Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Herbage Measurements and Pasture Intake
2.4. Eddy Covariance Method
2.4.1. Eddy Covariance Station
2.4.2. Data Processing
2.5. Field Carbon Balance
2.6. Statistical Analysis
3. Results
3.1. Site Characteristics
3.1.1. Abiotic Factors
3.1.2. Fresh Matter, Dry Matter, and Carbon Yield
3.2. Carbon Dynamics
3.2.1. Seasonality of Carbon Dioxide Fluxes
3.2.2. Soil Cultivation Events
Statistical Evaluation of Ecosystem Respiration
3.2.3. Carbon Dynamics During the Winter Periods
3.2.4. Carbon Imports and Exports
3.2.5. Net Ecosystem Carbon Balance
4. Discussion
4.1. Soil Cultivation Events
4.2. Carbon Dynamics During the Winter Period
4.3. Net Ecosystem Carbon Balance
4.3.1. Grass-Clover Ley
4.3.2. Spring Wheat
4.3.3. Cover Crop and Slurry Application
4.3.4. Carbon Imports
4.3.5. Cumulative Net Ecosystem Carbon Balance
4.4. Limitations of the Study and Potential Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Above-ground biomass |
Av | Average |
BNF | Biological nitrogen fixation |
C | Carbon |
CC | Cover crop |
CH4 | Methane |
C/N | Carbon-to-nitrogen |
CO2 | Carbon dioxide |
cum | Cumulated |
DM | Dry matter |
DMI | Dry matter intake |
DOM | Digestible organic matter |
EC | Eddy covariance |
ex | Export |
FP | Footprint |
GC | Grass-clover |
GHG | Greenhouse gas |
GPP | Gross primary production |
ICLS | Integrated crop–livestock system |
im | Import |
LT | Long term |
LULUCF | Land use, land-use change, and forestry |
MAOC | Mineral-associated organic carbon |
N | Nitrogen |
N2O | Nitrous oxide |
NBP | Net biome productivity |
NECB | Net ecosystem carbon balance |
NEE | Net ecosystem exchange |
NIRS | Near-infrared spectroscopy |
NO3 | Nitrate |
P | Precipitation |
POC | Particulate organic carbon |
PPFD | Photosynthetic photon flux density |
RECO | Ecosystem respiration |
SOC | Soil organic carbon |
SW | Spring wheat |
SWC | Soil water content |
TA | Air Temperature |
TS | Soil Temperature |
u* | Friction velocity |
VPD | Vapor pressure deficit |
WFPS | Water-filled pore space |
WPL | Webb, Pearman, and Leuning |
WW | Winter wheat |
Appendix A
SW Crop Sequence | Dates | WW Crop Sequence | Dates |
---|---|---|---|
GC | 01.04.2021–14.03.2022 | GC | 01.04.2021–27.10.2021 |
SW | 15.03.2022–22.08.2022 | WW | 28.10.2021–22.08.2022 |
CC | 23.08.2022–31.03.2023 | CC | 23.08.2022–31.03.2023 |
EC measurement | EC measurement | ||
01.04.2021–31.03.2023 | 28.10.2021–14.03.2022 | ||
Periods | Periods | ||
Soil cultivation SW | 15.03.2022–04.04.2022 | Soil cultivation WW | 28.10.2021–17.11.2021 |
Soil cultivation CC | 23.08.2022–12.09.2022 | ||
Winter period 21/22 | 13.12.2021–14.03.2022 | Winter period 21/22 | 13.12.2021–14.03.2022 |
Winter period 22/23 | 13.12.2022–14.03.2023 | ||
Measures | Measures | ||
Grazing event | 06.04.2021 | Disc harrowing | 28.10.2021 |
Grazing event | 30.04.2021 | Plowing | 28.10.2021–29.10.2021 |
Grazing event | 20.05.2021–21.05.2021 | Sowing WW | 29.10.2021 |
Mulching | 26.05.2021 | Harrowing | 12.05.2022 |
Silage cut | 14.06.2021 | Fertilization | 14.05.2022 |
Swathing | 15.06.2021 | Harvest WW | 12.08.2022 |
Baling & removal | 16.06.2021 | Straw bailing | 13.08.2022–14.08.2022 |
Grazing event | 29.06.2021–30.06.2021 | Straw removal | 16.08.2022 |
Grazing event | 15.07.2021–17.07.2021 | ||
Grazing event | 02.08.2021 | ||
Grazing event | 18.08.2021 | ||
Grazing event | 02.09.2021–03.09.2021 | ||
Grazing event | 07.09.2021 | ||
Grazing event | 28.09.2021 | ||
Grazing event | 13.10.2021 | ||
Grazing event | 06.11.2021 | ||
Grazing event | 10.03.2022 | ||
Disc harrowing | 15.03.2022 | ||
Plowing | 21.03.2022–22.03.2022 | ||
Sowing SW | 22.03.2023 | ||
Harrowing | 12.05.2022 | ||
Harvest SW | 12.08.2022 | ||
Straw bailing | 13.08.2022–14.08.2022 | ||
Straw removal | 16.08.2022 | ||
Deep loosening | 23.08.2022–24.08.2022 | ||
Cultivating | 25.08.2022–26.08.2022 | ||
Sowing CC | 26.08.2022 | ||
Fertilization | 20.09.2022 | ||
Grazing event | 05.03.2023–07.03.2023 |
References
- Guarnaccia, P.; Timpanaro, G.; Incardona, S.; Foti, V.T.; Cammarata, M. Innovation in crop rotations for sustainable integrated crop-livestock systems: The case of a typical semi-arid Mediterranean area. Clean. Environ. Syst. 2024, 13, 100182. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations (FAO). Emissions Due to Agriculture: Global, Regional and Country Trends, 2000–2018; FAOSTAT Analytical Brief No. 18; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2020.
