Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications
Abstract
1. Introduction
2. Fundamental Principles and System Architecture
2.1. Principle of Rayleigh Scattering
2.2. Mechanism and Function of C-OTDR
2.3. Fiber Deployment
2.4. Detector Parameters
3. Signal Processing
3.1. Denoising Algorithms
3.1.1. Advanced Denoising Techniques
3.1.2. Data Augmentation
4. Feature Extraction
5. Traffic Parameter Estimation and Vehicle Classification
- (1)
- Early Studies (2019–2021)
- (2)
- Recent Studies (2023–2025)
5.1. Deep Learning-Based Vehicle Detection and Classification
5.2. Vehicle Speed Estimation Techniques
- (1)
- Traditional Signal Processing Methods
- (2)
- Deep Learning Methods
5.3. Traffic Flow Estimation Techniques
5.3.1. Traffic Flow Estimation Based on DAS Signals
- (1)
- Traditional Signal Processing Methods
- (2)
- Deep Learning Methods
5.3.2. Traffic Flow Estimation Based on Multi-Model Fusion
5.4. Traffic Monitoring and Event Detection Technology
- (1)
- Road Deformation Monitoring and Event Detection
- (2)
- Urban Traffic Pattern Monitoring
5.5. Current Research Landscape
6. Field Deployment and Typical Cases
6.1. Application on Highways
6.2. Urban Roads
6.3. Bridges
7. Conclusions
7.1. Key Method Comparison
7.1.1. Traditional Signal Processing Methods
7.1.2. Machine Learning Methods
7.1.3. Deep Learning Feature Extraction
7.1.4. Comparison and Practical Implications
7.2. Limitations of Usage Method
7.3. Summarization and Prospects
7.3.1. Main Research Topics and Unresolved Issues
7.3.2. Future Prospects
8. Literature Search Methods and Screening Process
- (1)
- Inclusion criteria
- (2)
- Exclusion criteria
- (1)
- Number of search results
- (2)
- Screening process:
- (3)
- Screening tools
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, H.; Ye, Q.; Wang, Z. Progress in research of distributed fiber acoustic sensing techniques. J. Appl. Sci. 2018, 36, 41–58. [Google Scholar]
- Wang, M.; Li, Z.; Zhang, J. Vehicle trajectory extraction method based on distributed optical fiber sensing system. Adv. Eng. Sci. 2021, 53, 141–150. [Google Scholar] [CrossRef]
- He, J. Online Monitoring Method of Highway Operation Status Based on Distributed Optical Fiber Acoustic Sensing; University of Electronic Science and Technology of China: Chengdu, China, 2018. [Google Scholar]
- Shinohara, M.; Yamada, T.; Akuhara, T.; Mochizuki, K.; Sakai, S. Performance of seismic observation by distributed acoustic sensing technology using a seafloor cable off Sanriku, Japan. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Masoudi, A.; Newson, T.P. Contributed Review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 2016, 87, 011501. [Google Scholar] [CrossRef]
- Xie, D.; Wu, X.; Guo, Z. Intelligent traffic monitoring with distributed acoustic sensing. Seismol. Res. Lett. 2025, 96, 2477–2488. [Google Scholar]
- Wang, L.; Wang, W.; Wang, D.; Wang, S. Fiber Signal Denoising Algorithm using Hybrid Deep Learning Networks. arXiv 2025, arXiv:2506.15125. [Google Scholar] [CrossRef]
- Truong, K.; Eidsvik, J.; Rørstadbotnen, R.A. Edge computing in distributed acoustic sensing: An application in traffic monitoring. arXiv 2024, arXiv:2410.16278. [Google Scholar]
- Wang, X.; Yamagishi, J. Investigating self-supervised front ends for speech spoofing countermeasures. arXiv 2021, arXiv:2111.07725. [Google Scholar]
- Cai, H.W.; Ye, Q.; Wang, Z.Y.; Lu, B. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering. Laser Optoelectron. Prog. 2020, 57, 050001. [Google Scholar] [CrossRef]
- Ren, M. Distributed Optical Fiber Vibration Sensor Based on Phase-Sensitive Optical Time Domain Reflectometry. Doctoral Dissertation, Université d’Ottawa/University of Ottawa, Ottawa, ON, Cannada, 2016. [Google Scholar]
