Qin, S.; Jia, X. Abiotic CO2 Uptake from the Atmosphere by Semiarid Desert Soil and Its Partitioning into Soil Phases. Geophys. Res. Lett. 2015, 42, 5779–5785. [Google Scholar] [CrossRef]
- Takle, E.S.; Massman, W.J.; Brandle, J.R.; Schmidt, R.A.; Zhou, X.; Litvina, I.V.; Garcia, R.; Doyle, G.; Rice, C.W. Influence of High-Frequency Ambient Pressure Pumping on Carbon Dioxide Efflux from Soil. Agric. For. Meteorol. 2004, 124, 193–206. [Google Scholar] [CrossRef]
- Hamerlynck, E.P.; Scott, R.L.; Sánchez-Cañete, E.P.; Barron-Gafford, G.A. Nocturnal Soil CO2 Uptake and Its Relationship to Subsurface Soil and Ecosystem Carbon Fluxes in a Chihuahuan Desert Shrubland. J. Geophys. Res. Biogeosci. 2013, 118, 1593–1603. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.-G.; Houghton, R.A.; Tang, L.-S. Hidden Carbon Sink beneath Desert. Geophys. Res. Lett. 2015, 42, 5880–5887. [Google Scholar] [CrossRef]
- Chang, L.; Ju, T.; Liu, H.; Li, Y. The Contribution of Saline-Alkali Land to the Terrestrial Carbon Stock Balance: The Case of an Important Agriculture and Ecological Region in Northeast China. Land 2024, 13, 900. [Google Scholar] [CrossRef]
- Bai, T.; Wang, P.; Qiu, Y.; Zhang, Y.; Hu, S. Nitrogen Availability Mediates Soil Carbon Cycling Response to Climate Warming: A Meta-analysis. Glob. Change Biol. 2023, 29, 2608–2626. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J. Climate Change and Drought: The Soil Moisture Perspective. Curr. Clim. Change Rep. 2018, 4, 180–191. [Google Scholar] [CrossRef]
- Singh, S.; Mayes, M.A.; Shekoofa, A.; Kivlin, S.N.; Bansal, S.; Jagadamma, S. Soil Organic Carbon Cycling in Response to Simulated Soil Moisture Variation under Field Conditions. Sci. Rep. 2021, 11, 10841. [Google Scholar] [CrossRef]
- Fang, H.; Sha, M.; Xie, Y.; Lin, W.; Qiu, D.; Tu, J.; Tan, X.; Li, X.; Sha, Z. Shifted Global Vegetation Phenology in Response to Climate Changes and Its Feedback on Vegetation Carbon Uptake. Remote Sens. 2023, 15, 2288. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Yang, X.; Chen, N.; Li, S.; Wang, P.; Jiang, L. Warming Alters Plant Phylogenetic and Functional Community Structure. J. Ecol. 2020, 108, 2406–2415. [Google Scholar] [CrossRef]
- Schlesinger, W.H. An Evaluation of Abiotic Carbon Sinks in Deserts. Glob. Change Biol. 2017, 23, 25–27. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The Global Carbon Dioxide Flux in Soil Respiration and Its Relationship to Vegetation and Climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Sponseller, R.A. Precipitation Pulses and Soil CO2 Flux in a Sonoran Desert Ecosystem. Glob. Change Biol. 2007, 13, 426–436. [Google Scholar] [CrossRef]
- Yang, X.; Shen, S.; Yang, F.; He, Q.; Ali, M.; Huo, W.; Liu, X. Spatial and Temporal Variations of Blowing Dust Events in the Taklimakan Desert. Theor. Appl. Climatol. 2016, 125, 669–677. [Google Scholar] [CrossRef]
