Monitoring CO2 Hazards of Volcanic Origin: A Case Study at the Island of Vulcano (Italy) during 2021–2022
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Investigation Strategies
3.2. Soil CO2 Flux Measurements (φCO2)
3.3. Measurements of the Environmental Variables
3.4. CO2 Concentration Measurement Indoor
3.5. Soil Gas Surveys Data Processing
3.6. Continuous Monitoring of φCO2 Clustering
4. Results
4.1. Diffuse Degassing of CO2 at Faraglione Zone (φCO2)
4.2. CO2 Concentration Indoor
4.3. Soil CO2 Flux Continuous Monitoring (φCO2)
4.4. Variations of the CO2 Concentration in the Outdoor Air
4.5. Changes in the Atmospheric Variables
5. Discussion
5.1. Spatial Variations in φCO2 across the Target Area and Air CO2 Concentration Indoors
5.2. Continuous Monitoring of φCO2 and Outdoor Air CO2 Concentration at Faraglione Zone
5.3. Identification of the Environmental Conditions Promoting Elevated CO2 Hazard
5.3.1. Cluster Analysis
5.3.2. Correlations between Air CO2 Concentration and φCO2
5.4. Variations of the Gas Hazard during 2021–2022
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, P.; Anderson, A.T. Volatiles in magmas. In Haraldur Sigurdsson, The Encyclopedia of Volcanoes, 1st ed.; Academic Press: Cambridge, MA, USA, 2000; ISBN 9780080547985. [Google Scholar]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep Carbon Emissions from Volcanoes. Rev. Mineral. Geochem. 2013, 75, 323–354. [Google Scholar] [CrossRef]
- Werner, C.; Fischer, T.; Aiuppa, A.; Edmonds, M.; Cardellini, C.; Carn, S.; Allard, P. Carbon Dioxide Emissions from Subaerial Volcanic Regions: Two Decades in Review. In Deep Carbon: Past to Present; Orcutt, B., Daniel, I., Dasgupta, R., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 188–236. [Google Scholar]
- Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E.; Jacob, D.; et al. Couplings Between Changes in the Climate System and Biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G. Fast and accurate both carbon and oxygen isotope determination in volcanic and urban gases using laser-based analyzer. Geophys. Res. Abstr. 2019, 21, EGU2019-5095. [Google Scholar]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G. On the complexity of anthropogenic and geological sources of carbon dioxide: Onsite differentiation using isotope surveying. Atm. Environ. 2021, 2556, 118446. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Gurrieri, S. Theoretical principles and application to measure the flux of carbon dioxide in the air of urban zones. Atm. Environ. 2022, 288, 119302. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Z.; Sano, Y.; Zhang, M.; Sun, Y.; Cheng, Z.; Yang, T.F. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone. J. Asian Earth Sci. 2017, 149, 110–123. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Gurrieri, S. The effects of volcanic degassing on the air composition revealed by stable isotope surveys. Misc. INGV 2022, 70, 1340. [Google Scholar] [CrossRef]
- Camarda, M.; De Gregorio, S.; Gurrieri, S. Magma–ascent processes during 2005-2009 at Mt Etna inferred by soil CO2 emissions in peripheral areas of the volcano. Chem. Geol. 2012, 330–331, 218–227. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Camarda, M.; Gurrieri, S.; Valenza, M. Continuous monitoring of hydrogen and carbon dioxide at Mt Etna. Chem. Geol. 2013, 357, 41–51. [Google Scholar] [CrossRef]