- Miah, K.; Potter, D.K. A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications. Sensors 2017, 17, 2511. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, M.; Wang, C.; Yang, J.; Du, Y.; Yi, J.; Zhao, W.; Wang, Y.; Zhao, Y.; Ni, J. Research progress in distributed acoustic sensing techniques. Sensors 2022, 22, 6060. [Google Scholar] [CrossRef]
- Kashiwgi, M.; Hotate, K. Improvement of dynamic range in reflectometry by synthesis of optical coherence function at region beyond the coherence length. In Proceedings of the 2005 Pacific Rim Conference on Lasers & Electro-Optics, Tokyo, Japan, 14 July 2005; pp. 1584–1585. [Google Scholar]
- Liu, Q.; Liu, L.; Fan, X.; Du, J.; Ma, L.; He, Z. Digitally enhanced optical frequency domain reflectometry with long measurement range. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015; Optica Publishing Group: Washington, DC, USA, 2015; p. W4I–2. [Google Scholar]
- Zheng, X.; Sun, Q.; Wang, H.; Zhao, F. Study on length calibration method of coherent optical time domain reflectometer. In Proceedings of the AOPC 2019: Optoelectronic Devices and Integration; and Terahertz Technology and Applications, Beijing, China, 18 December 2019; Volume 11334, pp. 137–143. [Google Scholar]
- Jiang, J.; Xiong, J.; Wang, Y.; Wang, P.; Zhang, J.; Liang, Y.; Sun, J.; Wang, Z. The noise lower-bound of Rayleigh-scattering-patten-based distributed acoustic sensing with coherent detection. J. Light. Technol. 2022, 40, 5337–5344. [Google Scholar]
- Fernández-Ruiz, M.R.; Soriano-Amat, M.; Durán, V.; Martins, H.F.; Martin-Lopez, S.; Gonzalez-Herraez, M. Time expansion in distributed optical fiber sensing. J. Light. Technol. 2023, 41, 3305–3315. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, H.; Wu, H.; Huang, D.; Yu, C.; Lu, C. Coherent OTDR with large dynamic range based on double-sideband linear frequency modulation pulse. Opt. Express 2023, 31, 17165–17174. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, F.; Hong, R.; Xu, W.; Shao, L.; Wang, F. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron. Adv. 2022, 5, 200078. [Google Scholar]
- Catalano, E.; Coscetta, A.; Cerri, E.; Cennamo, N.; Zeni, L.; Minardo, A. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment. Appl. Opt. 2021, 60, 3579–3584. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Chen, Y.; Huang, M.F. Detection of road surface anomaly using distributed fiber optic sensing. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22127–22134. [Google Scholar] [CrossRef]
- Wiesmeyr, C.; Coronel, C.; Litzenberger, M.; Döller, H.J.; Schweiger, H.B.; Calbris, G. Distributed acoustic sensing for vehicle speed and traffic flow estimation. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2596–2601. [Google Scholar]
- Hall, A.J.; Minto, C. Using fibre optic cables to deliver intelligent traffic management in smart cities. In International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving Data-Informed Decision-Making; ICE Publishing: London, UK, 2019; pp. 125–131. [Google Scholar]
- Chen, M.; Ding, H.; Liu, M.; Zhu, Z.; Rui, D.; Chen, Y.; Xu, F. Vehicle operation status monitoring based on distributed acoustic sensor. Sensors 2023, 23, 8799. [Google Scholar] [CrossRef]
- Corera, I.; Piñeiro, E.; Navallas, J.; Sagues, M.; Loayssa, A. Long-range traffic monitoring based on pulse-compression distributed acoustic sensing and advanced vehicle tracking and classification algorithm. Sensors 2023, 23, 3127. [Google Scholar]
- Ip, E.; Huang, Y.K.; Huang, M.F.; Yaman, F.; Wellbrock, G.; Xia, T.; Wang, T.; Asahi, K.; Aono, Y. DAS over 1,007-km hybrid link with 10-Tb/s DP-16QAM co-propagation using frequency-diverse chirped pulses. J. Light. Technol. 2022, 41, 1077–1086. [Google Scholar] [CrossRef]