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of crop residues and manure production and their geographical distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Total Net Greenhouse Gas Emission Trends and Projections in Europe: 8th Environment Action Programme (8th Eap Headline Indicator). 2024. Available online: https://www.eea.europa.eu/en/analysis/indicators/total-greenhouse-gas-emission-trends?activeAccordion=309c5ef9-de09-4759-bc02-802370dfa366 (accessed on 15 August 2025).
- Rumpel, C.; Amiraslani, F.; Chenu, C.; Garcia Cardenas, M.; Kaonga, M.; Koutika, L.-S.; Ladha, J.; Madari, B.; Shirato, Y.; Smith, P.; et al. The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 2020, 49, 350–360. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Crowther, T.W.; Van den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.S. The global soil community and its influence on biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef]
- Davidson, E.A. Carbon dioxide loss from tropical soils increases on warming. Nature 2020, 584, 198–199. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature dependence of organic-matter decomposition—Still a topic of debate. Soil Biol. Biochem. 2006, 38, 2510–2518. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Soils Final. Front. 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Rees, R.M.; Bingham, I.J.; Baddeley, J.A.; Watson, C.A. The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 2005, 128, 130–154. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.; Chotte, J.-L.; Torquebiau, E.; et al. Matching policy and science: Rationale for the ‘4 per 1000—Soils for food security and climate’ initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Los Rios, J.; de Poyda, A.; Reinsch, T.; Kluß, C.; Taube, F.; Loges, R. Integrating Crop-Livestock System Practices in Forage and Grain-Based Rotations in Northern Germany: Potentials for Soil Carbon Sequestration. Agronomy 2022, 12, 338. [Google Scholar] [CrossRef]
- Nyameasem, J.K.; Los Rios, J.; de Kluß, C.; Reinsch, T.; Poyda, A.; Taube, F.; Loges, R. Incorporating leys in arable systems as a mitigation strategy to reduce soil organic carbon losses during land-use change. Front. Environ. Sci. 2024, 12, 1399197. [Google Scholar] [CrossRef]
- Reinsch, T.; Loza, C.; Malisch, C.S.; Vogeler, I.; Kluß, C.; Loges, R.; Taube, F. Toward Specialized or Integrated Systems in Northwest Europe: On-Farm Eco-Efficiency of Dairy Farming in Germany. Front. Sustain. Food Syst. 2021, 5, 614348. [Google Scholar] [CrossRef]
- Swanepoel, P.A.; Smit, H.P.J. Integration of livestock into conservation agriculture systems in the Mediterranean climate region of South Africa. Afr. J. Range Forage Sci. 2025, 42, 57–65. [Google Scholar] [CrossRef]
- Cruz Colazo, J.; de Dios Herrero, J.; Sager, R.; Guzmán, M.L.; Zaman, M. Contribution of Integrated Crop Livestock Systems to Climate Smart Agriculture in Argentina. Land 2022, 11, 2060. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef]
- Sarkar, D.; Kar, S.K.; Chattopadhyay, A.; Shikha Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecol. Indic. 2020, 115, 106412. [Google Scholar] [CrossRef]
- High Level Panel of Experts on Food Security and Nutrition (HLPE). Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition: A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; High Level Panel of Experts: Roma, Italy, 2019. [Google Scholar]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Bradford, M.A.; Wood, S.A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 2019, 5, 15–32. [Google Scholar] [CrossRef]
- Chakraborty, P.; Thotakuri, G.; Singh, N.; Dhaliwal, J.K.; Kumar, S. Crop-livestock integration influenced soil profile organic carbon and hydro-physical properties in converted grasslands to row crops. Soil Tillage Res. 2024, 240, 106093. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Béline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of livestock manure in a whole-farm perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Gollany, H.T.; Polumsky, R.W.; Madari, B.E.; Leite, L.F.C.; Machado, P.L.O.A.; Carvalho, M.T.M. Predicting Soil Organic Carbon Dynamics of Integrated Crop-Livestock System in Brazil Using the CQESTR Model. Front. Environ. Sci. 2022, 10, 826786. [Google Scholar] [CrossRef]