- Liuzzo, M.; Gurrieri, S.; Giudice, G.; Giuffrida, G. Ten years of soil CO2 continuous monitoring on Mt. Etna: Exploring the relationship between processes of soil degassing and volcanic activity. Geochim. Geophys. Geosys. 2013, 14, 2886–2899. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Camarda, M.; Gurrieri, S.; Valenza, M. Asynchronous changes of CO2, H2 and He concentrations in soil gases: A theoretical model and experimental results. J. Geophys. Res. Solid Earth. 2016, 121, 1565–1583. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Camarda, M.; Gurrieri, S. Continuous monitoring of hydrogen and carbon dioxide at Stromboli volcano (Aeolian Islands, Italy). Ital. J. Geosci. 2021, 141, 79–94. [Google Scholar] [CrossRef]
- Badalamenti, B.; Gurrieri, S.; Hauser, S.; Parello, F.; Valenza, M. Soil CO2 output in the island of Vulcano during the period 1984–1988: Surveillance of gas hazard and volcanic activity. Rend. Soc. It. Miner. Petrol. 1988, 43, 893–899. [Google Scholar]
- Badalamenti, B.; Gurrieri, S.; Hauser, S.; Parello, F.; Valenza, M. Change in the soil CO2 output at Vulcano during the summer. Acta Vulcanol. 1998, 1, 219–221. [Google Scholar]
- Barberi, F.; Neri, G.; Valenza, M.; Villari, L. 1987–1990 unrest at Vulcano. Acfa Volcanol. 1991, 1, 95–106. [Google Scholar]
- Giammanco, S.; Gurrieri, S.; Valenza, M. Soil CO2 degassing along tectonic structures of Mt. Etna Sicily: The Pernicana Fault. Appl. Geochem. 1997, 12, 429–436. [Google Scholar] [CrossRef]
- Diliberto, I.S.; Gurrieri, S.; Valenza, M. Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984–1994. Bull. Volcanol. 2002, 64, 219–228. [Google Scholar] [CrossRef]
- Giammanco, S.; Inguaggiato, S.; Valenza, M. Soil and fumarole gases of Mount Etna: Geochemistry and relations with volcanic activity. J. Volcanol. Geoth. Res. 1998, 81, 297–310. [Google Scholar] [CrossRef]
- Granieri, D.; Carapezza, M.L.; Chiodini, G.; Avino, R.; Caliro, S.; Rinaldi, M.; Ricci, T.; Tarchini, L. Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): Evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geoph. Res. Lett. 2006, 33, L13316. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G.; Camarda, M.; De Gregorio, S.; Prano, V. Deep CO2 release revealed by stable isotope and diffuse degassing surveys at Vulcano (Aeolian Islands) in 2015–2018. J. Volcanol. Geotherm. Res. 2020, 401, 106972. [Google Scholar] [CrossRef]
- Viveiros, F.; Chiodini, G.; Cardellini, C.; Caliro, S.; Zanon, V.; Silva, C.; Rizzo, A.; Hipólito, A.; Moreno, L. Deep CO2 emitted at Furnas do Enxofre geothermal area (Terceira Island, Azores archipelago). An approach for determining CO2 sources and total emissions using carbon isotopic data. J. Volcanol. Geoth. Res. 2020, 401, 106968. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G.; Camarda, M.; De Gregorio, S.; Prano, V. Evidence of a new gas input of deep origin at Vulcano (Aeolian Islands) observed in the shallow groundwater and soil gas emissions. Miscellanea INGV 2020, 52, 200–201. [Google Scholar]
- Allard, P.; Carbonnelle, J.; Dajlevic, D.; Le Bronec, J.; Morel, P.; Robe, M.C.; Maurenas, J.M.; Faivre-Pierret, R.; Martin, D.; Sabroux, J.C.; et al. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 1991, 35, 387–391. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Badalamenti, B.; Cavarra, L.; Scalzo, A. Gas hazard assessment in a densely inhabited area of Colli Albani Volcano (Cava dei Selci, Roma). J. Volcanol. Geotherm. Res. 2003, 23, 81–94. [Google Scholar] [CrossRef]
