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Abstract: On some regular and non-regular topologies, we studied the critical properties of models
that present up-down symmetry, like the equilibrium Ising model and the nonequilibrium majority
vote model. These are investigated on networks, like Apollonian (AN), Barabási–Albert (BA),
small-worlds (SW), Voronoi–Delaunay (VD) and Erdös–Rényi (ER) random graphs. The review
here is on phase transitions, critical points, exponents and universality classes that are compared to
the results obtained for these models on regular square lattices (SL).
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1. Introduction

Some equilibrium and non-equilibrium models were studied on regularity and non-regularity
with a scale-free (SF) and small-worlds (SW) networks [1–15] to understand the critical properties of
these models on some networks.

According to the criterion of Grinstein et al. [16], non-equilibrium spin systems with two states
(±1) on square lattices (SL) may present the same critical exponents of the Ising model (IM) on
SL [3]. This criterion was confirmed in some non-equilibrium models [17–22] on regular lattices,
such as the majority vote (MV) model with states (±1) [17]. This presents a continuous phase
transition with critical exponents β, γ, ν, similar to those of the IM [3] in agreement with the
criterion of Grinstein et al. [16]. Lima et al. [6] have studied MV on Voronoi–Delaunay (VD) random
lattices. There, the obtained exponents differ from those on SL, in disagreement with the criterion by
Grinstein et al. [16].

For a decade, the IM has been investigated on undirected Apollonian networks (UAN) [23,24] and
directed Barabási–Albert networks (DBA) [14,15], and it has been shown that, on these networks, the
IM does not display a phase transition.

In this review, we discuss the Ising and MV model on normal (UBA, USW, undirected
Erdös–Rényi (UER) and UAN), DBA, directed small-worlds (DSW) [10,25] and directed Erdös–Rényi
(DER) graphs [26,27], undirected and directed Voronoi–Delaunay (UVD and DVD) random
lattices [28,29] and directed Apollonian networks (DAN) [30]. Through Monte Carlo (MC)
simulations, it was found that the MV model on these networks presents a continuous phase
transition showing that the MV and the IM belong to different universality class, therefore
contradicting the Grinstein criterion [16]. Here, we study the models mentioned above only through
MC simulations. However, important analytical results may be found in [31–34].
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2. Model

The MV model dynamics’ evolution is as follows. Initially, we have a spin variable σ = ±1 at
each node or site of the network. At each MC time step, we try to spin flip a site. This is accepted
with probability:

wi(σ) =
1
2

[
1− (1− 2q)σiS

( ki

∑
δ=1

σi+δ

)]
, (1)

S(x) is a sign function with S(x) = ±1 of x if x 6= 0; S(x) = 0 if x = 0. In the wi probability, the
sum runs over the number ki of neighbors of the i-th spin. The control parameter 0 ≤ q ≤ 1 plays a
role of the “social temperature”, similar to the temperature in IM; the smaller the q, the greater is the
probability of parallel aligning with the local majority.

To study the properties critical for the MV model, we define the variable m = ∑N
i=1 σi/N. Here,

we are interested in the magnetization M, susceptibility χ and the reduced fourth-order cumulant U4:

M = 〈|m|〉av, (2)

χ = N
(
〈m2〉av − 〈m〉2av

)
, (3)

U4 = 1− 〈m4〉av/3〈m2〉2av, (4)

where 〈· · · 〉 stands for a thermodynamics average. The results are averaged over the R (av) networks’
independent realizations. These physical quantities are functions of q and obey the finite-size scaling
relations (FSS):

M = N−β/ν fm(t), (5)

χ = Nγ/ν fχ(t), (6)

dU
dq

= N1/ν fU(t), (7)

where 1/ν, β/ν and γ/ν are the critical exponents’ ratios, and fi(t) are the FSS functions with:

t = (q− qc)N1/ν, (8)

being the scaling variable. From this scaling relation, we obtained the exponents β/ν and γ/ν,
respectively. Moreover, the value of q∗ for which χ has a maximum is expected to scale with the
system size as:

q∗ = qc + bN−1/ν, (9)

where b = 1. The relation Equations (7) and (9) may be used to obtain the exponent 1/ν. The MV
model has also been studied in complex structures. Some of these structures will be described in
the next section.

