Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,986)

Search Parameters:
Keywords = phase equilibrium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3818 KB  
Article
Formulation of α-Linolenic Acid-Based Microemulsions for Age-Related Macular Degeneration: Physicochemical Tests and HET-CAM Assays for Anti-Angiogenic Activities
by Sang Gu Kang, Mahendra Singh, Gibaek Lee, Kyung Eun Lee and Ramachandran Vinayagam
Medicina 2025, 61(11), 2030; https://doi.org/10.3390/medicina61112030 (registering DOI) - 13 Nov 2025
Abstract
Background and Objectives: Age-related macular degeneration (AMD) is an age-associated retinal disorder characterized by blood–retinal barrier (BRB) breakdown and pathological angiogenesis, leading to vascular leakage. The intravitreal administration of anti-VEGF agents remains the most effective treatment for neovascular AMD. However, repetitive intravitreal injections [...] Read more.
Background and Objectives: Age-related macular degeneration (AMD) is an age-associated retinal disorder characterized by blood–retinal barrier (BRB) breakdown and pathological angiogenesis, leading to vascular leakage. The intravitreal administration of anti-VEGF agents remains the most effective treatment for neovascular AMD. However, repetitive intravitreal injections have risks, causing side effects such as cataracts, bleeding, retina damage, and, in severe cases, post-injection endophthalmitis. Hence, the development of innovative drug delivery systems is essential to minimize the risks and discomfort associated with intravitreal injections. Materials and Methods: We developed a microemulsion (ME)-based topical drug delivery system incorporating α-linolenic acid (ALA). In brief, pseudo-ternary phase diagrams were constructed by the water titration method using different combinations of surfactants and cosurfactants (Smix-Cremophor RH 40: Span 80: Transcutol P in ratios of 1:1.05, 1:1:1, 1:1:1.5) containing ALA as the oil phase. Three blank microemulsions (ME1, ME2, and ME3) were prepared and characterized based on the optimized pseudo-ternary phase equilibrium with a Smix ratio of 1:1:1. Results: ME3, with an average particle size of 38.59 nm, was selected as the optimized formulation for developing drug-loaded ME containing Fenofibrate, Axitinib, and Sirolimus. The drug-loaded ME showed particle size (46.94–56.39 nm) and in vitro release displayed sustained and longer time drug release for 240 h. The irritation and antiangiogenic activities were evaluated using the hen’s egg chorioallantoic membrane (HET-CAM) assay employing the optimized ME loaded with each drug. Among the three drug-loaded ME, the Sirolimus ME showed a reduction in blood vessel sprouting in the HET-CAM assay, indicating strong antiangiogenic activity. Treatment with the optimized blank ME and Sirolimus ME significantly (p < 0.05) reduced COX-2 protein expression in LPS-stimulated RAW 264.7 cells, suggesting their potential anti-inflammatory effects. Conclusions: Overall, we suggest that the α-linolenic acid-based Sirolimus microemulsion may serve as a promising topical therapeutic approach for managing AMD and offering a potential alternative to invasive intravitreal injections. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

