Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Measurement of CO2, CH4 and, N2O Fluxes in Soil
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. The Temporal Variation of Soil CO2 Fluxes across LF, PF, and BF
3.2. The Temporal Variation of Soil CH4 Fluxes across LF, PF, and BF
3.3. The Temporal Variation of Soil N2O Fluxes across LF, PF, and BF
3.4. Cumulative Soil Greenhouse Gas Emissions and GWP
3.5. Effects of Environmental Factors on Soil Greenhouse Gas Fluxes
4. Discussion
4.1. Characteristics of Soil CO2 Emissions from LF, PF, and BF
4.2. Characteristics of Soil CH4 Emissions from LF, PF, and BF
4.3. Characteristics of Soil N2O Emissions from LF, PF, and BF
5. Conclusions
- (1)
- The typical forest soil of the Daxing’an Mountains permafrost region was a “source” of CO2 and N2O and a “sink” of CH4. The three greenhouse gas fluxes showed strong temporal variety, while the fluxes varied depending on the different sites. The PF soil CO2 fluxes were significantly higher than BF. At the same time, the soil absorption fluxes of CH4 in BF were significantly higher than that in LF.
- (2)
- Soil temperature and moisture were key environmental factors that correlated the CO2 and CH4 fluxes of different forest types in this high-latitude permafrost region. Q10 values showed that LF soil greenhouse gas fluxes were more sensitive to temperature. The N2O fluxes were mainly correlated by the soil nitrogen content.
- (3)
- Against the background of climate warming, the CO2 and N2O emission rates of the three forest types increased with increasing temperature, and the CH4 absorption rate decreased, thus enhancing the atmospheric greenhouse effect. On a 100-year time scale, the greenhouse gas GWP of the three forest soil systems in the Daxing’an Mountains permafrost region was positive, which had positive feedback on global warming.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 18. [Google Scholar]
- Subhash, B. Paris agreement on Climate change: A booster to enable sustainable global development and beyond. Int. J. Environ. Res. Pub. Health 2016, 13, 1134. [Google Scholar]
- WMO. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2017; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. Climate change 2007: The physical scientific basis. In Contribution of Working Groups 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 104. [Google Scholar]
- Yu, G.R.; Ren, W.; Chen, Z.; Zhang, L.M.; Wang, Q.F.; Wen, X.F.; He, N.P.; Zhang, L.; Fang, H.J.; Zhu, X.J.; et al. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci. 2016, 26, 803–826. [Google Scholar] [Green Version]
- Jorgenson, M.T.; Osterkamp, T.E. Response of boreal ecosystems to varying modes of permafrost degradation. Can. J. Forest Res. 2005, 35, 2100–2111. [Google Scholar] [CrossRef]
- Harden, J.W.; Koven, C.D.; Ping, C.L.; Hugelius, G.; Mcguire, A.D.; Camill, P.; Jorgenson, T.; Kuhry, P.; Michaelson, G.J.; O’Donnell, J.A.; et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 2012, 39, 51–60. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Sci. Total Environ. 2018, 626, 817–825. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar]
- Livesley, S.J.; Kiese, R.; Miehle, P.; Weston, C.J.; Butterbach-bahl, K.; Arndt, S.K. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob. Chang. Biol. 2009, 15, 425–440. [Google Scholar] [CrossRef]
- Jang, I.; Lee, S.; Hong, J.H.; Kang, H. Methane oxidation rates in forest soils and their controlling variables: A review and a case study in Korea. Ecol. Res. 2006, 21, 849–854. [Google Scholar] [CrossRef]
