Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,591)

Search Parameters:
Keywords = emerging processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3402 KB  
Article
Environmental and Mechanical Trade-Off Optimization of Waste-Derived Concrete Using Surrogate Modeling and Pareto Analysis
by Robert Haigh
Sustainability 2026, 18(2), 1119; https://doi.org/10.3390/su18021119 (registering DOI) - 21 Jan 2026
Abstract
Concrete production contributes approximately 4–8% of global cardon dioxide emissions, largely due to Portland cement. Incorporating municipal solid waste (MSW) into concrete offers a pathway to reduce cement demand while supporting circular economy objectives. This study evaluates the mechanical performance, environmental impacts, and [...] Read more.
Concrete production contributes approximately 4–8% of global cardon dioxide emissions, largely due to Portland cement. Incorporating municipal solid waste (MSW) into concrete offers a pathway to reduce cement demand while supporting circular economy objectives. This study evaluates the mechanical performance, environmental impacts, and optimization potential of concrete incorporating three MSW-derived materials: cardboard kraft fibers (KFs), recycled high-density polyethylene (HDPE), and textile fibers. A maximum 10% cement replacement strategy was adopted. Compressive strength was assessed at 7, 14, and 28 days, and a cradle-to-gate life cycle assessment (LCA) was conducted using OpenLCA to quantify global warming potential (GWP100) and other midpoint impacts. A surrogate-based optimization implemented using Non-dominated Sorting Genetic Algorithm II (NSGA-II) was applied to minimize cost and GWP while enforcing compressive strength as a feasibility constraint. The results show that fiber-based wastes significantly reduce embodied carbon, with KF achieving the largest GWP reduction (19%) and textile waste achieving moderate reductions (10%) relative to the control. HDPE-modified concrete exhibited near-control mechanical performance but increased GWP and fossil depletion due to polymer processing burdens. The optimization results revealed well-defined Pareto trade-offs for KF and textile concretes, identifying clear compromise solutions between cost and emissions, while HDPE was consistently dominated. Overall, textile waste emerged as the most balanced option, offering favorable environmental gains with minimal cost and acceptable mechanical performance. The integrated LCA optimization framework demonstrates a robust approach for evaluating MSW-derived concrete and supports evidence-based decision-making toward low-carbon, circular construction materials. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

25 pages, 13301 KB  
Article
Historic Urban Landscapes at Risk: Global Monitoring and Assessment of Emerging Crises in UNESCO World Heritage Properties
by Ji Li, Fangyu Chen, Haopeng Li, Qixuan Dou, Fei Fu and Yaling Shi
Land 2026, 15(1), 198; https://doi.org/10.3390/land15010198 (registering DOI) - 21 Jan 2026
Abstract
Despite the growing recognition of heritage risk reduction, a comprehensive framework for multi-risk assessment remains notably absent within the context of historic urban landscapes (HULs) across diverse global contexts. This paper aims to fill this gap by developing an assessment framework to address [...] Read more.
Despite the growing recognition of heritage risk reduction, a comprehensive framework for multi-risk assessment remains notably absent within the context of historic urban landscapes (HULs) across diverse global contexts. This paper aims to fill this gap by developing an assessment framework to address multiple emerging risks in HUL management, considering climate-related, human-induced, and mixed hazards in UNESCO World Heritage properties. A four-step process is established—hazard identification, exposure categorisation, adaptation capacity-building, and vulnerability monitoring and evaluation. Using content analysis, this framework is applied to official reports from 33 World Heritage HUL cases across 33 countries. The results show that, although various hazards have been acknowledged by state parties, local governments prioritise human-induced or natural hazards more often than mixed hazards, leading to a shortage of comprehensive risk management plans and practical actions in most cases. Regarding heritage adaptation, the factors of capacity and governance are widely addressed, demonstrating the commitment of state parties to formulate strategies and solve problems. However, public participation and education practices remain insufficiently implemented, resulting in a relatively low degree of adaptation capacity-building. The proposed multi-risk assessment framework offers a crucial reference for global urban heritage management and risk reduction. Full article
Show Figures