- Barberi, F.; Carapezza, M.L.; Ranaldi, M.; Tarchini, L. Gas blowout from shallow boreholes at Fiumicino (Rome): Induced hazard and evidence of deep CO2 degassing on the Tyrrhenian margin of Central Italy. J. Volcanol. Geotherm. Res. 2007, 165, 17–31. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Lelli, M.; Tarchini, L. Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy). J. Volcanol. Geothrerm. Res. 2008, 178, 297–304. [Google Scholar] [CrossRef]
- Costa, A.; Chiodini, G.; Granieri, D.; Folch, A.; Hankin, R.K.S.; Caliro, S.; Cardellini, C.; Avino, R. A shallow layer model for heavy gas dispersion from natural sources: Application and hazard assessment at Caldara di Manziana, Italy, Geochem. Geophys. Geosyst. 2008, 9, Q03002. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Barberi, F.; Rinaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; et al. Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hazards at Vulcano Island (Aeolian arc Italy). J. Volcanol. Geotherm. Res. 2011, 207, 130–144. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fisher, C.; Granieri, D.; Lucchetti, C.; Melian, G.; et al. Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy). J. Volcanol. Geoth. Res. 2012, 27, 1767–1782. [Google Scholar] [CrossRef]
- Granieri, D.; Carapezza, M.L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L. Atmospheric dispersion of natural carbon dioxide emissions on Vulcano Island, Italy. J. Geophys. Res. Solid Earth 2014, 119, 5398–5413. [Google Scholar] [CrossRef]
- Selva, J.; Bonadonna, C.; Branca, S.; De Astis, G.; Gambino, S.; Paonita, A.; Pistolesi, M.; Ricci, T.; Sulpizio, R.; Tibaldi, A.; et al. Multiple hazards and paths to eruptions: A review of the volcanic system of Vulcano (Aeolian Islands, Italy). Earth-Sci. Rev. 2020, 207, 103186. [Google Scholar] [CrossRef]
- Le Guern, F.; Tazieff, H.; Faivre-Pierret, R. An example of health hazard: People killed by gas during a phreatic eruption, Dieng Plateau (Java, Indonesia), February 20th, 1979. Bull. Volcanol. 1982, 45, 153–156. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Devine, J.D.; Tchoua, F.M.; Presser, T.S.; Pringle, M.K.W.; Evans, W.C. Origin of the lethal gas burst from Lake Monoun, Cameroon. J. Volcanol. Geotherm. Res. 1987, 31, 1–16. [Google Scholar] [CrossRef]
- Barberi, F.; Chelini, F.; Marinelli, G.; Martini, M. The gas cloud of Lake Nyos (Cameroon, 1986): Results of the Italian technical mission. J. Volcanol. Geotherm. Res. 1989, 39, 125–134. [Google Scholar] [CrossRef]
- Baubron, J.C.; Allard, P.; Toutain, J.P. Diffuse volcanic emission of carbon dioxide from Vulcano Island, Italy. Nature 1990, 344, 51–53. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Sano, Y.; Schminckle, H.U. CO2-rich gases from Lakes Nyos and Monoun, Cameroon; Laacher See, Germany; Dieng, Indonesia and Mt. Gambier, Australia—Variations on a common theme. J. Volcanol. Geotherm. Res. 1991, 45, 311–323. [Google Scholar] [CrossRef]
- Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Minopoli, C.; Vilardo, G. Non-volcanic CO2 Earth degassing: Case of Mefite d’Ansanto (southern Apennines), Italy. Geophys. Res. Lett. 2010, 37, L11303. [Google Scholar] [CrossRef]
- Commission Directive 2006/15/EC of 7 February 2006 establishing a second list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC and amending Directives 91/322/EEC and 2000/39/EC. Available online: https://osha.europa.eu/it/legislation/directives/all (accessed on 21 August 2023).
- National Institute for Occupational Safety and Health (NIOSH) (1997). Documentation for Immediately Dangerous to Life or Health Concentrations (IDLHs) for Carbon Dioxide. Available online: http://www.cdc.gov/niosh/idlh/124389.html (accessed on 15 August 2023).