- Zhou, C.; Mamtimin, A.; Yang, F.; Huo, W.; Wang, M.; Pan, H.; He, Q.; Jin, L.; Yang, X. Dust Uplift Potential in the Taklimakan Desert: An Analysis Based on Different Wind Speed Measurement Intervals. Theor. Appl. Climatol. 2019, 137, 1449–1456. [Google Scholar] [CrossRef]
- Yang, F.; He, Q.; Huang, J.; Mamtimin, A.; Yang, X.; Huo, W.; Zhou, C.; Liu, X.; Wei, W.; Cui, C. Desert Environment and Climate Observation Network over the Taklimakan Desert. Bull. Am. Meteorol. Soc. 2020, 102, E1172–E1191. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, F.; Huang, J.; Zheng, X.; Mamtimin, A.; Zhou, C.; Abudukade, S.; Gao, J.; Li, C.; Ma, M. Precipitation Controls on Carbon Sinks in an Artificial Green Space in the Taklimakan Desert. Adv. Atmos. Sci. 2024, 41, 2300–2312. [Google Scholar] [CrossRef]
- Baumgartner, S.; Barthel, M.; Drake, T.W.; Bauters, M.; Makelele, I.A.; Mugula, J.K.; Summerauer, L.; Gallarotti, N.; Ntaboba, L.C.; Van Oost, K. Seasonality, Drivers, and Isotopic Composition of Soil CO2 Fluxes from Tropical Forests of the Congo Basin. Biogeosci. Discuss. 2020, 17, 6207–6218. [Google Scholar] [CrossRef]
- Wu, X.; Zang, S.; Ma, D.; Ren, J.; Chen, Q.; Dong, X. Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 2999. [Google Scholar] [CrossRef]
- Frank, A.B.; Liebig, M.A.; Hanson, J.D. Soil Carbon Dioxide Fluxes in Northern Semiarid Grasslands. Soil Biol. Biochem. 2002, 34, 1235–1241. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, X.; Wolf, B.; Yao, Z.; Liu, C.; Butterbach-Bahl, K.; Brüggemann, N. Long-Term Grazing Effects on Soil-Atmosphere Exchanges of CO2, CH4 and N2O at Different Grasslands in Inner Mongolia: A Soil Core Study. Ecol. Indic. 2019, 105, 316–328. [Google Scholar] [CrossRef]
- Sosulski, T.; Niedziński, T.; Jadczyszyn, T.; Szymańska, M. Influence of Reduced Tillage, Fertilizer Placement, and Soil Afforestation on CO2 Emission from Arable Sandy Soils. Agronomy 2022, 12, 3102. [Google Scholar] [CrossRef]
- Houska, T.; Kraus, D.; Kiese, R.; Breuer, L. Constraining a Complex Biogeochemical Model for CO2 and N2O Emission Simulations from Various Land Uses by Model–Data Fusion. Biogeosciences 2017, 14, 3487–3508. [Google Scholar] [CrossRef]
- Yang, F.; Ali, M.; Zheng, X.; He, Q.; Yang, X.; Huo, W.; Liang, F.; Wang, S. Diurnal Dynamics of Soil Respiration and the Influencing Factors for Three Land-Cover Types in the Hinterland of the Taklimakan Desert, China. J. Arid Land 2017, 9, 568–579. [Google Scholar] [CrossRef]
- Lellei-Kovács, E.; Kovács-Láng, E.; Botta-Dukát, Z.; Kalapos, T.; Emmett, B.; Beier, C. Thresholds and Interactive Effects of Soil Moisture on the Temperature Response of Soil Respiration. Eur. J. Soil Biol. 2011, 47, 247–255. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Feldman, A.F.; Gentine, P.; Makowski, D.; Prentice, I.C.; Stoy, P.C.; Bastos, A.; Wigneron, J.-P. Critical Soil Moisture Thresholds of Plant Water Stress in Terrestrial Ecosystems. Sci. Adv. 2022, 8, eabq7827. [Google Scholar] [CrossRef] [PubMed]