Figure 1

60 pages, 3055 KB  
Review
Advanced 3D/4D Bioprinting of Flexible Conductive Materials for Regenerative Medicine: From Bioinspired Design to Intelligent Regeneration
by Kuikui Zhang, Lezhou Fang, Can Xu, Weiwei Zhou, Xiaoqiu Deng, Chenkun Shan, Quanling Zhang and Lijia Pan
Micro 2026, 6(1), 8; https://doi.org/10.3390/micro6010008 - 21 Jan 2026
Abstract
Regenerative medicine is increasingly leveraging the synergies between bioinspired conductive biomaterials and 3D/4D bioprinting to replicate the native electroactive and hierarchical microenvironments essential for functional tissue restoration. However, a critical gap remains in the intelligent integration of these technologies to achieve dynamic, responsive [...] Read more.
Regenerative medicine is increasingly leveraging the synergies between bioinspired conductive biomaterials and 3D/4D bioprinting to replicate the native electroactive and hierarchical microenvironments essential for functional tissue restoration. However, a critical gap remains in the intelligent integration of these technologies to achieve dynamic, responsive tissue regeneration. This review introduces a “bioinspired material–printing–function” triad framework to systematically synthesize recent advances in: (1) tunable conductive materials (polymers, carbon-based systems, metals, MXenes) designed to mimic the electrophysiological properties of native tissues; (2) advanced 3D/4D printing technologies (vat photopolymerization, extrusion, inkjet, and emerging modalities) enabling the fabrication of biomimetic architectures; and (3) functional applications in neural, cardiac, and musculoskeletal tissue engineering. We highlight how bioinspired conductive scaffolds enhance electrophysiological behaviors—emulating natural processes such as promoting axon regeneration cardiomyocyte synchronization, and osteogenic mineralization. Crucially, we identify multi-material 4D bioprinting as a transformative bioinspired approach to overcome conductivity–degradation trade-offs and enable shape-adaptive, smart scaffolds that dynamically respond to physiological cues, mirroring the adaptive nature of living tissues. This work provides the first roadmap toward intelligent electroactive regeneration, shifting the paradigm from static implants to dynamic, biomimetic bioelectronic microenvironments. Future translation will require leveraging AI-driven bioinspired design and organ-on-a-chip validation to address challenges in vascularization, biosafety, and clinical scalability. Full article
75 pages, 6251 KB  
Review
Advanced Numerical Modeling of Powder Bed Fusion: From Physics-Based Simulations to AI-Augmented Digital Twins
by Łukasz Łach and Dmytro Svyetlichnyy
Materials 2026, 19(2), 426; https://doi.org/10.3390/ma19020426 - 21 Jan 2026
Abstract
Powder bed fusion (PBF) is a widely adopted additive manufacturing (AM) process category that enables high-resolution fabrication across metals, polymers, ceramics, and composites. However, its inherent process complexity demands robust modeling to ensure quality, reliability, and scalability. This review provides a critical synthesis [...] Read more.
Powder bed fusion (PBF) is a widely adopted additive manufacturing (AM) process category that enables high-resolution fabrication across metals, polymers, ceramics, and composites. However, its inherent process complexity demands robust modeling to ensure quality, reliability, and scalability. This review provides a critical synthesis of advances in physics-based simulations, machine learning, and digital twin frameworks for PBF. We analyze progress across scales—from micro-scale melt pool dynamics and mesoscale track stability to part-scale residual stress predictions—while highlighting the growing role of hybrid physics–data-driven approaches in capturing process–structure–property (PSP) relationships. Special emphasis is given to the integration of real-time sensing, multi-scale modeling, and AI-enhanced optimization, which together form the foundation of emerging PBF digital twins. Key challenges—including computational cost, data scarcity, and model interoperability—are critically examined, alongside opportunities for scalable, interpretable, and industry-ready digital twin platforms. By outlining both the current state-of-the-art and future research priorities, this review positions digital twins as a transformative paradigm for advancing PBF toward reliable, high-quality, and industrially scalable manufacturing. Full article
Show Figures