- Christensen, B.T.; Rasmussen, J.; Eriksen, J.; Hansen, E.M. Soil carbon storage and yields of spring barley following grass leys of different age. Eur. J. Agron. 2009, 31, 29–35. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Smit, H.P.J.; Reinsch, T.; Kluß, C.; Loges, R.; Taube, F. Very Low Nitrogen Leaching in Grazed Ley-Arable-Systems in Northwest Europe. Agronomy 2021, 11, 2155. [Google Scholar] [CrossRef]
- Taube, F.; Nyameasem, J.K.; Fenger, F.; Alderkamp, L.; Kluß, C.; Loges, R. Eco--efficiency of leys—The trigger for sustainable integrated crop--dairy farming systems. Grass Forage Sci. 2023, 79, 108–119. [Google Scholar] [CrossRef]
- Loges, R.; Kelm, M.R.; Taube, F. Nitrogen balances, nitrate leaching and energy efficiency of conventional and organic farming systems on fertile soils in northern Germany. Adv. Geoecol. 2006, 38, 407–414. [Google Scholar]
- Nadeem, S.; Hansen, S.; Azzaroli Bleken, M.; Dörsch, P. N2O emission from organic barley cultivation as affected by green manure management. Biogeosciences 2012, 9, 2747–2759. [Google Scholar] [CrossRef]
- Schmeer, M.; Loges, R.; Dittert, K.; Senbayram, M.; Horn, R.; Taube, F. Legume-based forage production systems reduce nitrous oxide emissions. Soil Tillage Res. 2014, 143, 17–25. [Google Scholar] [CrossRef]
- Nyameasem, J.K.; Malisch, C.S.; Loges, R.; Taube, F.; Kluß, C.; Vogeler, I.; Reinsch, T. Nitrous Oxide Emission from Grazing Is Low across a Gradient of Plant Functional Diversity and Soil Conditions. Atmosphere 2021, 12, 223. [Google Scholar] [CrossRef]
- King, A.E.; Blesh, J. Crop rotations for increased soil carbon: Perenniality as a guiding principle. Ecol. Appl. 2018, 28, 249–261. [Google Scholar] [CrossRef] [PubMed]
- King, A.E.; Congreves, K.A.; Deen, B.; Dunfield, K.E.; Simpson, M.J.; Voroney, R.P.; Wagner-Riddle, C. Crop rotations differ in soil carbon stabilization efficiency, but the response to quality of structural plant inputs is ambiguous. Plant Soil 2020, 457, 207–224. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F.; Franzluebbers, A.; Chabbi, A. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality. Environ. Manag. 2015, 56, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Levin, K.S.; Auerswald, K.; Reents, H.J.; Hülsbergen, K.-J. Effects of Organic Energy Crop Rotations and Fertilisation with the Liquid Digestate Phase on Organic Carbon in the Topsoil. Agronomy 2021, 11, 1393. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Smit, H.P.J.; Anders, H.; Kluß, C.; Taube, F.; Loges, R.; Poyda, A. Sward Diversity Modulates Soil Carbon Dynamics After Ploughing Temporary Grassland. Agriculture 2025, 15, 888. [Google Scholar] [CrossRef]
- Liyanage, L.R.M.C.; Sulaiman, M.F.; Ismail, R.; Gunaratne, G.P.; Dharmakeerthi, R.S.; Rupasinghe, M.G.N.; Mayakaduwa, A.P.; Hanafi, M.M. Carbon Mineralization Dynamics of Organic Materials and Their Usage in the Restoration of Degraded Tropical Tea-Growing Soil. Agronomy 2021, 11, 1191. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Hu, Y.; Lai, D.Y.F.; Wang, W.; Xu, Y.; Mgelwa, A.S.; Li, B. Variability and controls of soil CO2 fluxes under different tillage and crop residue managements in a wheat-maize double-cropping system. Environ. Sci. Pollut. Res. 2020, 27, 45722–45736. [Google Scholar] [CrossRef]
- Emran, M.; Naeim, H.; Rashad, M.; Gispert, M. Seasonal changes in soil carbon storage capacity and glomalin-related soil protein under different agricultural activities, abandonment, and wildfire occurrence in Mediterranean region. J. Saudi Soc. Agric. Sci. 2022, 21, 359–371. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Růžek, P.; Kusá, H.; Vavera, R. CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions. Agronomy 2023, 13, 3084. [Google Scholar] [CrossRef]