- NIOSH. Pocket Guide to Chemical Hazard, DHHS (NIOSH); Publ. N.97-140; U.S. Gov. Print Office: Washington, DC, USA, 1997. [Google Scholar]
- Di Martino, R.M.R.; Gurrieri, S.; Camarda, M.; Capasso, G.; Prano, V. Hazardous changes in soil CO2 emissions at Vulcano, Italy, in 2021. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024516. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Gurrieri, S. Quantification of the volcanic carbon dioxide in the air of Vulcano Porto by stable isotope surveys. J. Geophys. Res. Atmos. 2023, 128, e2022JD037706. [Google Scholar] [CrossRef]
- Aiuppa, A.; Bitetto, M.; Calabrese, S.; Delle Donne, D.; Lages, J.; La Monica, F.P.; Chiodini, G.; Tamburello, G.; Cotterill, A.; Fulignati, P.; et al. Mafic magma feeds degassing unrest at Vulcano Island, Italy. Comm. Earth Environ. 2022, 3, 255. [Google Scholar] [CrossRef]
- Federico, C.; Cocina, O.; Gambino, S.; Paonita, A.; Branca, S.; Coltelli, M.; Italiano, F.; Bruno, V.; Caltabiano, T.; Camarda, M.; et al. Inferences on the 2021 ongoing volcanic unrest at Vulcano Island (Italy) through a comprehensive multidisciplinary surveillance network. Remote Sens. 2023, 15, 1405. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Diliberto, I.S.; Inguaggiato, C.; Mazot, A.; Cangemi, M.; Corrao, M. The volcanic activity changes occurred in the 2021–2022 at Vulcano island (Italy), inferred by the abrupt variations of soil CO2 output. Sci. Rep. 2022, 12, 21166. [Google Scholar] [CrossRef] [PubMed]
- Vita, F.; Schiavo, B.; Inguaggiato, C.; Inguaggiato, S.; Mazot, A. Environmental and Volcanic Implications of Volatile Output in the Atmosphere of Vulcano Island Detected Using SO2 Plume (2021–23). Remote Sens. 2023, 15, 3086. [Google Scholar] [CrossRef]
- Blong, R. Volcanic hazard and risk management. In Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., Stix, J., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 1215–1227. [Google Scholar]
- Ghisetti, F. Relazioni tra strutture e fasi trascorrenti e distensive lungo i sistemi Messina–Fiumefreddo, Tindari–Letojanni e Alia–Malvagna (Sicilia nord–orientale): Uno studio microtettonico. Geol. Romana 1979, 18, 23–58. [Google Scholar]
- Locardi, E.; Nappi, G. Tettonica e vulcanismo recente nell’isola di Lipari (implicazioni geodinamiche). Boll. Soc. Geol. It. 1979, 98, 447–456. [Google Scholar]
- Ventura, G. Tectonics, structural evolution and caldera formation on Vulcano Island, Aeolian Archipelago, Southern Tyrrhenian Sea. J. Volcanol. Geoth. Res. 1994, 60, 207–224. [Google Scholar] [CrossRef]
- Lanzafame, G.; Bousquet, J.C. The Maltese escarpment and its extension from Mt. Etna to the Aeolian Islands (Sicily): Importance and evolution of a lithosphere discontinuity. Acta Vulcanol. 1997, 9, 113–120. [Google Scholar]
- De Astis, G.; Ventura, G.; Vilardo, G. Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismological and geochemical data. Tectonics 2003, 22, 1040. [Google Scholar] [CrossRef]
- Argnani, A.; Serpelloni, E.; Bonazzi, C. Pattern of deformation around the central Aeolian Islands: Evidence from multichannel seismics and GPS data. Terra Nova 2007, 19, 317–323. [Google Scholar] [CrossRef]
- Chiarabba, C.; De Gori, P.; Speranza, F. The southern Tyrrhenian subduction zone: Deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet. Sci. Lett. 2008, 268, 408–423. [Google Scholar] [CrossRef]
- Palano, M.; Ferranti, L.; Monaco, C.; Mattia, M.; Aloisi, M.; Bruno, V.; Cannavò, F.; Siligato, G. GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the central Mediterranean. J. Geophys. Res. 2012, 117, B07401. [Google Scholar] [CrossRef]
- De Astis, G.; Lucchi, F.; Dellino, P.; La Volpe, L.; Tranne, C.A.; Frezzotti, M.L.; Peccerillo, A. Geology, volcanic history and petrology of Vulcano (central Aeolian Archipelago). In The Aeolian Islands Volcanoes; Lucchi, F., Peccerillo, A., Keller, J., Tranne, C.A., Rossi, P.L., Eds.; Geological Society, London, Memoirs: London, UK, 2013; Volume 37, pp. 281–348. [Google Scholar]
- Forni, F.; Lucchi, F.; Peccerillo, A.; Tranne, C.A.; Rossi, P.L.; Frezzotti, M.L. Stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago. In The Aeolian Islands Volcanoes; Lucchi, F., Peccerillo, A., Keller, J., Tranne, C.A., Rossi, P.L., Eds.; Geological Society, London, Memoirs: London, UK, 2013; Volume 37, pp. 213–279. [Google Scholar]