31 pages, 827 KB  
Article
Asymptotic Freedom and Vacuum Polarization Determine the Astrophysical End State of Relativistic Gravitational Collapse: Quark–Gluon Plasma Star Instead of Black Hole
by Herman J. Mosquera Cuesta, Fabián H. Zuluaga Giraldo, Wilmer D. Alfonso Pardo, Edgardo Marbello Santrich, Guillermo U. Avendaño Franco and Rafael Fragozo Larrazabal
Universe 2025, 11(11), 375; https://doi.org/10.3390/universe11110375 - 12 Nov 2025
Abstract
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and [...] Read more.
A general relativistic model of an astrophysical hypermassive extremely magnetized ultra-compact self-bound quark–gluon plasma (QGP: ALICE/LHC) object that is supported against its ultimate gravitational implosion by the simultaneous action of the vacuum polarization driven by nonlinear electrodynamics (NLED: ATLAS/LHC: light-by-light scattering)—the vacuum “awakening”—and the asymptotic freedom, a key feature of quantum chromodynamics (QCD), is presented. These QCD stars can be the final figures of the equilibrium of collapsing stellar cores permeated by magnetic fields with strengths well beyond the Schwinger threshold due to being self-bound, and for which post-supernova fallback material pushes the nascent remnant beyond its stability, forcing it to collapse into a hybrid hypermassive neutron star (HHMNS). Hypercritical accretion can drive its innermost core to spontaneously break away color confinement, powering a first-order hadron-to-quark phase transition to a sea of ever-freer quarks and gluons. This core is hydro-stabilized by the steady, endlessly compression-admitting asymptotic freedom state, possibly via gluon-mediated enduring exchange of color charge among bound states, e.g., the odderon: a glueball state of three gluons, or either quark-pairing (color superconductivity) or tetraquark/pentaquark states (LHCb Coll.). This fast—at the QGP speed of sound—but incremental quark–gluon deconfinement unbinds the HHMNS’s baryons so catastrophically that transforms it, turning it inside-out, into a neat self-bound QGP star. A solution to the nonlinear Tolman–Oppenheimer–Volkoff (TOV) equation is obtained—that clarifies the nonlinear effects of both NLED and QCD on the compact object’s structure—which clearly indicates the occurrence of hypermassive QGP/QCD stars with a wide mass spectrum (0MStarQGP 7 M and beyond), for star radii (0RStarQGP24 km and beyond) with B-fields (1014BStarQGP1016 G and beyond). This unexpected feature is described by a novel mass vs. radius relation derived within this scenario. Hence, endowed with these physical and astrophysical characteristics, such QCD stars can definitively emulate what the true (theoretical) black holes are supposed to gravitationally do in most astrophysical settings. This color quark star could be found through a search for its eternal “yo-yo” state gravitational-wave emission, or via lensing phenomena like a gravitational rainbow (quantum mechanics and gravity interaction), as in this scenario, it is expected that the light deflection angle—directly influenced by the larger effective mass/radius (MStarQGP(B), RStarQGP(B)) and magnetic field of the deflecting object—increases as the incidence angle decreases, in view of the lower values of the impact parameter. The gigantic—but not infinite—surface gravitational redshift, due to NLED photon acceleration, makes the object appear dark. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

30 pages, 4806 KB  
Article
A Hybrid Strategy Integrating Artificial Neural Networks for Enhanced Energy Production Optimization
by Aymen Lachheb, Noureddine Akoubi, Jamel Ben Salem, Lilia El Amraoui and Amal BaQais
Energies 2025, 18(22), 5941; https://doi.org/10.3390/en18225941 (registering DOI) - 12 Nov 2025
Abstract
This paper presents a novel, robust, and reliable control strategy for renewable energy production systems, leveraging artificial neural networks (ANNs) to optimize performance and efficiency. Unlike conventional ANN approaches that rely on perturbation-based methods, we develop a fundamentally different ANN model incorporating equilibrium [...] Read more.
This paper presents a novel, robust, and reliable control strategy for renewable energy production systems, leveraging artificial neural networks (ANNs) to optimize performance and efficiency. Unlike conventional ANN approaches that rely on perturbation-based methods, we develop a fundamentally different ANN model incorporating equilibrium points (EPs) that achieve superior regulation of photovoltaic (PV) systems. The efficacy of the proposed approach is evaluated through comparative analysis against the conventional control strategy based on perturb and observe (MPPT/PO), demonstrating a 3.3% improvement in system efficiency (98.3% vs. 95%), a five times faster response time (6 s vs. 30 s), and six-fold reduction in voltage ripple (1% vs. 5.95%). A critical aspect of ANN-based controller design is the learning phase, which is addressed through the integration of deep reinforcement learning (DRL) for primary PV system control. Specifically, a hybrid control architecture combining the Artificial Neural Network based on Equilibrium Points (ANN/EP) model with DRL (ANN/PE-RL) is introduced, utilizing a synergistic integration of two reinforcement learning agents: Twin Delayed Deep Deterministic Policy Gradient (TD3) and Deep Deterministic Policy Gradient (DDPG). The TD3-based hybrid approach achieves an average reward value of 434.78 compared to 422.767 for DDPG, representing a 2.84% performance improvement in tracking maximum power points under imbalanced conditions. This hybrid approach demonstrates significant potential for improving the overall performance of grid-connected PV systems, reducing energy losses from 1.95% to below 1%, offering a promising solution for advanced renewable energy management. Full article
Show Figures