- Reinsch, T.; Loges, R.; Kluß, C.; Taube, F. Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agric. Ecosyst. Environ. 2018, 265, 374–383. [Google Scholar] [CrossRef]
- Vogeler, I.; Thomsen, I.K.; Taube, F.; Poulsen, H.V.; Loges, R.; Hansen, E.M. Effect of winter cereal sowing time on yield and nitrogen leaching based on experiments and modelling. Soil Use Manag. 2022, 38, 663–675. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Poulton, P.; Johnston, J.; Macdonald, A.; White, R.; Powlson, D. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Change Biol. 2018, 24, 2563–2584. [Google Scholar] [CrossRef]
- Madaras, M.; Krejčí, R.; Mayerová, M. Assessing soil aggregate stability by measuring light transmission decrease during aggregate disintegration. Soil Water Res. 2024, 19, 25–31. [Google Scholar] [CrossRef]
- Šimon, T.; Madaras, M.; Mayerová, M.; Kunzová, E. Soil Organic Carbon Dynamics in the Long-Term Field Experiments with Contrasting Crop Rotations. Agriculture 2024, 14, 818. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Hatano, R.; Mukumbuta, I.; Shimizu, M. Soil Health Intensification through Strengthening Soil Structure Improves Soil Carbon Sequestration. Agriculture 2024, 14, 1290. [Google Scholar] [CrossRef]
- Porwollik, V.; Rolinski, S.; Heinke, J.; Bloh, W.; von Schaphoff, S.; Müller, C. The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields—A global simulation study with LPJmL (V. 5.0-tillage-cc). Biogeosciences 2022, 19, 957–977. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Acharya, P.; Ghimire, R.; Acosta-Martínez, V. Cover crop-mediated soil carbon storage and soil health in semi-arid irrigated cropping systems. Agric. Ecosyst. Environ. 2024, 361, 108813. [Google Scholar] [CrossRef]
- Chahal, I.; Hooker, D.C.; Deen, B.; Janovicek, K.; Van Eerd, L.L. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil Tillage Res. 2021, 213, 105121. [Google Scholar] [CrossRef]
- Jarecki, M.; Grant, B.; Smith, W.; Deen, B.; Drury, C.; Van der Zaag, A.; Qian, B.; Yang, J.; Wagner-Riddle, C. Long-term Trends in Corn Yields and Soil Carbon under Diversified Crop Rotations. J. Environ. Qual. 2018, 47, 635–643. [Google Scholar] [CrossRef]
- Wepruk, E.; Diochon, A.; Van Eerd, L.L.; Gregorich, E.; Deen, B.; Hooker, D. Identifying rotation and tillage practices that maintain or enhance soil carbon and its relation to soil health. Can. J. Soil Sci. 2023, 103, 191–199. [Google Scholar] [CrossRef]
- Prade, T.; Kätterer, T.; Björnsson, L. Including a one-year grass ley increases soil organic carbon and decreases greenhouse gas emissions from cereal-dominated rotations—A Swedish farm case study. Biosyst. Eng. 2017, 164, 200–212. [Google Scholar] [CrossRef]
- Ranathunga, K.N.; Evans, J.; Toth, N.; Brown, S.; Van Eerd, L.L.; Wagner-Riddle, C. Net ecosystem carbon budget and net greenhouse gas emissions under diverse crop rotation using cover crops compared to a conventional crop rotation. Agric. Ecosyst. Environ. 2025, 381, 109418. [Google Scholar] [CrossRef]
- Seitz, D.; Fischer, L.M.; Dechow, R.; Wiesmeier, M.; Don, A. The potential of cover crops to increase soil organic carbon storage in German croplands. Plant Soil 2023, 488, 157–173. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Galdos, M.V. Challenging claimed benefits of soil carbon sequestration for mitigating climate change and increasing crop yields: Heresy or sober realism? Glob. Change Biol. 2023, 29, 2381–2383. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef]
- Tang, J.; Riley, W.J. Competitor and substrate sizes and diffusion together define enzymatic depolymerization and microbial substrate uptake rates. Soil Biol. Biochem. 2019, 139, 107624. [Google Scholar] [CrossRef]