- Haonan, Q.; Shihong, Y.; Guangmei, W.; Xiaoling, L.; Jie, Z.; Yi, X.; Shide, D.; Hanwen, L.; Zewei, J. Analysis of Carbon Flux Characteristics in Saline–Alkali Soil under Global Warming. J. Agron. Crop Sci. 2024, 210, e12720. [Google Scholar] [CrossRef]
- Fa, K.; Liu, Z.; Zhang, Y.; Qin, S.; Wu, B.; Liu, J. Abiotic Carbonate Dissolution Traps Carbon in a Semiarid Desert. Sci. Rep. 2016, 6, 23570. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, J.; He, Q.; Zheng, X.; Zhou, C.; Pan, H.; Huo, W.; Yu, H.; Liu, X.; Meng, L. Impact of Differences in Soil Temperature on the Desert Carbon Sink. Geoderma 2020, 379, 114636. [Google Scholar] [CrossRef]
- Diao, H.; Hao, J.; Yang, Q.; Gao, Y.; Ma, T.; Han, F.; Liang, W.; Chang, J.; Yi, L.; Pang, G. Soil Environment and Annual Rainfall Co-Regulate the Response of Soil Respiration to Different Grazing Intensities in Saline-Alkaline Grassland. Catena 2024, 236, 107709. [Google Scholar] [CrossRef]
- Xiang, J.; Shi, W.; Jing, Z.; Guan, Y.; Yang, F.; Wang, G.; Sun, X.; Li, J.; Li, Q.; Zhang, H. Exogenous Calcium-Induced Carbonate Formation to Increase Carbon Sequestration in Coastal Saline-Alkali Soil. Sci. Total Environ. 2024, 946, 174338. [Google Scholar] [CrossRef]
- Wu, X.; Yao, Z.; Brüggemann, N.; Shen, Z.Y.; Wolf, B.; Dannenmann, M.; Zheng, X.; Butterbach-Bahl, K. Effects of Soil Moisture and Temperature on CO2 and CH4 Soil–Atmosphere Exchange of Various Land Use/Cover Types in a Semi-Arid Grassland in Inner Mongolia, China. Soil Biol. Biochem. 2010, 42, 773–787. [Google Scholar] [CrossRef]
- Al-Kayssi, A.W.; Al-Karaghouli, A.A.; Hasson, A.M.; Beker, S.A. Influence of Soil Moisture Content on Soil Temperature and Heat Storage under Greenhouse Conditions. J. Agric. Eng. Res. 1990, 45, 241–252. [Google Scholar] [CrossRef]
Parameter | Mean | SD | Min | Max |
---|---|---|---|---|
Total Carbon (g·kg−1) | 1.27 | 0.41 | 0.50 | 2.00 |
SOC (g·kg−1) | 1.92 | 0.73 | 1.03 | 4.94 |
pH (1:2.5) | 8.84 | 0.12 | 8.69 | 9.24 |
Ca2+ (mg·g−1) | 3.91 | 0.62 | 2.55 | 6.66 |
Mg2+ (mg·g−1) | 2.09 | 1.16 | 0.17 | 5.15 |
Total Salts (mg·g−1) | 105.80 | 53.08 | 12.33 | 359.70 |
EC (3 cm depth, dS·m−1) | 0.003 | 0.003 | 0.001 | 0.018 |
EC (10 cm depth, dS·m−1) | 0.253 | 0.059 | 0.051 | 0.363 |
Time | Synchrony Test | Ambient Environment | Climate Warming | |
---|---|---|---|---|
Temperature (°C) | 1:00 | 23.6 | 23.6 | 25.6 |
4:00 | 22.4 | 22.4 | 24.4 | |
7:00 | 25.8 | 25.8 | 27.8 | |
10:00 | 32.5 | 32.5 | 34.5 | |
13:00 | 33.8 | 33.8 | 35.8 | |
16:00 | 34.7 | 34.7 | 36.7 | |
19:00 | 30.9 | 30.9 | 32.9 | |