Figure 1

22 pages, 2502 KB  
Article
Geochemical Fingerprints: Tracing the Origin and Evolution of the Teleghma Geothermal System, Northeastern Algeria
by Nour El Imane Benchabane, Foued Bouaicha and Ayoub Barkat
Earth 2025, 6(4), 145; https://doi.org/10.3390/earth6040145 - 11 Nov 2025
Abstract
Boreholes in the Teleghma region of northeastern Algeria discharge thermal water with temperatures between 40 and 49 °C and total dissolved solids (TDS) ranging from 570 to 940 mg/L. The stable isotope compositions range from –7.8‰ to –6.2‰ for δ18O and [...] Read more.
Boreholes in the Teleghma region of northeastern Algeria discharge thermal water with temperatures between 40 and 49 °C and total dissolved solids (TDS) ranging from 570 to 940 mg/L. The stable isotope compositions range from –7.8‰ to –6.2‰ for δ18O and –52.6‰ to –43.3‰ for δ2H, indicating a meteoric origin. Based on these isotopic signatures, the water is classified as immature and undersaturated with respect to the equilibrium line on the Giggenbach Na–K–Mg ternary diagram. The water exhibits a sodium–chloride (Na–Cl) facies, closely associated with Triassic formations rich in evaporitic deposits. This association was confirmed by the IIGR method, which illustrates the chemical evolution of the hydrothermal fluid as it ascends from the karstic carbonate reservoir through conduits and traverses clay formations. Consequently, computed saturation indices and applied inverse modeling significantly contributed to understanding the interactions between the hydrothermal water and the traversed rock. At the local scale, halite dissolution is the primary mineral phase driving chemical changes. Regionally, however, the processes are dominated by gypsum dissolution and cation exchange reactions between calcium and sodium ions. These findings offer valuable insights into the geochemical processes that shape the Teleghma geothermal system, with implications for resource management and potential applications. Full article
18 pages, 5613 KB  
Article
Preparation and Performance Study of Decanoic Acid–Stearic Acid Composite Phase-Change Ceramsite Aggregate
by Gui Yu, Qiang Yuan, Min Li, Jiaxing Tao, Jing Jiang and De Chen
Coatings 2025, 15(11), 1315; https://doi.org/10.3390/coatings15111315 - 11 Nov 2025
Abstract
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote [...] Read more.
In response to the problem of high energy consumption caused by inefficient temperature control of energy storage aggregates in traditional building envelope structures, this study developed a decanoic acid–stearic acid composite phase-change ceramsite aggregate to improve the thermal performance of buildings and promote the utilization of solid waste resources. Based on the theory of minimum melting, composite phase-change materials were screened through thermodynamic models. The capric acid–stearic acid (CA-SA) melt system, whose theoretical phase-transition temperature falls within the building indoor thermal environment control range (18–26 °C), was preferred as the experimental object of this study, and its characteristics were verified through step cooling curves and thermal property tests. Subsequently, the ceramsite adsorption process was optimized, and the encapsulation process was studied. Finally, the encapsulation performance was evaluated through thermal stability and stirring crushing rate tests. The results showed that the phase-transition temperature of the decanoic acid–stearic acid melt system was 24.83 °C, which accurately matched the indoor thermal environment control requirements. The ceramsite particles treated by a physical vibrating screen can reach equilibrium after 30 min of adsorption at room temperature and pressure, which is both efficient and economical. The encapsulation layer of sludge biochar cement slurry with a water–cement ratio of 0.5 and a biochar content of 3% has both thermal conductivity and encapsulation integrity. The thermal stability test showed that the percentage of leakage of sludge biochar cement slurry and epoxy resin encapsulated aggregates was 0%, and the thermal stability rating was “very stable”. However, the percentage of leakage of unencapsulated and spray-coated encapsulated aggregates was as high as 193% and 40%, respectively. The results of the mixing and crushing rate test show that although the mixing and crushing rate of sludge biochar cement slurry encapsulation is slightly higher, its production cost is much lower than that of epoxy resin, and it is also environmentally friendly. This study improves the thermal performance of buildings by using composite phase-change ceramsite aggregate, and simultaneously realizes the resource utilization of sludge biochar, providing a solution for building energy saving and efficiency that combines environmental and engineering value. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