3. Lattices, Graphs and Networks

• UAN and DAN

The AN have N = 3 + (3n − 1)/2 nodes (N), and n represents the generation number [23,24]. On
these AN, we redirect a fraction p of the links. This procedure results in a directed network, keeping
the outgoing node of the redirected link, but changing the incoming node. If p = 0, we have the
standard AN, and for p = 1, we have random networks [7]. However, there is the reciprocity of
the redirected link in the undirected case, i.e., if Node A selects Node B as the incoming neighbor,
then A is also an incoming neighbor of B.
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• USW and DSW networks

The DSW networks in two dimensions, studied here, were generated from an SL [10] and the
other irregular triangulation (Delaunay triangulation) [29]. The disorder introduced on these SW
networks is the same used on AN networks.

• UBA and DBA networks

To generate the DBA networks [14], each new node added to the network selects, with
connectivity z, already existing nodes as neighbors influencing it; the recently-added node does
not influence these neighbors. In the case of the UBA networks [13], the recently-added node does
influence these neighbors.

• UER and DER random graphs

The ER random graphs [7] are constructed by connecting pairs of randomly-selected nodes with
a probability p = 2k/N(N − 1) with N nodes and k links (bonds). The connectivity of a node
ki = ∑j lij, where lij = 1 or 0, is defined as the total number of links connected to it. These links
can be undirected or directed, as well.

• UVD and DVD random lattices

The construction of the UVD random lattice [28] for a given set of points in the plane is given
as follows. For each point, we first determine the polygonal cell consisting of the region of
space nearer to that point than to any other point. Whenever two such cells share an edge, they
are considered as neighbors. From the Voronoi diagram, we can obtain the dual lattice by the
following procedure. When two cells are neighbors, one draws a link between the two points
located in the center of each cell. From the links, one obtains the triangulation of space that is
called the Delaunay triangulation. The Delaunay triangulation is dual to the Voronoi diagram, in
the sense that points correspond to cells, links to edges and triangles to the vertices of the Voronoi
tessellation. The DVD random lattices [29] are constructed in the same way as the DAN.

4. Results and Discussion

4.1. Apollonian Networks

• The IM

Andrade et al. [23,24] studied the IM on the UAN. They obtained the thermodynamic and
magnetic properties, but they found no evidence of a phase transition on UAN for the IM.

• The MV model

The MV model was studied on triangular AN networks by Lima et al. [30]. We found a continuous
phase transition. The effect of the reconnection of the links of the network with a probability
p were also studied. Through MC simulations, the exponents’ ratios γ/ν, β/ν and 1/ν were
obtained for values of reconnection probability p = 0.0, 0.1 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9.
The critical noise qc and U∗ were also determinated. Here, the effective dimensionality of the
system was observed to be independent of p, and its value Deff = 2β/ν + γ/ν ≈ 1.0 is observed
for these networks.

Figure 1 displays the magnetization M, Binder’s cumulant U4 and susceptibility vs. q, obtained
from MC simulations on AN for N = 367, 1096, 3283, 9844, 29, 527, 88,576 and 265,723 sites and
for gn generation (n = 6, 7, 8, 9, 10, 11 and 12). The shape of the quantities’ curves suggests the
existence of the continuous phase transition in these networks. The values of qc is estimated as
the point where the curves for different system sizes N intercept each other [35]. In Table 1, we
summarize the values of qc from p = 0.0 to 0.9.
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Figure 1. The magnetization M (a, d, g ), Binder’s cumulant U4 (b, e, h ) and susceptibility (c, f, i ) vs. noise parameter q for N = 367, 1096, 3283, 9844, 29,527, 88,576
and 265,723 sites and for gn generations (n = 6, 7, 8, 9, 10, 11 and 12) on an Apollonian (AN) network. We use reconnection probability from p = 0.0 (undirected AN
(UAN)) (a, b, c ), p = 0.1 (d, e, f ) and p = 0.9 (directed AN (DAN)) (g, h, i ).
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Table 1. The critical noise parameter qc and the critical exponents, for AN with reconnection
probability p [30]. Error bars are statistical only.