- Heikkinen, J.; Keskinen, R.; Kostensalo, J.; Nuutinen, V. Climate change induces carbon loss of arable mineral soils in boreal conditions. Glob. Change Biol. 2022, 28, 3960–3973. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21(st) century: Effects of climate change and carbon input trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef]
- Todd-Brown, K.E.O.; Randerson, J.T.; Hopkins, F.; Arora, V.; Hajima, T.; Jones, C.; Shevliakova, E.; Tjiputra, J.; Volodin, E.; Wu, T.; et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 2014, 11, 2341–2356. [Google Scholar] [CrossRef]
- Skinner, R.; Dell, C.J. Comparing pasture C sequestration estimates from eddy covariance and soil cores. Agric. Ecosyst. Environ. 2015, 199, 52–57. [Google Scholar] [CrossRef]
- Loza, C.; Reinsch, T.; Loges, R.; Taube, F.; Gere, J.I.; Kluß, C.; Hasler, M.; Malisch, C.S. Methane Emission and Milk Production from Jersey Cows Grazing Perennial Ryegrass–White Clover and Multispecies Forage Mixtures. Agriculture 2021, 11, 175. [Google Scholar] [CrossRef]
- Klootwijk, C.W.; Holshof, G.; de Boer, I.J.M.; Van den Pol-Van Dasselaar, A.; Engel, B.; Van Middelaar, C.E. Correcting fresh grass allowance for rejected patches due to excreta in intensive grazing systems for dairy cows. J. Dairy Sci. 2019, 102, 10451–10459. [Google Scholar] [CrossRef]
- Eismann, M.-S.R.; Smit, H.P.J.; Poyda, A.; Loges, R.; Kluß, C.; Taube, F. Combining the Eddy Covariance Method and Dry Matter Intake Measurements for Enteric Methane Emission Estimation from Grazing Dairy Cows. Atmosphere 2024, 15, 1269. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2; Arbeitsergebnisse No. 26; Universität Bayreuth: Bayreuth, Germany, 2004. [Google Scholar]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Bound. Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality Control and Flux Sampling Problems for Tower and Aircraft Data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Isaac, P.; Cleverly, J.; McHugh, I.; Van Gorsel, E.; Ewenz, C.; Beringer, J. OzFlux data: Network integration from collection to curation. Biogeosciences 2017, 14, 2903–2928. [Google Scholar] [CrossRef]
- Felber, R.; Münger, A.; Neftel, A.; Ammann, C. Eddy covariance methane flux measurements over a grazed pasture: Effect of cows as moving point sources. Biogeosciences 2015, 12, 3925–3940. [Google Scholar] [CrossRef]
- Ingwersen, J.; Poyda, A.; Kremer, P.; Streck, T. Harvest residues: A relevant term in the carbon balance of croplands? Agric. For. Meteorol. 2024, 349, 109935. [Google Scholar] [CrossRef]
- Mauder, M.; Cuntz, M.; Drüe, C.; Graf, A.; Rebmann, C.; Schmid, H.P.; Schmidt, M.; Steinbrecher, R. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteorol. 2013, 169, 122–135. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Poyda, A.; Reinsch, T.; Struck, I.J.; Skinner, R.H.; Kluß, C.; Taube, F. Low assimilate partitioning to root biomass is associated with carbon losses at an intensively managed temperate grassland. Plant Soil 2021, 460, 31–50. [Google Scholar] [CrossRef]
- Helms, J.A. The Dictionary of Forestry; CABI Publishing: Oxfordshire, UK, 1998. [Google Scholar]
- Chapin, F.S.; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef]
- Elsgaard, L.; Görres, C.-M.; Hoffmann, C.C.; Blicher-Mathiesen, G.; Schelde, K.; Petersen, S.O. Net ecosystem exchange of CO2 and carbon balance for eight temperate organic soils under agricultural management. Agric. Ecosyst. Environ. 2012, 162, 52–67. [Google Scholar] [CrossRef]
- Pries, M.; Losand, B.; Menke, A.; Tholen, E.; Gruber, L.; Hertwig, F.; Jilg, T.; Kluth, H.; Spiekers, H.; Steingaß, H.; et al. Schätzung des Energiegehaltes in Grasprodukten. In Proceedings of the VDLUFA-Kongress, Göttingen, Germany, 18–21 September 2007; Volume 119. [Google Scholar]
- Skinner, R.H. Nitrogen fertilization effects on pasture photosynthesis, respiration, and ecosystem carbon content. Agric. Ecosyst. Environ. 2013, 172, 35–41. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2025. Available online: https://www.R-project.org/ (accessed on 3 July 2025).