18 pages, 6518 KB  
Article
Influence of Zeolite-A Doping and Solvent Mixing Ratio for Electrospun PVDF-Based Membranes
by Ionut Procop, Viorica Mușat, Elena Maria Anghel, Nicolae Țigău, Felicia Stan, Irina Atkinson, Daniela Cristina Culiță, Alina Cantaragiu Ceoromila, Emanuela Elena Herbei, Radu-Robert Piticescu, Gabriela Ioniță and Alexandru Petrică
Molecules 2025, 30(22), 4353; https://doi.org/10.3390/molecules30224353 - 10 Nov 2025
Viewed by 82
Abstract
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, [...] Read more.
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, Raman, XRD, DSC-TGA, UV-VIS spectroscopy, contact angle measurements, and mechanical testing. The membranes prepared with solvents low in acetone and increased zeolite content exhibited a higher crystallinity degree exceeding 50%. Zeolite-enriched membranes have a slightly higher content in the α crystalline phase of PVDF when compared to zeolite-free membranes. Electrospinning processing decreased the sample’s subcooling, improving its thermal stability. Zeolite-doping reduced the band gap energy to 1.3 eV from a maximum of 2.7 eV in PVDF membranes. Membranes doped with 3 or 4 wt.% zeolite exhibit improved load-elongation values at break, reaching up to 4.2 N and 47 mm, respectively, and increased flexibility due to their porous structures and the ratio of crystalline to amorphous phases. The membranes adsorbed an MB equilibrium quantity up to 18.5 mg/g and obeyed the pseudo-second-order (PSO) kinetic model within the first 24 h. Thus, the synergistic effect of zeolite content and solvent ratio can effectively adjust the sample’s structure, texture, and properties. Full article
Show Figures

Figure 1

32 pages, 13637 KB  
Article
Prediction of Boil-Off Gas in Cryogenic Tanks with a Coupled Thermal Resistance and Thermodynamic Model
by Min-Seok Kim and Jang Hyun Lee
Processes 2025, 13(11), 3584; https://doi.org/10.3390/pr13113584 - 6 Nov 2025
Viewed by 265
Abstract
This study proposes an analytical model for the long-term prediction of boil-off gas (BOG) generation in cryogenic storage tanks. The model assumes a saturated liquid and a superheated vapor under open-vent conditions. Heat ingress is estimated using steady-state thermal conduction analysis, and evaporation [...] Read more.
This study proposes an analytical model for the long-term prediction of boil-off gas (BOG) generation in cryogenic storage tanks. The model assumes a saturated liquid and a superheated vapor under open-vent conditions. Heat ingress is estimated using steady-state thermal conduction analysis, and evaporation is then computed from thermodynamic equilibrium. In the first stage, a thermal resistance network quantifies the heat flux transferred to the liquid and vapor regions inside the tank. The network represents external convection, insulation conduction, and internal convection as thermal resistances. In particular, natural convection on the external and internal tank walls, as well as heat transfer at the liquid–vapor interface, are incorporated through appropriate convective heat-transfer correlations. In the second stage, the temporal variations in temperature and phase change of the vapor and liquid are computed. Each phase is modeled as a lumped mass at equilibrium, and the heat ingress obtained from the thermal resistance network is used to simulate the temperature evolution and evaporation process. A numerical model is also developed to capture the time-dependent variations in liquid and vapor heights and the corresponding BOG generation. The proposed model is applied to a 1.0 m3 liquid nitrogen storage tank and validated through comparison with the BoilFAST and SINDA/FLUINT models. The results confirm the validity of the model in terms of heat ingress, vapor temperature evolution, and BOG history. This study provides a practical framework for predicting long-term evaporation phenomena in cryogenic storage tanks and is expected to contribute to the thermal design and performance evaluation of cryogenic storage systems. Full article
Show Figures