Figure 1

5 pages, 321 KB  
Editorial
Sensors Based on Optical and Photonic Devices
by Francesco De Leonardis
Sensors 2026, 26(2), 726; https://doi.org/10.3390/s26020726 - 21 Jan 2026
Abstract
Programmable photonics is an emerging technology that merges photonics and electronics, enabling innovative light-based information processing with high speed and low power consumption [...] Full article
(This article belongs to the Special Issue Sensors Based on Optical and Photonic Devices)
20 pages, 1201 KB  
Article
Climate Change Dynamics in the High-Andean Communities of Peru: Social Imaginaries and Adaptation Practices of Agricultural Producers
by Fermin Francisco Chaiña-Chura, Liz Janet Marroquín-Carlo, Edith Liz Ruelas-Ccama, Germán Belizario-Quispe, Dante Atilio Salas-Avila, Wenceslao Quispe-Borda, Beatriz Vilma Mamani-Maron and Edgar Quispe-Mamani
Environments 2026, 13(1), 60; https://doi.org/10.3390/environments13010060 - 21 Jan 2026
Abstract
Climate change constitutes a growing challenge for high-Andean communities worldwide, whose livelihoods depend directly on agriculture, livestock farming, and the stability of local ecosystems. In this context, the study seeks to understand the construction of social imaginaries among agricultural producers regarding the dynamics [...] Read more.
Climate change constitutes a growing challenge for high-Andean communities worldwide, whose livelihoods depend directly on agriculture, livestock farming, and the stability of local ecosystems. In this context, the study seeks to understand the construction of social imaginaries among agricultural producers regarding the dynamics of climate variability, with the aim of analyzing both the vulnerabilities and adaptive capacities that emerge in their everyday practices. Based on a qualitative approach, supported by 32 interviews with key informants from 16 communities, 04 focus groups, and documentary analysis, field data were collected and processed using Atlas.ti software. The testimonies of community members from Cojata, Puno–Peru, revealed social imaginaries and collective responses linked to this phenomenon. The findings show feelings of concern and uncertainty, diverse interpretations of climate change dynamics, reconfiguration of cultural meanings, and the deployment of hybrid adaptation strategies that combine ancestral knowledge with contemporary resources. Overall, these findings show that social imaginaries play a central role in how communities face the climate crisis, revealing both the persistence of structural inequalities and the need to strengthen intercultural territorial policies that recognize local knowledge, promote communal cooperation, and foster a horizon of resilience and climate justice. Full article
Show Figures

