You are currently viewing a new version of our website. To view the old version click .

Thermo

Thermo is an international, peer-reviewed, open access journal on all aspects of thermal sciences, including key features on thermodynamics, statistical mechanics, kinetic theory and satellite areas, published quarterly online by MDPI.

Quartile Ranking JCR - Q2 (Thermodynamics)

All Articles (180)

This work proposes the design, construction, and field test of a vacuum seawater desalination system (VSDS) driven by an evacuated tube solar collector (with a total absorption area of 1.86 m2) under tropical climatic condition (Thailand ambient at latitude 13°43′06.0″ N, longitude 100°32′25.4″ E). The VSDS prototype was designed and constructed to be driven by hot water, which is produced by two heat source conditions: (1) an electric heater for laboratory tests and (2) an evacuated tube solar collector for field tests under real climatic conditions. A comparative experimental study to assess the ability to produce fresh water between a conventional dripping/pipe feed column and spray falling film column is proposed in the first part of the discussion. This is to demonstrate the advantage of the spray falling film distillation column. The experimental method is implemented based on the batch system, in which the cycle time (distillation time) considered is 10–20 min so that heat loss via the concentrated seawater blow down is minimized. Later, the field test with solar irradiance under real climatic conditions is demonstrated to assess the freshwater yield and the system performance. The aim is to provide evidence of the proposed vacuum desalination system in real operation. It is found experimentally that the VSDS working with spray falling film provides better performance than the dripping/pipe feed column under the specified working conditions. The spray falling film column can increase the distillated freshwater volume from 1.33 to 2.16 L under identical cycle time and working conditions. The improvement potential is up to 62.4%. The overall thermal efficiency can be increased from 33.7 to 70.8% (improvement of 110.1%). Therefore, the VSDS working with spray falling film is selected for implementing field tests based on real solar irradiance powered by an evacuated tube solar collector. The ability to produce fresh water is assessed, and the overall performance via the average distillation rate and the thermal efficiency (or Gain Output Ratio) is discussed with the real solar irradiance. It is found from the field test with solar time (8.00–16.00) that the VSDS can produce a daily freshwater yield of up to 4.5 L with a thermal efficiency of up to 19%. The freshwater production meets the requirement for international standard drinking water criteria, indicating suitability for household/community use in tropical regions. This work demonstrates the feasibility of VSDS working under real solar irradiance as an alternative technology for sustainable fresh water.

26 December 2025

A schematic diagram of a vacuum seawater desalination system.

In this study, the thermomechanical behavior of a variable cross-section rod with fixed ends is studied using an analytical method. A rod with a radius that varies quadratically with length is considered, and it is thermally insulated on its side surface. Heat flow is applied to the left end of the rod, and heat exchange with the environment occurs at the right end. Based on the obtained temperature distribution, the thermal strains, stresses, displacements, and total elongation are determined. The results highlight the influence of boundary thermal conditions on the thermomechanical response of the rod, which is of interest for the design and analysis of structural elements operating under conditions of uneven thermal stress.

26 December 2025

Performance Enhancement of Latent Heat Storage Using Extended-Y-Fin Designs

  • Aurang Zaib,
  • Abdur Rehman Mazhar and
  • Cheng Zeng
  • + 2 authors

The low thermal conductivity of phase-change materials (PCMs) remains a key limitation in latent heat thermal energy storage systems, leading to slow melting and incomplete energy recovery. To address this challenge, this study explores extended Y-Fin geometries as a novel heat transfer enhancement strategy within a concentric-tube latent heat thermal energy storage configuration. Six fin designs, derived from a baseline Y-shaped structure, were numerically compared to assess their influence on the melting and solidification behavior of stearic acid. A two-dimensional transient enthalpy–porosity model was developed and rigorously verified through grid, temporal, and residual convergence analyses. The results indicate that fin geometry plays a critical role in enhancing heat transfer within the PCM domain. The extended Y-Fin configuration achieved the fastest melting time, 28% shorter than the baseline Y-Fin case, due to improved thermal penetration and bottom-region accessibility. Additionally, the thermal performance was evaluated using nano-enhanced PCMs (10% Al2O3 and CuO in stearic acid) and paraffin wax. The addition of Al2O3 nanoparticles significantly improved thermal conductivity, while paraffin wax exhibited the shortest melting duration due to its lower melting point and latent heat. This study introduces an innovative fin architecture combining extended conduction paths and improved convective reach for efficient latent heat storage systems.

26 December 2025

Biofuels represent a viable alternative to fossil fuels due to their lower greenhouse gas emissions, potential for large-scale production, and renewable nature. Orange oil, turpentine, and their hydrogenated derivatives have emerged as promising candidates for biofuel components. Efficient design and operation of internal combustion engines require knowledge of biofuel density and viscosity as functions of temperature; however, experimental data on these properties remain limited. In this work, the densities and viscosities of turpentine, orange oil, hydrogenated turpentine, and hydrogenated orange oil were measured at atmospheric pressure over the temperature range (293.15–373.15) K. The measurements were performed with uncertainties below 0.05 kg·m−3 for density and 0.3 mPa·s for viscosity. The experimental data were correlated as a function of temperature using a quadratic function for density and the Andrade equation for viscosity, with absolute average relative deviations of 0.01% for density and 0.5% for viscosity. For all substances, both viscosity and density decrease with increasing temperature, and they are lower than the values for biodiesel. Orange oil and turpentine exhibited higher densities but lower viscosities than their hydrogenated counterparts, which can be attributed to differences in molecular size and packing efficiency. Finally, the measured density and viscosity values are compared with the limit values specified in the European and American biodiesel standards. The analysis shows that blending these essential oils with conventional biodiesel could result in biofuel mixtures that meet both standards.

16 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Thermo - ISSN 2673-7264