Figure 1

16 pages, 2221 KB  
Article
A Comparative Study of Natural and Exact Elastic Balancing Methods for the RR-4R-R Manipulator
by Luca Bruzzone, Matteo Verotti and Pietro Fanghella
Machines 2025, 13(11), 1023; https://doi.org/10.3390/machines13111023 - 6 Nov 2025
Viewed by 235
Abstract
If elastic elements are introduced into the mechanical architecture of a robotic manipulator, a free vibration response (Natural Motion) arises that can be exploited to reduce energy consumption in cyclic motions, such as pick-and-place tasks. In this work, this approach is applied to [...] Read more.
If elastic elements are introduced into the mechanical architecture of a robotic manipulator, a free vibration response (Natural Motion) arises that can be exploited to reduce energy consumption in cyclic motions, such as pick-and-place tasks. In this work, this approach is applied to the RR-4R-R manipulator, which is derived from the SCARA robot by replacing the prismatic joint that drives the vertical motion of the end-effector with a four-bar mechanism. This mechanical modification lowers friction and facilitates the introduction of a balancing elastic element. If the elastic element is designed to provide indifferent equilibrium at any position (exact elastic balancing), the actuators need only to overcome the inertial forces; this approach is convenient for slow motions. Conversely, if the elastic element balances gravity exactly only in the median vertical position of the end-effector, Natural Motion around this position arises, and it can be exploited to reduce energy consumption in fast cyclic motions, where inertial forces become prevalent. The threshold of convenience between exact balancing and natural balancing has been evaluated for the RR-4R-R robot by means of a multibody model, assessing different performance indices: the maximum torque of the four-bar actuator, the integral control effort, and the mechanical energy. The simulation campaign was carried out considering different trajectory shapes and the influence of finite stop phases, highlighting the potential benefits of exploiting Natural Motion in robotized manufacturing lines. Full article
Show Figures

Figure 1

29 pages, 753 KB  
Article
A Coherent Electrodynamics Theory of Liquid Water
by Antonella De Ninno and Luca Gamberale
Liquids 2025, 5(4), 30; https://doi.org/10.3390/liquids5040030 - 5 Nov 2025
Viewed by 275
Abstract
This study presents a quantum electrodynamics (QED) framework that explains the anomalous behavior of liquid water. The theory posits that water consists of two coexisting phases: a coherent phase, in which molecules form phase-locked coherence domains (CDs), and an incoherent phase that behaves [...] Read more.
This study presents a quantum electrodynamics (QED) framework that explains the anomalous behavior of liquid water. The theory posits that water consists of two coexisting phases: a coherent phase, in which molecules form phase-locked coherence domains (CDs), and an incoherent phase that behaves like a dense van der Waals fluid. By solving polynomial-type equations, we derive key thermodynamic properties, including the minima in the isobaric heat capacity per particle (IHCP) and the isothermal compressibility, as well as the divergent behavior observed near 228 K. The theory also accounts for water’s high static dielectric constant. These results emerge from first-principles QED, integrating quantum coherence with macroscopic thermodynamics. The framework offers a unified explanation for water’s anomalies and has implications for biological systems, materials science, and fundamental physics. Future work will extend the theory to include phase transitions, solute interactions, and the freezing process. Full article
(This article belongs to the Special Issue Energy Transfer in Liquids)
Show Figures

Figure 1

37 pages, 16879 KB  
Article
Total Energy Balance During Thermal Charging of Cylindrical Heat Storage Units: Thermodynamic Equilibrium Limit
by Valter Silva-Nava, José A. Otero, Jesús Enrique Chong-Quero and Ernesto M. Hernández-Cooper
Energies 2025, 18(21), 5770; https://doi.org/10.3390/en18215770 - 31 Oct 2025
Viewed by 302
Abstract
The local energy balance at the liquid-solid front has been widely used in the literature. However, depending on the initial state of the system, the boundary conditions, and the thermodynamic properties of the phase change material, the local energy balance can lead to [...] Read more.
The local energy balance at the liquid-solid front has been widely used in the literature. However, depending on the initial state of the system, the boundary conditions, and the thermodynamic properties of the phase change material, the local energy balance can lead to inaccuracies. The total energy balance has been applied to phase change processes; however, discrepancies have been reported regarding the dynamics of the melting front obtained through this approach. In this work, the concept of thermodynamic equilibrium is used to determine the exact liquid-solid coexistence state in adiabatic systems. Thermodynamic equilibrium of saturated mixtures is used to validate the proposed energy balance. We found that the melting front position obtained from a local energy balance can be underestimated by as much as 37.4% when compared with the equilibrium value. In contrast, the interface position estimated by the total energy balance was in good agreement with equilibrium, with relative differences between 0.082% and 0.11%. Finally, a melting experiment using paraffin RT50 was conducted in a thermally insulated cylindrical unit. The experimental front position was underestimated by the local energy balance, with differences between 2.4% and 6.9%, while the total energy balance showed smaller discrepancies between 0.28% and 5.71%. Full article
Show Figures