- Ju, H.; Shen, G.Z.; Xu, W.T.; Zhao, C.M.; Su, L.; Wang, Y.; Xie, Z.Q.; Zhang, Q.L. The emission of CH4, CO2, and N2O in the typical forest soils of Shennongjia under the precipitation reduction. Acta Ecol. Sin. 2016, 36, 6397–6408. [Google Scholar]
- Leckie, S.E.; Prescott, C.E.; Grayston, S.J. Forest floor microbial community response to tree species and fertilization of regenerating coniferous forests. Can. J. Forest Res. 2004, 34, 1426–1435. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.R.; Mo, J.M.; Zhang, T. Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species. Plant Soil 2010, 335, 213–227. [Google Scholar] [CrossRef]
- Castro, M.S.; Steudler, P.A.; Melillo, J.M.; Aber, J.D.; Bowden, R.D. Factors controlling atmospheric methane consumption by temperate forest soils. Glob. Biogeochem. Cycles 1995, 9, 1–10. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Gasche, R.; Willibald, G.; Papen, H. Exchange of N-gases at the HÖglwald forest-A summary. Plant Soil 2002, 240, 117–123. [Google Scholar] [CrossRef]
- Gao, W.F.; Yao, Y.L.; Liang, H.; Song, L.Q.; Sheng, H.C.; Cai, T.J.; Gao, D.W. Emissions of nitrous oxide from continuous permafrost region in the Daxing’an Mountains, Northeast China. Atmos. Environ. 2019, 198, 34–45. [Google Scholar] [CrossRef]
- Qing, D.H.; Yao, T.D.; Ding, Y.J.; Ren, J.W. Cryospheric Sciences, 1st ed.; Science Press: Beijing, China, 2017; pp. 49–55. [Google Scholar]
- Zhou, Y.W.; Guo, D.X.; Qiu, G.Q.; Cheng, G.D.; Li, S.D. Geocryology in China, 1st ed.; Science Press: Beijing, China, 2000; pp. 40–42. [Google Scholar]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.F.; Yang, T.X.; Yuan, J.; Liu, A.N.; Han, J. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agr. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Nie, T.Z.; Chen, P.; Zhang, Z.X.; Qi, Z.J.; Lin, Y.Y.; Xu, D. Effects of different types of water and nitrogen fertilizer management on greenhouse gas emissions, yield, and water consumption of paddy fields in cold region of China. Int. J. Environ. Res. Pub. Health 2019, 16, 1639. [Google Scholar] [CrossRef]
- Song, C.C.; Wang, Y.S.; Wang, Y.Y.; Zhao, Z.C. Emission of CO2, CH4 and N2O from freshwater marsh during freeze-thaw period in Northeast of China. Atmos. Environ. 2006, 40, 6879–6885. [Google Scholar] [CrossRef]
- Cui, Q.; Song, C.C.; Wang, X.W.; Shi, F.X.; Yu, X.Y.; Tan, W.W. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Sci. Total Environ. 2018, 616–617, 427–434. [Google Scholar] [CrossRef]
- Song, X.Y.; Wang, G.X.; Ran, F.; Chang, R.Y.; Song, C.L.; Xiao, Y. Effects of topography and fire on soil CO2 and CH4 flux in boreal forest underlain by permafrost in northeast China. Ecol. Eng. 2017, 106, 35–43. [Google Scholar] [CrossRef]
- Stenberg, M.; Aronsson, H.; Lindén, B.; Rydberg, T.; Gustafson, A. Soil mineral nitrogen and nitrate leaching losses in soil tillage systems combined with a catch crop. Soil Till. Res. 1999, 50, 115–125. [Google Scholar] [CrossRef]
- Reis, B.F.; Zagatto, E.A.G.; Javcintho, A.O.; Krug, F.J.; Bergamin, F.H. Merging zones in flow injection analysis: Part 4. Simultaneous spectrophotometric determination of total nitrogen and phosphorus in plant material. Anal. Chim. Acta. 1980, 119, 305–311. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA. Environ. Pollut. 2002, 116, S53–S62. [Google Scholar] [CrossRef]
- Song, C.C.; Xu, X.F.; Tian, H.Q.; Wang, Y.Y. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob. Chang. Biol. 2009, 15, 692–705. [Google Scholar] [CrossRef]