- Chen, H.; Zhao, X.; Chen, X.; Lin, Q.; Li, G. Seasonal changes of soil microbial C, N, P and associated nutrient dynamics in a semiarid grassland of north China. Appl. Soil Ecol. 2018, 128, 89–97. [Google Scholar] [CrossRef]
- Alhammadi, M.S.; Al-Shrouf, A.M. Irrigation of Sandy Soils, Basics and Scheduling: 3. In Crop Production; Goyal, A., Asif, M., Eds.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Zhou, P.; Li, Y.; Ren, X.; Xiao, H.; Tong, C.; Ge, T.; Brookes, P.C.; Shen, J.; Wu, J. Organic carbon mineralization responses to temperature increases in subtropical paddy soils. J. Soils Sediments 2014, 14, 1–9. [Google Scholar] [CrossRef]
- Chowaniak, M.; Głąb, T.; Klima, K.; Niemiec, M.; Zaleski, T.; Zuzek, D. Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Manag. 2020, 36, 581–593. [Google Scholar] [CrossRef]
- Koch, H.J.; Stockfisch, N. Loss of soil organic matter upon ploughing under a loess soil after several years of conservation tillage. Soil Tillage Res. 2006, 86, 73–83. [Google Scholar] [CrossRef]
- Stockfisch, N.; Forstreuter, T.; Ehlers, W. Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany. Soil Tillage Res. 1999, 52, 91–101. [Google Scholar] [CrossRef]
- Willems, A.B.; Augustenborg, C.A.; Hepp, S.; Lanigan, G.; Hochstrasser, T.; Kammann, C.; Müller, C. Carbon dioxide emissions from spring ploughing of grassland in Ireland. Agric. Ecosyst. Environ. 2011, 144, 347–351. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Triplett, G.B.; Dick, W.A. No-Tillage Crop Production: A Revolution in Agriculture! Agron. J. 2008, 100 (Suppl. S3), S-153–S-165. [Google Scholar] [CrossRef]
- Dörsch, P.; Palojärvi, A.; Mommertz, S. Overwinter greenhouse gas fluxes in two contrasting agricultural habitats. Nutr. Cycl. Agroecosyst. 2004, 70, 117–133. [Google Scholar] [CrossRef]
- Peichl, M.; Leahy, P.; Kiely, G. Six-year Stable Annual Uptake of Carbon Dioxide in Intensively Managed Humid Temperate Grassland. Ecosystems 2011, 14, 112–126. [Google Scholar] [CrossRef]
- Waldo, S.; Chi, J.; Pressley, S.N.; O’Keeffe, P.; Pan, W.L.; Brooks, E.S.; Huggins, D.R.; Stöckle, C.O.; Lamb, B.K. Assessing carbon dynamics at high and low rainfall agricultural sites in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218–219, 25–36. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef]
- Kern, J.S.; Johnson, M.G. Conservation Tillage Impacts on National Soil and Atmospheric Carbon Levels. Soil Sci. Soc. Am. J. 1993, 57, 200–210. [Google Scholar] [CrossRef]
- Ogle, S.M.F.; Breidt, Y.; Easter, M.; Williams, S.; Killian, K.; Paustian, K. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process--based model. Glob. Change Biol. 2010, 16, 810–822. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Poyda, A.; Levin, K.S.; Hülsbergen, K.-J.; Auerswald, K. Perennial Crops Can Compensate for Low Soil Carbon Inputs from Maize in Ley-Arable Systems. Plants 2022, 12, 29. [Google Scholar] [CrossRef]
- Richter, F.J.; Suter, M.; Lüscher, A.; Buchmann, N.; El Benni, N.; Feola Conz, R.; Hartmann, M.; Jan, P.; Klaus, V.H. Effects of management practices on the ecosystem-service multifunctionality of temperate grasslands. Nat. Commun. 2024, 15, 3829. [Google Scholar] [CrossRef] [PubMed]
- Senapati, N.; Chabbi, A.; Gastal, F.; Smith, P.; Mascher, N.; Loubet, B.; Cellier, P.; Naisse, C. Net carbon storage measured in a mowed and grazed temperate sown grassland shows potential for carbon sequestration under grazed system. Carbon Manag. 2014, 5, 131–144. [Google Scholar] [CrossRef]