p qc 1/ν β/ν γ/ν Deff

0.0 0.178(3) 0.53(4) 0.091(3) 0.80(2) 0.98(3)
0.1 0.223(5) 0.48(2) 0.097(5) 0.79(3) 0.98(3)
0.2 0.249(3) 0.66(3) 0.112(3) 0.80(3) 1.02(2)
0.3 0.271(5) 0.61(8) 0.148(5) 0.72(5) 1.02(3)
0.4 0.284(5) 0.71(7) 0.130(3) 0.69(4) 0.95(6)
0.5 0.296(4) 0.44(5) 0.220(8) 0.55(3) 0.99(5)
0.6 0.313(3) 0.23(3) 0.343(4) 0.32(2) 1.01(3)
0.7 0.311(5) 0.21(5) 0.374(5) 0.25(3) 1.01(4)
0.8 0.290(5) 0.27(3) 0.36(2) 0.28(3) 1.00(2)
0.9 0.2629(3) 0.29(6) 0.347(9) 0.29(2) 0.98(5)

In Figure 2, we plot the magnetization M∗ = M(qc) vs. N. The fits of the curves correspond to
the exponents’ ratio β/ν according to relation Equation (5); see Table 1.
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Figure 2. Plot of the lnM(qc) vs. lnN for p-values from p = 0.0 to 0.9.

In Figure 3, we plot the susceptibility χ(N) at q = qc vs. N for AN obtained from the relation
Equation (6). The exponents’ ratio γ/ν is obtained from the slopes of the straight lines for several
values of the reconnection probability from p = 0.0 to 0.9.
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Figure 3. Plot of lnχ(N) vs. lnN for some values of the reconnection probability from p = 0.0 to 0.9.
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In Figure 4, we used the scaling relation Equation (9) and obtain the exponents’ ratio 1/ν. The
estimated values of the exponents 1/ν are in Table 1. The results obtained by Andrade et al. [23,24] on
the IM in UAN have shown no phase transition existence. However, the results presented for the MV
model on UAN demonstrate that this belongs to a different universality class than the IM on UAN;
see Table 1.
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Figure 4. The exponents 1/ν obtained from the relation Equation (9) for AN.

4.2. ER Random Graphs

• The IM

The IM was studied on independent ER graphs and different connectivities through MC
simulations [26]. This model exhibits a phase transition-like mean-field, and the critical exponents
on both DER and UER graphs are identical to the mean-field.

• The MV model

Through MC Simulation, the MV model was studied with noise on UER and DER random
graphs [27,36]. Unlike IM, it presents a continuous phase transition on both DER and UER
random graphs. The points qc and critical exponents’ ratios β/ν, γ/ν and 1/ν as a function of
the connectivity z of the random graphs have been obtained; see Table 2.

Table 2. The noise qc and the critical exponents, for directed Erdös–Rényi (DER) random graphs with
connectivity z [27].

z qc β/ν γ/νqc γ/νqc(N) 1/ν Deff

4 0.175(4) 0.230(5) 0.530(6) 0.516(2) 0.545(26) 0.990(7)
6 0.238(3) 0.243(4) 0.509(4) 0.511(2) 0.488(16) 0.995(5)
8 0.274(3) 0.238(4) 0.512(4) 0.504(2) 0.548(14) 0.988(5)
10 0.299(2) 0.268(4) 0.473(5) 0.495(1) 0.487(10) 1.009(6)
20 0.359(2) 0.280(4) 0.451(4) 0.485(2) 0.510(10) 1.011(5)
50 0.412(2) 0.282(3) 0.441(2) 0.466(5) 0.484(11) 1.005(3)