- Peichl, M.; Arain, M.A.; Ullah, S.; Moore, T.R. Carbon dioxide, methane, and nitrous oxide exchanges in an age-sequence of temperate pine forests. Glob. Chang. Biol. 2010, 16, 2198–2212. [Google Scholar] [CrossRef]
- Boone, R.D.; Nadelhoffer, K.J.; Canary, J.D.; Kaye, J.P. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 1998, 396, 570–572. [Google Scholar] [CrossRef]
- Jiang, C.M.; Yu, G.R.; Fang, H.J.; Cao, G.M.; Li, Y.N. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos. Environ. 2010, 44, 2920–2926. [Google Scholar] [CrossRef]
- Song, X.Y.; Wang, G.X.; Hu, Z.Y.; Ran, F.; Chen, X.P. Boreal forest soil CO2 and CH4 fluxes following fire and their responses to experimental warming and drying. Sci. Total Environ. 2018, 644, 862–872. [Google Scholar] [CrossRef]
- Li, Y.Y.; Dong, S.K.; Liu, S.L.; Zhou, H.K.; Gao, Q.Z.; Cao, G.G.; Wang, X.X.; Su, X.K.; Zhang, Y.; Tang, L.; et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol. Biochem. 2015, 80, 306–314. [Google Scholar] [CrossRef]
- Saito, M.; Kato, T.; Tang, Y. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Glob. Chang. Biol. 2009, 15, 221–228. [Google Scholar] [CrossRef]
- Siciliano, S.D.; Ma, W.K.; Ferguson, S.; Farrell, R.E. Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biol. Biochem. 2009, 41, 1104–1110. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.S.; Yang, Y.S.; Lv, P.P.; Zhang, Y.P.; Qiang, X.L. Regional patterns of soil respiration in China’s forests. Acta Ecol. Sin. 2008, 28, 1748–1761. [Google Scholar]
- Zheng, Z.M.; Yu, G.R.; Fu, Y.L.; Wang, Y.S.; Sun, X.M.; Wang, Y.H. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study. Soil Biol. Biochem. 2009, 41, 1531–1540. [Google Scholar] [CrossRef]
- Gleb, K.; Ernst-Detlef, S.; Alla, Y.; Alexander, K.; Evgeny, C.; Elizaveta, R. Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 2017, 8, 105. [Google Scholar]
- Zhang, L.H.; Hou, L.Y.; Guo, D.F.; Li, L.H.; Xu, X.F. Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Sci. Total Environ. 2016, 10, 523–535. [Google Scholar] [CrossRef]
- Johnson, M.S.; Webster, C.; Jassal, R.S.; Hawthorne, L.; Black, T.A. Biochar influences on soil CO2 and CH4 fluxes in response to wetting and drying cycles for a forest soil. Sci. Rep. 2017, 7, 6780. [Google Scholar] [CrossRef] [PubMed]
- Heimann, M. Atmospheric science: Enigma of the recent methane budget. Nature 2011, 476, 157–158. [Google Scholar] [CrossRef]
- Cooper, M.D.A.; Estop-Aragonés, C.; Fisher, J.P.; Thierry, A.; Garnett, M.H.; Charman, D.J.; Murton, J.B.; Phoenix, G.K.; Treharne, R.; Kokeij, S.V.; et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nat. Clim. Chang. 2017, 7, 507–511. [Google Scholar] [CrossRef]
- Nie, T.Z.; Zhang, Z.X.; Qi, Z.J.; Chen, P.; Sun, Z.Y.; Liu, X.C. Characterizing spatiotemporal dynamics of CH4 fluxes from rice paddies of cold region in Heilongjiang province under climate change. Int. J. Environ. Res. Pub. Health 2019, 16, 692. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Lipski, A.; Embacher, A.; Gattinger, A. Methane fluxes in permafrost habitats of the Lena Delta: Effects of microbial community structure and organic matter quality. Environ. Microbiol. 2005, 7, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.X.; Song, C.C.; Wang, X.W.; Mao, R.; Guo, Y.D.; Lu, Y.Z. Effect of permafrost degradation on methane emission in wetlands: A review. Acta Ecol. Sin. 2011, 31, 5379–5386. [Google Scholar]
- Schimel, J.P.; Clein, J.S. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol. Biochem. 1996, 28, 1061–1066. [Google Scholar] [CrossRef]
- Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol. Biochem. 2006, 38, 1388–1395. [Google Scholar] [CrossRef]
- Steudler, P.A.; Bowden, R.D.; Melillo, J.M.; Aber, J.D. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 1989, 341, 314–316. [Google Scholar] [CrossRef]
- Thomas, K.F.; Vern, S.B.; John, D.W.; John, A.B.; Raymonal, L.D.; Devon, W.; Reynald, L. Micrometeorological measurements reveal large nitrous oxide losses during spring thaw in Alberta. Atmosphere 2018, 9, 128. [Google Scholar]
- Trotsenko, Y.A.; Khmelenina, V.N. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol. Ecol. 2005, 53, 15–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teepe, R.; Brumme, R.; Beese, F. Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biol. Biochem. 2001, 33, 1269–1275. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X.L. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. N. Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Struwe, S.; Kjøller, A. Potential for N2O production from beech (Fagus silvaticus) forest soils with varying pH. Soil Biol. Biochem. 1994, 26, 1003–1009. [Google Scholar] [CrossRef]
Blocks | pH | Bd (g·cm−3) | NO3−-N (mg·kg−1) | NH4+-N (mg·kg−1) | TN (g·kg−1) | TOC (g·kg−1) | C/N |
---|---|---|---|---|---|---|---|
LF | 5.53 ± 0.23a | 1.01± 0.08a | 1.57 ± 0.54ab | 5.01 ± 0.91c | 3.30 ± 0.97ab | 52.22 ± 6.21ab | 15.82ab |
PF | 5.57 ± 0.18a | 1.05 ± 0.06a | 1.31 ± 0.34b | 6.67 ± 1.05b | 2.91 ± 0.77b | 48.36 ± 4.77b | 16.62a |
BF | 4.65 ± 0.17b | 0.71 ± 0.09b | 2.10 ± 0.42a | 10.23 ± 1.24a | 4.16 ± 0.85a | 58.50 ± 5.17a | 14.06b |
Blocks | CO2 (t·hm−2) | CH4 (kg·hm−2) | N2O (kg·hm−2) | GWP (t CO2 Eq·hm−2) |
---|---|---|---|---|
LF | 15.737 ± 1.14ab | −0.639 ± 0.19a | 0.715 ± 0.14a | 15.934 ± 1.18ab |
PF | 16.249 ± 0.38a | −1.208 ± 0.28ab | 0.757 ± 0.02a | 16.445 ± 0.38a |
BF | 13.876 ± 0.61b | −1.483 ± 0.40b | 0.756 ± 0.03a | 14.064 ± 0.61b |
Blocks | Flux | pH | NO3−-N (mg·kg−1) | NH4+-N (mg·kg−1) | TN (g·kg−1) | TOC (g·kg−1) |
---|---|---|---|---|---|---|
LF | CO2 | 0.235 | −0.311 | −0.234 | −0.459 * | 0.163 |
CH4 | 0.236 | −0.143 | −0.318 | 0.471 * | −0.559 ** | |
N2O | −0.336 | 0.444 * | 0.549 ** | −0.104 | 0.200 | |
PF | CO2 | −0.095 | −0.228 | −0.164 | −0.506 * | 0.411 |
CH4 | 0.146 | 0.127 | −0.133 | 0.202 | −0.198 | |
N2O | 0.156 | 0.478 * | 0.407 | 0.202 | −0.044 | |
BF | CO2 | −0.409 | −0.477 * | −0.168 | −0.509 * | 0.160 |
CH4 | 0.122 | −0.034 | 0.095 | 0.246 | 0.692 ** | |
N2O | 0.547 ** | 0.605 ** | 0.367 | 0.570 ** | 0.105 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zang, S.; Ma, D.; Ren, J.; Chen, Q.; Dong, X. Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 2999. https://doi.org/10.3390/ijerph16162999
Wu X, Zang S, Ma D, Ren J, Chen Q, Dong X. Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China. International Journal of Environmental Research and Public Health. 2019; 16(16):2999. https://doi.org/10.3390/ijerph16162999
Chicago/Turabian StyleWu, Xiangwen, Shuying Zang, Dalong Ma, Jianhua Ren, Qiang Chen, and Xingfeng Dong. 2019. "Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China" International Journal of Environmental Research and Public Health 16, no. 16: 2999. https://doi.org/10.3390/ijerph16162999
APA StyleWu, X., Zang, S., Ma, D., Ren, J., Chen, Q., & Dong, X. (2019). Emissions of CO2, CH4, and N2O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China. International Journal of Environmental Research and Public Health, 16(16), 2999. https://doi.org/10.3390/ijerph16162999