Figure 1

21 pages, 3692 KB  
Article
First-Principles Investigation of Pressure-Induced Structural, Elastic, and Vibrational Properties of In3Sc
by Yazid Hedjar, Salima Saib and Alfonso Muñoz
Crystals 2025, 15(11), 946; https://doi.org/10.3390/cryst15110946 - 31 Oct 2025
Viewed by 223
Abstract
This study reports a first-principles investigation of the structural, mechanical, electronic, and vibrational properties of In3Sc in several crystal structures: AuCu3 (Pm3¯m), Al3Ti (I4/mmm), Ni3Sn (P63/mmc), and BiF3 (Fm [...] Read more.
This study reports a first-principles investigation of the structural, mechanical, electronic, and vibrational properties of In3Sc in several crystal structures: AuCu3 (Pm3¯m), Al3Ti (I4/mmm), Ni3Sn (P63/mmc), and BiF3 (Fm3¯m), with a focus on pressure effects. Calculated equilibrium lattice constants, bulk, shear, and Young’s moduli show good agreement with experimental and theoretical data, especially for the cubic AuCu3 phase. Elastic constants, examined with the Born stability criteria, reveal that the cubic (SG 221), tetragonal (SG 139), and hexagonal (SG 194) phases are mechanically stable at zero pressure, while the BiF3-type cubic (SG 225) is unstable. Pressure-dependent variations in lattice parameters, bulk modulus, and elastic moduli, captured by polynomial fits, demonstrate stiffening effects and pressure-induced phase transitions. Band structures and density of states confirm metallicity in all stable phases, with In–Sc hybridization governing bonding. Phonon dispersions and Grüneisen parameters, calculated under compression, establish the dynamical stability of the mechanically stable structures and provide insight into vibrational and thermal behavior. Debye temperature and sound velocities highlight favorable thermal-transport features. Altogether, the results clarify the intrinsic mechanical and thermodynamic response of In3Sc, supporting its potential as a promising intermetallic for structural and functional use under extreme conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

25 pages, 8714 KB  
Article
Mechanism of Burial Depth Effect on Recovery Under Different Coupling Models: Response and Simplification
by Zhanglei Fan, Gangwei Fan, Dongsheng Zhang, Tao Luo, Xuesen Han, Guangzheng Xu and Haochen Tong
Appl. Sci. 2025, 15(21), 11657; https://doi.org/10.3390/app152111657 - 31 Oct 2025
Viewed by 147
Abstract
Coalbed methane (CBM) development involves multiple interacting physical fields, and different coupling schemes can lead to distinctly different production behaviors. A thermo-hydro-mechanical model accounting for gas–water two-phase flow and matrix dynamic diffusion (TP-D-THM) is developed and validated, achieving an error rate below 10%. [...] Read more.
Coalbed methane (CBM) development involves multiple interacting physical fields, and different coupling schemes can lead to distinctly different production behaviors. A thermo-hydro-mechanical model accounting for gas–water two-phase flow and matrix dynamic diffusion (TP-D-THM) is developed and validated, achieving an error rate below 10%. By embedding the numerically estimated reservoir physical parameters of the Qinshui Basin into the numerical model, multi-field couplings during CBM production, the evolution of physical parameters, and the depth-dependent effects on production characteristics were revealed. The main findings are as follows: The inhibitory effect of water on CBM recovery consistently exceeds the promoting effect of temperature. As burial depth expands, the inhibitory effect first diminishes, then intensifies, ranging from 19.73% to 28.41%, while the thermal promotion effect exhibits a monotonically increasing trend, fluctuating between 8.55% and 16.33% and stabilizing below 1000 m. Temperature and burial depth do not alter the trend in gas production rate. For equilibrium permeability, reproducing a decrease–increase–decrease rate pattern requires explicit inclusion of water and matrix-fracture mass exchange terms, which can explain why different scholars obtained varying gas production rate trends using the THM model. Matrix adsorption-induced strain is the primary control on permeability evolution, and temperature amplifies the magnitude of permeability change. The critical depth essentially reflects the statistical characteristics of reservoir petrophysical properties. A dimensionless critical depth criterion has been proposed, which comprehensively considers reservoir pressure, permeability, and a fractional coverage index. For burial depths ranging from 650 to 1350 m, the TP-D-THM model can be simplified to the gas-mechanical model accounts for matrix dynamic diffusion (D-HM) with an error below 5%, indicating that thermal and water effects nearly cancel each other. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