Figure 1

23 pages, 1091 KB  
Review
Advances in Integrated Lignin Valorization Pathways for Sustainable Biorefineries
by Mbuyu Germain Ntunka and Shadana Thakor Vallabh
Molecules 2026, 31(2), 380; https://doi.org/10.3390/molecules31020380 - 21 Jan 2026
Abstract
Lignin, the most abundant renewable source of aromatic compounds, plays a pivotal role in advancing sustainable biorefineries and reducing dependence on fossil resources. Recent progress in integrated lignin valorization pathways has unlocked opportunities to convert this complex biopolymer into high-value chemicals, materials, and [...] Read more.
Lignin, the most abundant renewable source of aromatic compounds, plays a pivotal role in advancing sustainable biorefineries and reducing dependence on fossil resources. Recent progress in integrated lignin valorization pathways has unlocked opportunities to convert this complex biopolymer into high-value chemicals, materials, and energy carriers, despite its structural heterogeneity and recalcitrance posing major challenges. This review highlights the significant advancements in depolymerization strategies, including catalytic, oxidative, and biological approaches, which are reinforced by innovations in catalyst design and reaction engineering that enhance selectivity and efficiency. It also discusses emerging technologies, such as hybrid chemo-enzymatic systems, solvent fractionation, and continuous-flow reactors, for their potential to improve scalability and sustainability. Furthermore, this review examines the integration of lignin valorization with upstream pretreatment and downstream recovery, emphasizing process intensification, co-product synergy, and techno-economic optimization to achieve commercial viability. Despite these developments, critical gaps remain in understanding the molecular complexity of lignin, developing universally applicable catalytic systems, and optimizing economic and environmental performance. To guide future research, it poses two key questions: how to design catalysts for selective depolymerization across diverse lignin sources, and how to configure biorefineries for maximum lignin utilization while ensuring sustainability? Addressing these challenges will be essential for lignin’s role in next-generation biorefineries and a circular bioeconomy. Full article
(This article belongs to the Special Issue Lignin Valorization in Biorefineries)
38 pages, 3487 KB  
Review
A Comprehensive Review on Steviol Glycosides: Sources, Properties, Bioactivities, Sensory-Functional Enhancement and Bioproduction Strategies
by Liangzhen Jiang, Xun Zhao, Wei Li, Guiru Tang, Yiming Yuan, Jie Cheng, Jun Hua and Liang Zou
Plants 2026, 15(2), 324; https://doi.org/10.3390/plants15020324 - 21 Jan 2026
Abstract
Steviol glycosides (SGs) are high-intensity, zero-calorie natural sweeteners with demonstrated safety and potential health benefits, positioning them as ideal sucrose substitutes for metabolic disorder management. However, their broad application is limited by inherent drawbacks such as bitterness, low solubility, and inefficient production systems. [...] Read more.
Steviol glycosides (SGs) are high-intensity, zero-calorie natural sweeteners with demonstrated safety and potential health benefits, positioning them as ideal sucrose substitutes for metabolic disorder management. However, their broad application is limited by inherent drawbacks such as bitterness, low solubility, and inefficient production systems. This review provides a comprehensive summary of recent advances in SG research, covering their sources, properties, and bioactivities. A particular focus is placed on innovative bioproduction strategies—including enzyme engineering, metabolic pathway optimization, and sustainable extraction techniques. Strategies to overcome these challenges through sensory-function enhancement—including formulation and structural modification—are discussed. Furthermore, it highlights emerging trends like microbial chassis-based production and next-generation sweetener design, providing actionable insights for overcoming industrial bottlenecks. By integrating multidisciplinary advances in bioengineering, sensory science, and sustainable processing, this review offers a forward-looking perspective on the development and application of SGs as functional sweeteners in the global food industry. Full article
23 pages, 426 KB  
Article
Creating Dialogic Spaces in STEM Education: A Comparative Study of Ground Rules
by Imogen Casebourne, Nigel Calder, Kevin Martin, Kate Rhodes and Cynthia James
Educ. Sci. 2026, 16(1), 165; https://doi.org/10.3390/educsci16010165 - 21 Jan 2026
Abstract
This article reports on a comparative case study that examined the ground rules used to facilitate a dialogic space in two discrete and diverse research studies: Year 5 & 6 children learning to code with ScratchMaths as part of their mathematics programmes, and [...] Read more.
This article reports on a comparative case study that examined the ground rules used to facilitate a dialogic space in two discrete and diverse research studies: Year 5 & 6 children learning to code with ScratchMaths as part of their mathematics programmes, and crop farmers in rural east Africa developing their practice through various communications. The intention was to see if there were common actions or principles important for the establishment of ground rules in dialogic spaces in general. Understanding the nature of dialogic space has become increasingly important in many areas of education. STEM subjects, particularly when integrated, frequently involve collaborative interaction, and utilise a dialogical approach. Some initial aspects of ground rules were collaboratively identified, with both studies then independently analysed to identify emerging themes related to these ground rules. Several key elements emerged: developing the processes for interaction and communication; developing trust between participants; developing respectful dialogue; teacher roles; and facilitating collaborative work and the co-construction of meaning. The comparative case study suggested that these were important for other education work when establishing dialogic space. Full article
Show Figures

Figure 1

17 pages, 1927 KB  
Perspective
The Interplay Between Neuromodulation and Stem Cell Therapy for Sensory-Motor Neuroplasticity After Spinal Cord Injury: A Perspective View
by Anthony Yousak, Kaci Ann Jose and Ashraf S. Gorgey
J. Clin. Med. 2026, 15(2), 879; https://doi.org/10.3390/jcm15020879 - 21 Jan 2026
Abstract
Spinal Cord Injury (SCI) rehabilitation is undergoing a transformative shift with the emergence of new treatment strategies. Historically, treatment options were limited, and few offered meaningful recovery. Recent work in human models has shown that neuromodulation specifically with spinal cord epidural stimulation (SCES) [...] Read more.
Spinal Cord Injury (SCI) rehabilitation is undergoing a transformative shift with the emergence of new treatment strategies. Historically, treatment options were limited, and few offered meaningful recovery. Recent work in human models has shown that neuromodulation specifically with spinal cord epidural stimulation (SCES) paired with task-specific training (TsT) can partially restore motor function such as the ability to stand, step, and perform volitional movements. Despite these advances, the recovery has been shown to plateau even with the combination of therapies. The recovery process typically leads to partial rather than complete restoration of function. This limitation arises because current approaches primarily reactivate existing circuits rather than repair the disrupted pathways. Scar tissue and loss of descending and ascending connections remain major barriers to full recovery, restricting the transmission of neural signals. We argue that the next phase of research should be a synergistic strategy building upon the successes of neuromodulation and TsT while incorporating a regenerative therapy such as stem-cell-based interventions. Whereas neuromodulation and task-specific training increases excitability and reorganizes existing networks, stem cells have the potential to repair structural damage and re-establish communication across injured regions or facilitating the establishment of dormant pathways. The future of SCI recovery relies on multi-modal synergistic interventions that are likely to maximize long-term functional outcomes. In the current perspective, we summarized the basic findings on applications of SCES on restoration of sensory-motor functions. We then projected on current interventions on utilizing stem cell therapy intervention. We highlighted the outcomes of randomized clinical trials, and the major barriers for considering the synergistic approach between SCES and stem cell intervention. We are hopeful that this perspective may lead to roundtable scientific discussion to bridge the gap on how to conduct numerous clinical trials in the field. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