- Jaksic, V.; Kiely, G.; Albertson, J.; Oren, R.; Katul, G.; Leahy, P.; Byrne, K.A. Net ecosystem exchange of grassland in contrasting wet and dry years. Agric. For. Meteorol. 2006, 139, 323–334. [Google Scholar] [CrossRef]
- Janssens, I.A.; Freibauer, A.; Ciais, P.; Smith, P.; Nabuurs, G.-J.; Folberth, G.; Schlamadinger, B.; Hutjes, R.W.A.; Ceulemans, R.; Schulze, E.-D.; et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 2003, 300, 1538–1542. [Google Scholar] [CrossRef]
- Ciais, P.; Soussana, J.F.; Vuichad, N.; Luyssaert, S.; Don, A.; Janssens, I.A.; Piao, S.L.; Dechow, R.; Lathière, J.; Maignan, F.; et al. The greenhouse gas balance of European grasslands. Biogeosci. Discuss. 2010, 7, 5997–6050. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef]
- Abdalla, K.; Sun, Y.; Zarebanadkouki, M.; Gaiser, T.; Seidel, S.; Pausch, J. Long-term continuous farmyard manure application increases soil carbon when combined with mineral fertilizers due to lower priming effects. Geoderma 2022, 428, 116216. [Google Scholar] [CrossRef]
- Joona, J.; Liski, E.; Kahiluoto, H. Manure increases soil organic carbon most when allocated to annual cropping. Catena 2024, 238, 107844. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Campbell, C.A.; Zentner, R.P.; Lemke, R.L.; Wang, H.; Yang, C. Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie. Eur. J. Agron. 2012, 43, 175–184. [Google Scholar] [CrossRef]
- Liebig, M.A.; Saliendra, N.Z.; Archer, D.W. Carbon fluxes from a spring wheat–corn–soybean crop rotation under no-tillage management. Agrosyst. Geosci. Environ. 2022, 5, e20291. [Google Scholar] [CrossRef]
- Belfry, K.D.; Van Eerd, L.L. Establishment and Impact of Cover Crops Intersown into Corn. Crop Sci. 2016, 56, 1245–1256. [Google Scholar] [CrossRef]
- Baker, J.M.; Griffis, T.J. Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques. Agric. For. Meteorol. 2005, 128, 163–177. [Google Scholar] [CrossRef]
- Verma, S.B.; Dobermann, A.; Cassman, K.G.; Walters, D.T.; Knops, J.M.; Arkebauer, T.J.; Suyker, A.E.; Burba, G.G.; Amos, B.; Yang, H.; et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric. For. Meteorol. 2005, 131, 77–96. [Google Scholar] [CrossRef]
- Schreiner-McGraw, A.P.; Ransom, C.J.; Veum, K.S.; Wood, J.D.; Sudduth, K.A.; Abendroth, L.J. Quantifying the impact of climate smart agricultural practices on soil carbon storage relative to conventional management. Agric. For. Meteorol. 2024, 344, 109812. [Google Scholar] [CrossRef]
- Ceschia, E.; Béziat, P.; Dejoux, J.F.; Aubinet, M.; Bernhofer, C.; Bodson, B.; Buchmann, N.; Carrara, A.; Cellier, P.; Di Tommasi, P.; et al. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric. Ecosyst. Environ. 2010, 139, 363–383. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Change 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Koishi, A.; Bragazza, L.; Maltas, A.; Guillaume, T.; Sinaj, S. Long-Term Effects of Organic Amendments on Soil Organic Matter Quantity and Quality in Conventional Cropping Systems in Switzerland. Agronomy 2020, 10, 1977. [Google Scholar] [CrossRef]
- Liang, C.; Hao, X.; Schoenau, J.; Ma, B.-L.; Zhang, T.; MacDonald, J.D.; Chantigny, M.; Dyck, M.; Smith, W.N.; Malhi, S.S.; et al. Manure-induced carbon retention measured from long-term field studies in Canada. Agric. Ecosyst. Environ. 2021, 321, 107619. [Google Scholar] [CrossRef]
Year | Long-Term Mean | |||