20 pages, 10504 KB  
Article
Phase Equilibrium Relationship of CaO-Al2O3-Ce2O3-CaF2 Slag System at 1300~1500 °C
by Lifeng Sun, Jiangsheng Ye, Jiyu Qiu and Chengjun Liu
Metals 2025, 15(11), 1209; https://doi.org/10.3390/met15111209 - 30 Oct 2025
Viewed by 210
Abstract
CaO-Al2O3-Ce2O3 is a potential new-type basic metallurgical slag system for rare earth steel. To investigate the effects of CaF2 on the melting point and equilibrium phase types of this slag system, the phase equilibrium relationships [...] Read more.
CaO-Al2O3-Ce2O3 is a potential new-type basic metallurgical slag system for rare earth steel. To investigate the effects of CaF2 on the melting point and equilibrium phase types of this slag system, the phase equilibrium relationships and extent of the liquid phase region of CaO-Al2O3-Ce2O3-CaF2 slag system at 1300 °C, 1400 °C, and 1500 °C in C/CO were determined by the high-temperature phase equilibrium experiment, Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer (SEM-EDX) and X-ray Diffraction (XRD), and the isothermal phase diagram was plotted. The experimental results show that within the composition range in this study, the slag system has five, seven, and six liquid–solid equilibrium coexistence regions at 1300 °C, 1400 °C, and 1500 °C. The involved multiphase equilibrium regions include five two-phase regions (i.e., Liquid + CaO, Liquid + CaO·2Al2O3, Liquid + 2CaO·Al2O3·Ce2O3, Liquid + 2CaO·3Al2O3·Ce2O3, Liquid + 11CaO·7Al2O3·CaF2), 4 three-phase regions (i.e., Liquid + CaO + 2CaO·Al2O3·Ce2O3, Liquid + 11CaO·7Al2O3·CaF2 + 2CaO·Al2O3·Ce2O3, Liquid + CaO·2Al2O3 + 2CaO·3Al2O3·Ce2O3, Liquid + 11CaO·7Al2O3·CaF2 + 2CaO·3Al2O3·Ce2O3), and 1 four-phase region (i.e., Liquid + CaO + 11CaO·7Al2O3·CaF2 + 2CaO·Al2O3·Ce2O3). Meanwhile, based on liquid phase compositions under liquid–solid multiphase equilibrium, the slag system’s liquid phase ranges at the experimental temperatures were determined as follows: at 1300 °C: w(CaO)/w(Al2O3) = 0.42~0.92, w(Ce2O3) = 1.63%~8.02%, w(CaF2) = 9.17%~21.46%; 1400 °C: 0.28~1.18, 0.9%~12.62%, 1.04%~23.34%, respectively; 1500 °C: 0.23~1.21, 0~14.42%, 0~26.32%, respectively. Full article
Show Figures