18 pages, 3222 KB  
Article
Short-Time Homomorphic Deconvolution (STHD): A Novel 2D Feature for Robust Indoor Direction of Arrival Estimation
by Yeonseok Park and Jun-Hwa Kim
Sensors 2026, 26(2), 722; https://doi.org/10.3390/s26020722 - 21 Jan 2026
Abstract
Accurate indoor positioning and navigation remain significant challenges, with audio sensor-based sound source localization emerging as a promising sensing modality. Conventional methods, often reliant on multi-channel processing or time-delay estimation techniques such as Generalized Cross-Correlation, encounter difficulties regarding computational complexity, hardware synchronization, and [...] Read more.
Accurate indoor positioning and navigation remain significant challenges, with audio sensor-based sound source localization emerging as a promising sensing modality. Conventional methods, often reliant on multi-channel processing or time-delay estimation techniques such as Generalized Cross-Correlation, encounter difficulties regarding computational complexity, hardware synchronization, and reverberant environments where time difference in arrival cues are masked. While machine learning approaches have shown potential, their performance depends heavily on the discriminative power of input features. This paper proposes a novel feature extraction method named Short-Time Homomorphic Deconvolution, which transforms multi-channel audio signals into a 2D Time × Time-of-Flight representation. Unlike prior 1D methods, this feature effectively captures the temporal evolution and stability of time-of-flight differences between microphone pairs, offering a rich and robust input for deep learning models. We validate this feature using a lightweight Convolutional Neural Network integrated with a dual-stage channel attention mechanism, designed to prioritize reliable spatial cues. The system was trained on a large-scale dataset generated via simulations and rigorously tested using real-world data acquired in an ISO-certified anechoic chamber. Experimental results demonstrate that the proposed model achieves precise Direction of Arrival estimation with a Mean Absolute Error of 1.99 degrees in real-world scenarios. Notably, the system exhibits remarkable consistency between simulation and physical experiments, proving its effectiveness for robust indoor navigation and positioning systems. Full article
31 pages, 1700 KB  
Review
Prospective of Colorectal Cancer Screening, Diagnosis, and Treatment Management Using Bowel Sounds Leveraging Artificial Intelligence
by Divyanshi Sood, Surbhi Dadwal, Samiksha Jain, Iqra Jabeen Mazhar, Bipasha Goyal, Chris Garapati, Sagar Patel, Zenab Muhammad Riaz, Noor Buzaboon, Ayushi Mendiratta, Avneet Kaur, Anmol Mohan, Gayathri Yerrapragada, Poonguzhali Elangovan, Mohammed Naveed Shariff, Thangeswaran Natarajan, Jayarajasekaran Janarthanan, Shreshta Agarwal, Sancia Mary Jerold Wilson, Atishya Ghosh, Shiva Sankari Karuppiah, Joshika Agarwal, Keerthy Gopalakrishnan, Swetha Rapolu, Venkata S. Akshintala and Shivaram P. Arunachalamadd Show full author list remove Hide full author list
Cancers 2026, 18(2), 340; https://doi.org/10.3390/cancers18020340 - 21 Jan 2026
Abstract
Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide, accounting for approximately 10% of all cancer cases. Despite the proven effectiveness of conventional screening modalities such as colonoscopy and fecal immunochemical testing (FIT), their invasive nature, high cost, and [...] Read more.
Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide, accounting for approximately 10% of all cancer cases. Despite the proven effectiveness of conventional screening modalities such as colonoscopy and fecal immunochemical testing (FIT), their invasive nature, high cost, and limited patient compliance hinder widespread adoption. Recent advancements in artificial intelligence (AI) and bowel sound-based signal processing have enabled non-invasive approaches for gastrointestinal diagnostics. Among these, bowel sound analysis—historically considered subjective—has reemerged as a promising biomarker using digital auscultation and machine learning. Objective: This review explores the potential of AI-powered bowel sound analytics for early detection, screening, and characterization of colorectal cancer. It aims to assess current methodologies, summarize reported performance metrics, and highlight translational opportunities and challenges in clinical implementation. Methods: A narrative review was conducted across PubMed, Scopus, Embase, and Cochrane databases using the terms colorectal cancer, bowel sounds, phonoenterography, artificial intelligence, and non-invasive diagnosis. Eligible studies involving human bowel sound-based recordings, AI-based sound analysis, or machine learning applications in gastrointestinal pathology were reviewed for study design, signal acquisition methods, AI model architecture, and diagnostic accuracy. Results: Across studies using convolutional neural networks (CNNs), gradient boosting, and transformer-based models, reported diagnostic accuracies ranged from 88% to 96%. Area under the curve (AUC) values were ≥0.83, with F1 scores between 0.71 and 0.85 for bowel sound classification. In CRC-specific frameworks such as BowelRCNN, AI models successfully differentiate abnormal bowel sound intervals and spectral patterns associated with tumor-related motility disturbances and partial obstruction. Distinct bowel sound-based signatures—such as prolonged sound-to-sound intervals and high-pitched “tinkling” proximal to lesions—demonstrate the physiological basis for CRC detection through bowel sound-based biomarkers. Conclusions: AI-driven bowel sound analysis represents an emerging, exploratory research direction rather than a validated colorectal cancer screening modality. While early studies demonstrate physiological plausibility and technical feasibility, no large-scale, CRC-specific validation studies currently establish sensitivity, specificity, PPV, or NPV for cancer detection. Accordingly, bowel sound analytics should be viewed as hypothesis-generating and potentially complementary to established screening tools, rather than a near-term alternative to validated modalities such as FIT, multitarget stool DNA testing, or colonoscopy. Full article