100 0.438(2) 0.286(2) 0.428(3) 0.440(8) 0.520(19) 1.000(3)

4.3. BA Networks

• The IM

The IM on UBA was first studied by Aleksiejuk et al. [13]. Through MC simulations [13], they
showed that the critical temperature increases logarithmically with increasing system size N.
Later, Sumour et al. [14,15] studied the IM on a DBA network. Unlike the results found by
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Aleksiejuk et al. [13], they showed that the IM on a DBA network does not present a phase
transition.

• The MV model

The MV model was studied on DBA and UBA through MC simulations by Lima [21]. Their
results obtained on DBA for the MV model show a clear transition continuous phase for values of
qc dependent on z neighbors; see Tables 3 and 4.

Table 3. The connectivity z, critical noise parameter qc, the critical exponents ratio, and the effective
Deff for directed Barabási–Albert (DBA) networks [21].

z qc β/ν γ/νqc γ/νqc(N) Deff

2 0.434(3) 0.477(2) 0.897(12) 0.895(10) 1.018(9)
3 0.431(4) 0.444(1) 0.905(15) 0.904(12) 0.999(2)
4 0.431(3) 0.447(1) 0.889(3) 0.888(9) 0.998(3)
6 0.438(2) 0.435(2) 0.863(5) 0.861(3) 1.008(6)
8 0.444(5) 0.431(1) 0.860(7) 0.851(5) 1.000(2)

10 0.446(3) 0.421(2) 0.831(5) 0.834(7) 1.000(5)
20 0.458(4) 0.412(1) 0.793(13) 0.795(11) 1.002(2)
50 0.467(2) 0.375(4) 0.715(11) 0.735(17) 0.999(11)
100 0.474(3) 0.363(4) 0.654(13) 0.674(23) 0.999(9)

Table 4. The connectivity z, critical noise parameter qc, the critical exponents ratio and the effective
Deff for UBA networks [37].

z qc β/ν γ/νqc γ/νqc(N) 1/ν Deff

2 0.167(3) 0.036(8) 0.828(6) 0.805(11) 0.76(3) 0.90(1)
3 0.259(2) 0.133(21) 0.713(18) 0.655(31) 0.83(7) 0.979(27)
4 0.306(3) 0.231(22) 0.537(8) 0.519(17) 0.43(2) 0.999(23)
6 0.355(2) 0.283(8) 0.445(15) 0.423(3) 0.35(5) 1.011(17)
8 0.380(6) 0.323(2) 0.358(7) 0.405(6) 0.39(5) 1.004(7)
10 0.396(3) 0.338(2) 0.324(2) 0.380(3) 0.324(5) 1.000(2)
20 0.428(2) 0.334(2) 0.305(2) 0.350(2) 0.307(5) 0.993(2)
50 0.456(3) 0.366(2) 0.255(2) 0.341(3) 0.30(1) 0.987(2)

100 0.471(3) 0.373(2) 0.218(5) 0.330(3) 0.308(3) 0.964(5)

4.4. SW Networks

• The IM

The one-dimensional IM was studied, via MC simulations, on SW networks by Jeong et al. [38].
Their results are different from [39–44]. Their critical exponents are smaller than the exponents
of the IM at two dimensions. However, for two- and three-dimensional models [45,46] by MC
simulations, it has been verified that the phase transition presents a mean-field behavior [47].