- Barreca, G.; Bruno, V.; Cultrera, F.; Mattia, M.; Monaco, C.; Scarfì, L. New insights in the geodynamics of the Lipari-Vulcano area (Aeolian Archipelago, southern Italy) from geological, geodetic and seismological data. J. Geodyn. 2014, 82, 150–167. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Raco, B. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull. Volcanol. 1996, 58, 41–50. [Google Scholar] [CrossRef]
- Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L.; Raco, B. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 1998, 13, 543–552. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Gurrieri, S.; Diliberto, I.S.; Vita, F.; Camarda, M.; Francofonte, V.; Italiano, F. Design and implementation of the gas hazard early warning system at Vulcano—Aeolian Islands, 2021. In Proceedings of the 90° Congresso della Società Geologica Italiana, Trieste, Italy, 14–16 December 2021. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Capasso, G.; Camarda, M. Spatial domain analysis of carbon dioxide from soils on Vulcano Island: Implications for CO2 output evaluation. Chem. Geol. 2016, 444, 59–70. [Google Scholar] [CrossRef]
- Gurrieri, S.; Di Martino, R.M.R.; Camarda, M.; Francofonte, V. Gas emissions in volcanic islands: From data acquisition to warning information. In Proceedings of the Cities on Volcanoes 11, Heraklion, Crete, 12–17 June 2022. [Google Scholar]
- Gurrieri, S.; Valenza, M. Gas transport in natural porous mediums: A method for measuring CO2 flows from the ground in volcanic and geothermal areas. Rend. Soc. It. Miner. Petrol. 1988, 43, 1151–1158. [Google Scholar]
- Carapezza, M.L.; Granieri, D. CO2 soil flux at Vulcano (Italy): Comparison of active and passive methods and application to the identification of actively degassing structure. Appl. Geochem. 2004, 19, 73–88. [Google Scholar] [CrossRef]
- Camarda, M.; Gurrieri, S.; Valenza, M. CO2 flux measurements in volcanic areas using the dynamic concentration method: Influence of soil permeability. J. Geophys. Res. 2006, 111, B05202. [Google Scholar] [CrossRef]
- Camarda, M.; Gurrieri, S.; Valenza, M. In situ permeability measurements based on a radial gas advection model: Relationships between soil permeability and diffuse CO2 degassing in volcanic areas. Pure Appl. Geophys. 2006, 163, 897–914. [Google Scholar] [CrossRef]
- Sinclair, A.J. Selection of threshold values in geochemical data using probability graphs. J. Geochemical Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Camarda, M.; Prano, V.; Cappuzzo, S.; Gurrieri, S.; Valenza, M. Temporal variations in air permeability and soil CO2 flux in volcanic ash soils (island of Vulcano, Italy). Geochem. Geophys. Geosyst. 2017, 18, 3241–3253. [Google Scholar] [CrossRef]
- Camarda, M.; De Gregorio, S.; Capasso, G.; Di Martino, R.M.R.; Gurrieri, S.; Prano, V. The monitoring of natural soil CO2 emissions: Issue and perspectives. Earth Sci. Rev. 2019, 198, 102928. [Google Scholar] [CrossRef]
- Carapezza, M.L.; Diliberto, I.S.; Granieri, D. Identification and quantification of CO2 and SO2 emission from fumarolic and diffuse sources of La Fossa caldera (Vulcano, Italy) to contribute to the ga hazard assessment in Vulcano Porto village in the present unrest crisis. In Proceedings of the Cities on Volcanoes 11, Heraklion, Crete, 12–17 June 2022. [Google Scholar]
- Carapezza, M.L.; Granieri, D.; Patera, A.; Pruiti, L.; Ranaldi, M.; Rubino, C.; Sortino, F.; Tarchini, L. Hazard associated with the diffuse release of CO2 in the village of Vulcano Porto during the 2021–2022 unrest crisis of La Fossa volcano (Vulcano Island, Italy). In Proceedings of the Cities on Volcanoes 11, Heraklion, Crete, 12–17 June 2022. [Google Scholar]
- Carapezza, M.L.; Amend, D.; Di Gangi, F.; Fisher, C.; Pagliuca, N.M.; Pruiti, L.; Ranaldi, M.; Tarchini, L.; Vallocchia, M.; Weber, K. The 2021–2022 volcanic unrest crisis of La Fossa volcano (Vulcano Island, Italy): A new CO2-H2S-SO2 air concentration-monitoring network at Vulcano Porto. In Proceedings of the Cities on Volcanoes 11, Heraklion, Crete, 12–17 June 2022. [Google Scholar]
- Settimo, G.; Brini, S.; Baldassarri, L.T.; De Martino, A.; Lepore, A.; Moricci, F. Presenza di CO2 e H2S in Ambienti Indoor-Residenziali: Analisi Critica delle Conoscenze di Letteratura, Report by ISS. 2011. Available online: https://www.iss.it/documents/20126/45616/16_15_web.pdf/a9142047-b81d-3e0b-6e6f-10860f855b67?t=1581095582421 (accessed on 10 August 2023).