(This article belongs to the Section Methods and Technologies Development)
27 pages, 922 KB  
Review
Oxidative Signaling in Photodynamic Therapy: Interplay Between Ferroptosis and Mitophagy
by Tania Vanessa Pierfelice, Morena Petrini, Chiara Cinquini, Giovanna Iezzi and Emira D’Amico
Appl. Sci. 2026, 16(2), 1104; https://doi.org/10.3390/app16021104 - 21 Jan 2026
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that relies on the activation of photosensitizers (PS) by specific wavelengths of light to generate reactive oxygen species (ROS), resulting in localized cytotoxicity with relative sparing of healthy tissues. Depending on the PS properties, [...] Read more.
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality that relies on the activation of photosensitizers (PS) by specific wavelengths of light to generate reactive oxygen species (ROS), resulting in localized cytotoxicity with relative sparing of healthy tissues. Depending on the PS properties, light dose, and intrinsic cellular features, PDT can elicit multiple cell death pathways, including apoptosis, necrosis, and autophagy. Increasing evidence indicates that PDT is also a potent inducer of ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation (LPO), glutathione (GSH) depletion, and inactivation of glutathione peroxidase 4 (GPX4). PDT-derived ROS promote ferroptosis both indirectly by exhausting antioxidant defenses and directly by peroxidizing PUFAs within membrane phospholipids. At the same time, intense oxidative stress generated by PDT can activate adaptive responses such as mitophagy, a selective autophagic process that removes damaged mitochondria to limit ROS production and preserve redox homeostasis. Ferroptosis and mitophagy are therefore tightly interconnected, functioning as opposing yet complementary regulators of cell fate. PDT emerges as a key upstream modulator of the ferroptosis–mitophagy balance, as spatially and temporally confined oxidative stress can shift cellular responses from adaptive mitochondrial quality control to irreversible ferroptotic injury. Despite growing interest in both PDT and ferroptosis, their mechanistic interplay, particularly in relation to mitophagy, remains underexplored. This narrative review provides an integrated overview of current knowledge on how PDT influences ferroptosis and mitophagy, highlighting the molecular mechanisms that connect these pathways and discussing their implications for improving therapeutic efficacy and overcoming resistance. Full article
21 pages, 970 KB  
Article
Psychological and Demographic Drivers of Embedded EV Insurance Adoption in Taiwan, China
by Jian Liu, Haigang Zhuang and Chiang-Ku Fan
World Electr. Veh. J. 2026, 17(1), 52; https://doi.org/10.3390/wevj17010052 - 21 Jan 2026
Abstract
The rapid diffusion of electric vehicles (EVs) is reshaping mobility markets and creating new opportunities for embedded financial services. This study examines consumer acceptance of embedded EV insurance, which refers to coverage bundled directly at the point of vehicle sale in Taiwan, China. [...] Read more.
The rapid diffusion of electric vehicles (EVs) is reshaping mobility markets and creating new opportunities for embedded financial services. This study examines consumer acceptance of embedded EV insurance, which refers to coverage bundled directly at the point of vehicle sale in Taiwan, China. Using survey data from 400 licensed drivers, we analyze how demographic factors and five psychological drivers—perceived savings, convenience, trust, expected satisfaction, and fairness—shape the likelihood of choosing embedded insurance over traditional stand-alone policies. Welch’s t-tests show that younger drivers perceive greater savings and convenience, while older drivers express stronger fairness concerns. Logistic regression results indicate that convenience (OR = 2.05) and perceived savings (OR = 1.76) substantially increase adoption likelihood, whereas fairness concerns reduce it (OR = 0.71). Theoretically, this study advances consumer behavior research by demonstrating how functional value perceptions (convenience and savings) and fairness evaluations jointly influence decisions in digitally mediated insurance contexts. It also contributes to embedded finance theory by revealing how insurance embedded within EV purchasing ecosystems reshapes consumer decision processes and alters traditional insurer–consumer relationships. These findings offer strategic implications for automakers, insurers, and policymakers designing consumer-centric embedded financial products in emerging mobility markets. Full article
(This article belongs to the Section Marketing, Promotion and Socio Economics)
Show Figures