• The MV model

Through MC simulations, Luz and Lima [25] studied the MV model with noise q on DSW
networks, please see the Fortran program for the majority vote on small-world networks (2D)
in Appendix. They calculated the critical noise parameter qc for reconnection probability p = 0.1,
0.3, 0.5, 0.8 and 1.0 of the DSW networks. Table 5 shows the reconnection probability, qc, the
exponents’ ratio β/ν, γ/ν and 1/ν for the DSW network. The results obtained show that the
critical exponents of the MV model belong to different universality classes from Oliveira [17]
on SL, of Pereira et al. [48] for UER random graphs, Lima [49] and Campos et al. [36] on
USW networks.
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Table 5. The critical noise parameter qc, the critical exponents ratio and probability p for directed
small-worlds (DSW) networks [25].

p qc β/ν γ/νqc γ/νqc(L) 1/ν

0.1 0.122(3) 0.423(17) 1.178(13) 1.214(39) 0.837(223)
0.3 0.149(3) 0.419(21) 1.148(5) 1.152(28) 1.059(208)
0.5 0.160(2) 0.441(12) 1.116(5) 1.120(25) 1.010(52)
0.8 0.164(2) 0.436(9) 1.149(5) 1.117(23) 1.248(158)
1.0 0.165(2) 0.415(18) 1.139(8) 1.122(25) 1.032(81)

4.5. VD Random Lattices

• The IM

The IM has been studied, via MC simulations, on UVD random lattices by Espriu et al. [50] using
the local update algorithms, like Metropolis. Their results showed evidence that IM on UVD
random lattices has the same critical behavior of the IM on SL. Posteriorly, Janke et al [28,51],
using a global MC update algorithm [52], reweighting techniques [53] and finite size scaling
analysis, studied the IM on UVD random lattices. Their results were similar to those found by
Espriu et al. [50], showing that the IM on UVD random lattices belongs to the universality same
class of the IM on SL. Thereafter, Lima et al. [54] have also studied this model with an exchange
coupling J(r) = J0e−αr that varies with the distance r between the first neighbors for α ≥ 0 and
J0 = 1. Their results showed that this random system also falls in the same universality class as
the IM on SL.

The IM on a directed small-world Voronoi–Delaunay (DSWVD) network was also studied by Sousa
and Lima [29]. These results show a strong indication that the IM on DSWVD random lattices is
in a different universality class than the model on an SL. The exponents obtained are independent
of p (0 < p < 1) and different from the IM on SL; see Table 6.

Table 6. The critical exponents, for spin 1/2 on a small-world Voronoi–Delaunay (DSWVD) random
lattice with probability p [29]. The γ/νmax are the results from the maximum of the magnetic
susceptibility.

p β/ν γ/ν γ/νmax 1/ν

0.1 0.489(8) 1.003(11) 1.001(13) 1.036(49)
0.2 0.538(68) 1.016(11) 1.016(5) 1.098(82)
0.3 0.463(4) 0.924(98) 1.012(3) 1.009(49)
0.4 0.491(9) 1.017(14) 1.012(8) 0.886(8)
0.5 0.494(10) 0.998(18) 1.005(66) 0.987(64)
0.6 0.486(10) 1.042(13) 1.004(7) 0.927(92)
0.7 0.486(10) 1.016(13) 1.003(10) 1.107(60)
0.8 0.493(16) 1.018(23) 1.021(7) 0.972(57)
0.9 0.471(12) 1.038(16) 0.991(69) 1.032(66)

• The MV model

Lima et al. [6] studied the MV model on VD random lattices. These present a quenched disorder
in their links. They investigated whether only this type of disorder is relevant to obtain critical
exponents different from those found for the MV model on SL that have the same exponents
of the IM on SL. They found the critical exponents’ ratios 1/ν=0.99(8), β/ν = 0.112(4) and
γ/ν = 1.51(04). Therefore, they showed that critical exponents’ ratios β/ν and γ/ν are different
from the exact values of the IM and MV model on SL.
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5. Conclusions