- Minister of Supply and Services. Exposure Guidelines for Residential Indoor Air Quality; Minister of Supply and Services Canada: Ottawa, ON, Canada, 1995. [Google Scholar]
- UK Department for Education and Skills. Ventilation of School Buildings; Version 1.4; Department for Education and Skills: London, UK, 2006. [Google Scholar]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils. Global. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef]
- Raich, J.W.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Viveiros, F.; Ferreira, T.; Cabral Vieira, J.; Silva, C.; Gaspar, J.L. Environmental influences on soil CO2 degassing at Furnas and Fogo volcanoes (São Miguel Island, Azores archipelago). J. Volcanol. Geoth. Res. 2008, 177, 883–893. [Google Scholar] [CrossRef]
- Camarda, M.; Capasso, G.; Di Martino, R.M.R.; Gurrieri, S.; Prano, V. Soil CO2 flux surveys during 2020 at Vulcano—Aeolian Island, Italy. In Proceedings of the Cities on Volcanoes 11, Heraklion, Crete, 12–17 June 2022. [Google Scholar]
- Camarda, M.; De Gregorio, S.; Di Martino, R.M.R.; Favara, R. Temporal and spatial correlations between soil CO2 flux and crustal stress. J. Geophys. Res. Solid Earth 2016, 121, 7071–7085. [Google Scholar] [CrossRef]
- Camarda, M.; De Gregorio, S.; Di Martino, R.M.R.; Favara, R.; Prano, V. Relationships between soil CO2 flux and tectonic structures in SW Sicily. Ann. Geophys. 2020, 63. [Google Scholar] [CrossRef]
- Bonadonna, C.; Asgary, A.; Romerio, F.; Zulemyan, T.; Frischknecht, C.; Cristiani, C.; Rosi, M.; Gregg, C.E.; Biass, S.; Pistolesi, M.; et al. Assessing the effectiveness and the economic impact of evacuation: The case of Vulcano Island, Italy. Nat. Hazard. Earth Sys. 2022, 22, 1083–1108. [Google Scholar] [CrossRef]
- Keeling, C.D.; Piper, S.C.; Bacastow, R.B.; Wahlen, M.; Whorf, T.P.; Heimann, M.; Meijer, H.A. Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000. I. Global Aspects; SIO Reference Series, No. 01-06; Scripps Institution of Oceanography: San Diego, CA, USA, 2001; 88p. [Google Scholar]
- Capasso, G.; Di Martino, R.M.R.; Caracausi, A.; Favara, R. Distinguishing Human Related, Biological and Geological Carbon Dioxide in the Air through Isotopic Surveying; EGU21-9620; European Geoscience Union General Assembly: Vienna, Austria, 2021. [Google Scholar] [CrossRef]
- Venturi, S.; Tassi, F.; Cabassi, J.; Vaselli, O.; Minardi, I.; Neri, S.; Caponi, C.; Capasso, G.; Di Martino, R.M.R.; Ricci, A.; et al. A multi-instrumental geochemical approach to assess the environmental impact of CO2-rich gas emissions in a densely populated area: The case of Cava dei Selci (Latium, Italy). App. Geochem. 2019, 101, 109–126. [Google Scholar] [CrossRef]
- Capasso, G.; Di Martino, R.M.R.; Camarda, M.; Prano, V. Dissolved carbon in groundwater versus gas emissions from the soil: The two sides of the same coin. Procedia Earth Planet. Sci. 2017, 17, 116–119. [Google Scholar] [CrossRef]