Graphical abstract

28 pages, 516 KB  
Article
Managing Archaeological Heritage Sites: A Comparative Analysis Across Cultural Contexts
by Mohamed Khater, Yehia Mahmoud, Nagwa Zouair, Mahmoud A. Saad and Manal Abdellatif
Heritage 2026, 9(1), 39; https://doi.org/10.3390/heritage9010039 - 21 Jan 2026
Abstract
This study investigates and compares archaeological site management practices across diverse cultural contexts, focusing on how cultural factors influence preservation, stakeholder involvement, and management strategies. Employing a mixed-methods comparative design, the research integrates field observations, interviews with site managers and local stakeholders, and [...] Read more.
This study investigates and compares archaeological site management practices across diverse cultural contexts, focusing on how cultural factors influence preservation, stakeholder involvement, and management strategies. Employing a mixed-methods comparative design, the research integrates field observations, interviews with site managers and local stakeholders, and archival analysis. Three case studies, the Giza Necropolis in Egypt, Madain Saleh in Saudi Arabia, and the Al-Ain Archaeological Sites in the United Arab Emirates, form the empirical foundation for this analysis. Thematic and qualitative comparative analyses are used to identify cross-cultural patterns, challenges, and best practices. The findings reveal that management approaches are profoundly shaped by their respective cultural settings. Regions with strong traditions of community participation, such as Al-Ain, tend to integrate local knowledge and foster sustainable preservation outcomes. In contrast, state-dominated systems, as seen in Egypt and Saudi Arabia, often face constraints related to bureaucratic processes and limited local engagement. Across all contexts, factors such as governance structures, funding mechanisms, and cultural attitudes toward heritage emerge as decisive in shaping management effectiveness and sustainability. The results offer essential perspectives for the strategy of engaging local communities in the management of archaeological sites, and may be beneficial for implementation in other Arab countries. Full article
(This article belongs to the Section Archaeological Heritage)
Show Figures

Figure 1

Back to TopTop