We presented results for the equilibrium Ising and non-equilibrium MV models on AN, BA and
SW networks, ER random graphs and the VD random lattice. On these networks, the non-equilibrium
MV model shows a continuous phase transition. On the other hand, the IM does not have a phase
transition on UAN and DBA networks [14,15,23,24]. Therefore, these results demonstrate that the
MV model on UBA, DBA, UAN, DAN, DSW, UER, DER and DSWVD networks belongs to different
universality classes, in disagreement with the criterion of Grinstein et al. [16]. A possible explanation
for this different behavior may be attributed to the behavior of the critical points of these models,
q and T. In the IM, the flip probability of a spin (highly connected) against your neighborhood is
smaller than for a less connected spin. Therefore, in the IM, the variation of energy is higher for a more
connected spin. However, in the MV model, the flip probability of a spin against your neighborhood
is always given by q, and it does not depend on the neighborhood of this spin. Interestingly, the
effective dimensionality of the MV on DAN, UAN, UBA, DBA, UER and DER networks, defined as
Deff = 2β/ν + γ/ν, is always a value close to 1.0, independent of the reconnection probability p, as
seen in Tables 1–4.
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Appendix: MV Fortran Program for DSW Starting from a Square Lattice

This is the Fortran program for the majority vote on small-world networks (2D) (11/02/2011).

Majority-vote on small-world Stauffer Way 11/02/2011 (2D)
parameter(idim=2,L=6,L2=L**idim,Lmax = L2+2*(L**(idim-1)))
parameter(k=2*idim,nsamp=4, itmax=1200, p=0.1 )
character*40 FILE1,FILE2,FILE3
real*8 ex,dt,T,beta,factor
integer*8 ibm,ip,iex(-1:+1,-k:+k)
byte is
dimension is(Lmax), neighb(Lmax,10)
ip=2147483648.0d0*(2.d0*p-1)*2147483648.0d0
factor=(0.25d0/2147483648.0d0)/2147483648.0d0
iseed=1
ibm=2*iseed-1
anorma=dfloat(L2)
T=0.60d0

c
c boundary contourn
c

Lp1=L**(idim-1)+1
L2pL=L**(idim)+L**(idim-1)
do i=Lp1,L2pL
neighb(i,1)=i-1
neighb(i,2)=i+1
neighb(i,3)=i-L
neighb(i,4)=i+L
enddo
do i=1,L
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do j=1,k
ibm=ibm*16807
if(ibm.Lt.ip)then
40 ibm=ibm*16807
new=1.0+(0.5+factor*ibm)*L2
if(new.gt.L2.or.new.le.0) goto 40
neighb(i,j)=new
do k0=1,k
if(neighb(new,k0).eq.i)neighb(new,k0)=neighb(i,j)
enddo
endif
enddo
enddo
mcstep=50000
itrelax=25000
dt=0.002D0
do 3 it=1,itmax
beta=1.d0/t
dq=tanh(beta)

c
c probability table
c

do i=-1,1
do j=-k,k
ie=j*i
isgn=0
if(ie.gt.0) isgn=+1
if(ie.lt.0) isgn=-1
ex=0.5d0*(1.d0 - dq*isgn)
iex(i,j)=2147483648.0d0*(4*ex-2)*2147483648.0d0
enddo
enddo
dt=0.002D0
if(t.gt.1.64.and.t.lt.2.1)then
dt=0.001
mcstep=300000
itrelax=100000
endif

c
c Initial configuration is(i)=1
c

do 5 i=Lp1,L2pL
5 is(i)=1

do 6 j=1,L**(idim-1)
is(j)=is(j+L2)

6 is(j+L2pL)=is(j+L**(idim-1))
icount=0
do 1 mc=1, mcstep
do 3 i=Lp1,L2pL
isi=is(i)
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ibm=ibm*16807
ie=0
do 4 j=1,k

4 ie=ie+is(neighb(i,j))
3 if(iex(isi,ie).gt.ibm) is(i)=-isi

do 7 j=1,L**(idim-1)
is(j)=is(j+L2)

7 is(j+L2pL)=is(j+L**(idim-1))
if(mc.GT.itrelax)then
icount=icount+1
mag=0
do i=1,L2
mag=mag+is(i)
enddo
endif

1 continue
t=t+dt

3 continue
stop
end
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