22:00 | 27.4 | 27.4 | 29.4 | |
CO2 concentration (ppm) | 400 | 400 | 650 |
Stage | No. | Initial VWC3cm (m3 m−3) | Initial T0cm (°C) | Add Water (mL) |
Ambient conditions | C1 | 0.02 | 24.53 | 0 |
C2 | 0.11 | 24.60 | 500 | |
C3 | 0.27 | 24.79 | 1000 | |
C4 | 0.91 | 24.80 | 1500 | |
simulated climate-warming conditions | W1 | 0.00 | 26.15 | 0 |
W2 | 0.09 | 26.06 | 500 | |
W3 | 0.23 | 26.13 | 1000 | |
W4 | 0.83 | 26.01 | 1500 |
Stage | No. | Slopes | Intercepts | R2 | P |
---|---|---|---|---|---|
Ambient conditions | C1 = 0.098T0cm − 2.55 | 0.02 | 24.53 | 0 | 8.72 |
C2 = 0.073T0cm − 1.90 | 0.11 | 24.60 | 500 | 8.76 | |
C3 = 0.075T0cm − 1.94 | 0.27 | 24.79 | 1000 | 8.88 | |
C4 = 0.039T0cm − 1.02 | 0.91 | 24.80 | 1500 | 8.96 | |
simulated climate-warming conditions | W1 = 0.14T0cm − 4.01 | 0.00 | 26.15 | 0 | 8.70 |
W2 = 0.11T0cm − 3.03 | 0.09 | 26.06 | 500 | 8.91 | |
W3 = 0.10T0cm − 2.89 | 0.23 | 26.13 | 1000 | 8.83 | |
W4 = 0.058T0cm − 1.61 | 0.83 | 26.01 | 1500 | 8.70 |
Stage | Number | Equation | R2 | RMSE | AIC |
---|---|---|---|---|---|
Ambient conditions | C1 | 0.098 T0cm − 2.55 | 0.93 | ||
C(VWC3cm, T0cm) | −0.23 − 1.70 VWC3cm + 0.009 T0cm + 0.065 VWC3cm · T0cm | 0.94 | |||
FC = C1 − C(VWC3cm, T0cm) | −2.32 + 1.70 VWC3cm + 0.084 T0cm − 0.065 VWC3cm · T0cm | 0.594 | 0.186 | −1930.514 | |
Simulated climate-warming conditions | W1 | 0.14 T0cm − 4.01 | 0.88 | ||
W(VWC3cm, T0cm) | −0.39 − 2.63 VWC3cm + 0.012 T0cm + 0.091 VWC3cm · T0cm | 0.87 | |||
FW = W1 − W(VWC3cm, T0cm) | −3.62 + 2.63 VWC3cm + 0.128 T0cm − 0.091 VWC3cm · T0cm | 0.610 | 0.269 | 1503.849 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, F.; Liu, X.; Yang, P.; Ma, H.; Zheng, X.; Yang, X.; Abudukad, S.; Gao, J.; Zhang, F. Warming Enhances CO2 Flux from Saline–Alkali Soils by Intensifying Moisture–Temperature Interactions in the Critical Zone. Land 2025, 14, 1964. https://doi.org/10.3390/land14101964
Liu Y, Yang F, Liu X, Yang P, Ma H, Zheng X, Yang X, Abudukad S, Gao J, Zhang F. Warming Enhances CO2 Flux from Saline–Alkali Soils by Intensifying Moisture–Temperature Interactions in the Critical Zone. Land. 2025; 14(10):1964. https://doi.org/10.3390/land14101964
Chicago/Turabian StyleLiu, Yihan, Fan Yang, Xinchun Liu, Ping Yang, Huiying Ma, Xinqian Zheng, Xinghua Yang, Silalan Abudukad, Jiacheng Gao, and Fapeng Zhang. 2025. "Warming Enhances CO2 Flux from Saline–Alkali Soils by Intensifying Moisture–Temperature Interactions in the Critical Zone" Land 14, no. 10: 1964. https://doi.org/10.3390/land14101964
APA StyleLiu, Y., Yang, F., Liu, X., Yang, P., Ma, H., Zheng, X., Yang, X., Abudukad, S., Gao, J., & Zhang, F. (2025). Warming Enhances CO2 Flux from Saline–Alkali Soils by Intensifying Moisture–Temperature Interactions in the Critical Zone. Land, 14(10), 1964. https://doi.org/10.3390/land14101964