---|---|---|---|---|
2021 | 2022 | 2023 | 1991–2020 | |
Mean TA (°C) | 9.8 | 10.5 | 10.5 | 9.4 |
P (mm) | 759 | 702 | 884 | 757 |
Crop | GC | SW | CC | ||
---|---|---|---|---|---|
Grazing | Silage Cut | Grain | Straw | Grazing | |
Fresh yield (kg ha−1) | 21,095 | 5064 | 4095 | 3172 | 8265 |
DM content (%) | 20.0 | 22.8 | 85.0 | 86.0 | 20.0 |
DM yield (kg DM ha−1) | 4219 | 1155 | 3481 | 2728 | 1653 |
C content (%) | 44.4 | 44.0 | 44.0 | 43.9 | 44.5 |
C yield (kg C ha−1) | 1874 | 508 | 1532 | 1197 | 736 |
Soil Cultivation | Autumn | Spring | Summer |
---|---|---|---|
Period | 28.10.2021–17.11.2021 | 15.03.2022–04.04.2022 | 23.08.2022–12.09.2023 |
CO2 flux | |||
NEEcum (kg CO2-C ha−1) | 612 | 326 | 334 |
NEEav (kg CO2-C ha−1 day−1) | 29.2 | 15.5 | 15.9 |
GPPcum (kg CO2-C ha−1) | −69.6 | −139 | −124 |
GPPav (kg CO2-C ha−1 day−1) | −3.26 | −6.60 | −5.90 |
RECOcum (kg CO2-C ha−1) | 681 | 465 | 458 |
RECOav (kg CO2-C ha−1 day−1) | 32.4 | 22.1 | 21.8 |
Abiotic factors | |||
TAav (°C) | 9.10 | 5.60 | 17.8 |
PPFDav 1 (mol m−2 d−1) | 6.41 | 22.0 | 27.7 |
TSav (°C) | 8.90 | 6.30 | 19.5 |
SWCav (%) | 19.1 | 24.9 | 8.10 |
Crop | WW | GC | CC |
---|---|---|---|
Period | 13.12.2021–14.03.2022 | 13.12.2021–14.03.2022 | 13.12.2022–14.03.2023 |
NEEcum (kg CO2-C ha−1) | 933 | 275 | −223 |
NEEav (kg CO2-C ha−1 day−1) | 10.1 | 2.99 | −2.42 |
GPPcum (kg CO2-C ha−1) | −688 | −1609 | −1894 |
GPPav (kg CO2-C ha−1 day−1) | −7.48 | −17.5 | −20.6 |
RECOcum (kg CO2-C ha−1) | 1621 | 1885 | 1668 |
RECOav (kg CO2-C ha−1 day−1) | 17.62 | 20.5 | 18.1 |
Crop | GC | SW | CC | Total Crop Sequence |
---|---|---|---|---|
Period | 01.04.2021–14.03.2022 | 15.03.2022–22.08.2022 | 23.08.2022–31.03.2023 | 01.04.2021–31.03.2023 |
CO2 flux | ||||
NEEcum (kg CO2-C ha−1) | −3161 | −2553 | 383 | −5331 |
NEEav (kg CO2-C ha−1 day−1) | −9.08 | −15.9 | 1.73 | −7.30 |
GPPcum (kg CO2-C ha−1) | −18,610 | −9280 | −4646 | −32,535 |
GPPav (kg CO2-C ha−1 day−1) | −53.5 | −57.6 | −21.0 | −44.6 |
RECOcum (kg CO2-C ha−1) | 15,427 | 6727 | 5025 | 27,179 |
RECOav (kg CO2-C ha−1 day−1) | 44.3 | 41.8 | 22.7 | 37.2 |
Import | ||||
Excrements (kg C ha−1) | −606 | −238 | −844 | |
Seeds (kg C ha−1) | −55.4 | −9.90 | −65.0 | |
Slurry (kg C ha−1) | −1010 | −1010 | ||
Sum | −606 | −55.4 | −1258 | −1919 |
Export | ||||
Pasture uptake (kg C ha−1) | 1874 | 736 | 2609 | |
Silage cut (kg C ha−1) | 508 | 508 | ||
Wheat grain (kg C ha−1) | 1532 | 1532 | ||
Wheat straw (kg C ha−1) | 1197 | 1197 | ||
Sum | 2382 | 2728 | 736 | 5846 |
NECB (kg C ha−1) | −1386 | 120 | −139 | −1404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eismann, M.-S.R.; Smit, H.P.J.; Taube, F.; Poyda, A. Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence. Atmosphere 2025, 16, 1190. https://doi.org/10.3390/atmos16101190
Eismann M-SR, Smit HPJ, Taube F, Poyda A. Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence. Atmosphere. 2025; 16(10):1190. https://doi.org/10.3390/atmos16101190
Chicago/Turabian StyleEismann, Marie-Sophie R., Hendrik P. J. Smit, Friedhelm Taube, and Arne Poyda. 2025. "Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence" Atmosphere 16, no. 10: 1190. https://doi.org/10.3390/atmos16101190
APA StyleEismann, M.-S. R., Smit, H. P. J., Taube, F., & Poyda, A. (2025). Assessing Management Tools to Mitigate Carbon Losses Using Field-Scale Net Ecosystem Carbon Balance in a Ley-Arable Crop Sequence. Atmosphere, 16(10), 1190. https://doi.org/10.3390/atmos16101190