Figure 1

21 pages, 3002 KB  
Review
Engineered Artificial Minerals (EnAMs): Concept, Design Strategies, and Case Studies
by Wensheng Han, Joao Weiss, Xiang Lu, Daniel Munchen, Chuling Jiang, Hugo Lucas, Mengjie Ran, Wen Chen and Bernd Friedrich
Minerals 2025, 15(11), 1129; https://doi.org/10.3390/min15111129 - 29 Oct 2025
Viewed by 344
Abstract
With the continuous development of easily accessible resources, the exploitation of complex mineral resources, metallurgical waste slag containing high-value metals, and secondary resources is gradually becoming a mainstream trend. Due to the complex distribution characteristics of elements in these resources, efficient recycling is [...] Read more.
With the continuous development of easily accessible resources, the exploitation of complex mineral resources, metallurgical waste slag containing high-value metals, and secondary resources is gradually becoming a mainstream trend. Due to the complex distribution characteristics of elements in these resources, efficient recycling is difficult to achieve. A phase reconstruction strategy has been proposed to address the distribution forms of elements. The phase reconstruction strategy employs pyrometallurgical methods to subject complex resources to high-temperature smelting and cooling crystallization. In the cooling crystallization process, the target elements in melt are selectively enriched into engineered artificial minerals (EnAMs). Then, the target elements can be recovered by subsequently separating these EnAMs. However, the concept of and design strategies for EnAMs are still unclear. In this review, the concept of EnAMs is proposed based on previous studies. This review explores how to design EnAMs by phase equilibrium studies and utilizing geochemical behaviors. Additionally, the application cases of EnAMs in treating challenging tantalum–niobium and rare earth element (REE) resources, secondary resource recycling, and metallurgical slag were collected. Furthermore, the challenges and future perspectives of EnAMs for complex resources are discussed. Full article
Show Figures

Figure 1

26 pages, 2876 KB  
Article
Blend Prediction Model for Vapor Pressure of Jet Fuel Range Hydrocarbons
by Randall C. Boehm, Robert Parker, Zhibin Yang, Stephen Dooley and Joshua S. Heyne
Sustainability 2025, 17(21), 9612; https://doi.org/10.3390/su17219612 - 29 Oct 2025
Viewed by 293
Abstract
The ability to predict the vapor pressure and vapor-phase composition of hydrocarbon mixtures (such as jet fuel, sustainable aviation fuel or its un-refined precursors) and partially vaporized hydrocarbon mixtures is important to simulations of processes that involve vaporization such as distillations, flash points, [...] Read more.
The ability to predict the vapor pressure and vapor-phase composition of hydrocarbon mixtures (such as jet fuel, sustainable aviation fuel or its un-refined precursors) and partially vaporized hydrocarbon mixtures is important to simulations of processes that involve vaporization such as distillations, flash points, combustion properties of partially vaporized fuels, etc. Raoult’s Law provides a simple algebraic formula relating liquid composition and temperature to vapor composition and pressure. However, Raoult’s Law is not accurate at low mole fractions, which is typical for complex mixtures such as fuels. A common approach to correcting Raoult’s Law is to apply a scale factor, a so-called activity coefficient. Numerous models exist for predicting activity coefficients. Here we benchmark against the UNIFAC model, which predicts activity coefficients based on mole fractions, group fractions, Van der Waals volume and surface area and temperature-dependent interaction terms between groups. While this approach is truly predictive, its accuracy at very low mole fractions has not been validated, and it is computationally intensive, particularly for simulations (especially optimizations) that require vapor composition or pressure within the inner-most loop. Here we present an alternative correction to Raoult’s law, where the vapor pressure of the ith component is represented by a modified form of the Clausius–Clapeyron equation. The reference temperature (Tref) is replaced by a simple algebraic function that converges to Tref as xi approaches 1 while smoothly increasing from this value as xi decreases. Simultaneously, the heat of vaporization (ΔHvap,i(T)) term is replaced by another simple algebraic expression that converges to ΔHvap,iT as xi approaches 1 while smoothly decreasing as xi decreases. In this model, the temperature-dependent heat of vaporization is tuned at each temperature such that the Clausius–Clapeyron equation reproduces the correct vapor pressure of the neat material, while the parameterized algebraic corrections are tuned to vapor pressure data of mixtures involving n-pentane, toluene, and dodecane, where the mole fractions of n-pentane and toluene are maintained below 10%mol. Validation of the resulting model is accomplished by comparing modeled vapor–liquid equilibrium systems with experimental measurements. This approach improves the accuracy and computational efficiency of volatility predictions, thereby supporting the development, certification, and adoption of sustainable aviation fuel. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

Back to TopTop