- Di Martino, R.M.R.; Gurrieri, S. Stable isotope surveys reveal variations in the air CO2 during the unrest event at Vulcano, Italy, in 2021. EGU23-11463. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar] [CrossRef]
Station | Minimum | Average | Maximum | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Soil CO2 flux (g m−2 d−1) | ||||||
Carapezza | 6.41 | 22.69 | 84.52 | 7.61 | 1.90 | 5.97 |
Castello | 50.02 | 134.84 | 384.08 | 41.16 | 0.73 | 1.64 |
Porto | 0.47 | 358.23 | 1261.33 | 227.55 | 0.25 | −0.51 |
Rojas | 0.00 | 25.48 | 62.67 | 8.27 | −0.15 | 0.85 |
Air CO2 concentration 20 cm (vol%) | ||||||
Carapezza | 0.01 | 0.04 | 0.08 | 0.01 | −0.58 | −0.75 |
Castello | 0.00 | 0.07 | 0.40 | 0.06 | −16.87 | 664.04 |
Porto | 0.00 | 0.09 | 0.21 | 0.03 | −0.62 | 0.57 |
Rojas | 0.00 | 0.07 | 0.17 | 0.03 | −0.70 | 0.97 |
Air CO2 concentration 150 cm (vol%) | ||||||
Carapezza | 0.01 | 0.03 | 0.06 | 0.01 | −0.02 | 0.17 |
Castello | 0.00 | 0.06 | 0.23 | 0.03 | −28.86 | 1875.45 |
Porto | 0.04 | 0.09 | 0.17 | 0.02 | 0.05 | 0.06 |
Rojas | 0.00 | 0.06 | 0.16 | 0.02 | 0.24 | 0.85 |
Station | Cluster ID | φCO2 Max (g m−2 d−1) | φCO2 Min (g m−2 d−1) | Height above the Ground (cm) | Air CO2 Concentration—Max (vol%) | Air CO2 Concentration—Min (vol%) |
---|---|---|---|---|---|---|
Carapezza | Cluster-1 | 28.2 | 6.4 | 20 | 0.08 | 0.03 |
150 | 0.06 | 0.02 | ||||
Cluster-2 | 59.5 | 14.7 | 20 | 0.05 | 0.01 | |
150 | 0.05 | 0.01 | ||||
Castello | Cluster-1 | 286.2 | 90.4 | 20 | 0.40 | 0.07 |
150 | 0.23 | 0.06 | ||||
Cluster-2 | 384.1 | 68.8 | 20 | 0.19 | 0.00 | |
150 | 0.12 | 0.00 | ||||
Porto | Cluster-2 | 1261.3 | 0.5 | 20 | 0.21 | 0.00 |
150 | 0.17 | 0.04 | ||||
Rojas | Cluster-1 | 44.2 | 7.9 | 20 | 0.16 | 0.04 |
150 | 0.15 | 0.03 | ||||
Cluster-2 | 48.3 | 25.6 | 20 | 0.08 | 0.00 | |
150 | 0.08 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurrieri, S.; Di Martino, R.M.R.; Camarda, M.; Francofonte, V. Monitoring CO2 Hazards of Volcanic Origin: A Case Study at the Island of Vulcano (Italy) during 2021–2022. Geosciences 2023, 13, 266. https://doi.org/10.3390/geosciences13090266
Gurrieri S, Di Martino RMR, Camarda M, Francofonte V. Monitoring CO2 Hazards of Volcanic Origin: A Case Study at the Island of Vulcano (Italy) during 2021–2022. Geosciences. 2023; 13(9):266. https://doi.org/10.3390/geosciences13090266
Chicago/Turabian StyleGurrieri, Sergio, Roberto Maria Rosario Di Martino, Marco Camarda, and Vincenzo Francofonte. 2023. "Monitoring CO2 Hazards of Volcanic Origin: A Case Study at the Island of Vulcano (Italy) during 2021–2022" Geosciences 13, no. 9: 266. https://doi.org/10.3390/geosciences13090266
APA StyleGurrieri, S., Di Martino, R. M. R., Camarda, M., & Francofonte, V. (2023). Monitoring CO2 Hazards of Volcanic Origin: A Case Study at the Island of Vulcano (Italy) during 2021–2022. Geosciences, 13(9), 266. https://doi.org/10.3390/geosciences13090266