- Peng, F.; Zhu, Z.; Zhang, Y.; Miao, Q. A Deep Learning Image Segmentation Model for Detection of Weak Vehicle-Generated Quasi-Static Strain in Distributed Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2025, 26, 8933–8944. [Google Scholar] [CrossRef]
- Hubbard, P.G.; Ou, R.; Xu, T.; Luo, L.; Nonaka, H.; Karrenbach, M.; Soga, K. Road deformation monitoring and event detection using asphalt-embedded distributed acoustic sensing (DAS). Struct. Control. Health Monit. 2022, 29, e3067. [Google Scholar]
- Zeng, M.; Zhao, H.; Gao, D.; Bian, Z.; Wu, D. Reconstruction of vehicle-induced vibration on concrete pavement using distributed fiber optic. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24305–24317. [Google Scholar] [CrossRef]
- Ip, E.; Ravet, F.; Martins, H.; Huang, M.F.; Okamoto, T.; Han, S.; Narisetty, C.; Fang, J.; Huang, Y.K.; Salemi, M.; et al. Using global existing fiber networks for environmental sensing. Proc. IEEE 2022, 110, 1853–1888. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Xu, T.; Yan, W.; Ma, L.; Zhang, X. Vehicle detection and classification using distributed fiber optic acoustic sensing. IEEE Trans. Veh. Technol. 2019, 69, 1363–1374. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, S.; Dong, Y.; Biondi, B.; Noh, H.Y. TelecomTM: A fine-grained and ubiquitous traffic monitoring system using pre-existing telecommunication fiber-optic cables as sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2023, 7, 1–24. [Google Scholar]
- Zhao, L.J.; Zhang, X.Z.; Xu, Z.N.; Chen, Y.H. Influencing factors of IQ demodulation method in distributed acoustic sensors. Acta Opt. Sin. 2023, 43, 1428001. [Google Scholar]
- Gorshkov, B.G.; Yüksel, K.; Fotiadi, A.A.; Wuilpart, M.; Korobko, D.A.; Zhirnov, A.A.; Stepanov, K.V.; Turov, A.T.; Konstantinov, Y.A.; Lobach, I.A. Scientific applications of distributed acoustic sensing: State-of-the-art review and perspective. Sensors 2022, 22, 1033. [Google Scholar]
- Ferrer, M.; Gonzalez, A.; de Diego, M. Distributed affine projection algorithm over acoustically coupled sensor networks. IEEE Trans. Signal Process. 2017, 65, 6423–6434. [Google Scholar] [CrossRef]
- He, Q.; Gao, M.; Yiu, K.F.; Nordholm, S. Distributed Microphone Array Localization Problem via SDP-SOCP Method. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 3579–3588. [Google Scholar]
- Chen, Y.; Savvaidis, A.; Fomel, S.; Pinero, G. Denoising of distributed acoustic sensing seismic data using an integrated framework. Seismol. Soc. Am. 2023, 94, 457–472. [Google Scholar] [CrossRef]
- He, X.; Cao, Z.; Ji, P.; Gu, L.; Wei, S.; Fan, B. Eliminating the Fading Noise in Distributed Acoustic Sensing Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5906510. [Google Scholar] [CrossRef]
- Orsuti, D.; Marcon, G.; Turolla, A.; Santagiustina, M.; Galtarossa, A.; Zampato, M. DAS over Multimode Fibers with Reduced Fading by Coherent Averaging of Spatial Modes. IEEE Photonics Technol. Lett. 2023, 35, 866–869. [Google Scholar] [CrossRef]
- Lapins, S.; Butcher, A.; Kendall, J.M.; Hudson, T.S.; Stork, A.L.; Werner, M.J. DAS-N2N: Machine learning distributed acoustic sensing (DAS) signal denoising without clean data. Geophys. J. Int. 2024, 236, 1026–1041. [Google Scholar] [CrossRef]
- Yuan, S.; van Den Ende, M.; Liu, J.; Noh, H.Y.; Clapp, R.; Richard, C.; Biondi, B. Spatial deep deconvolution u-net for traffic analyses with distributed acoustic sensing. IEEE Trans. Intell. Transp. Syst. 2023, 25, 1913–1924. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y. Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10544–10554. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, S.; Li, W.; Chen, W.; Zhu, N. Noise Suppression of Distributed Acoustic Sensing Based on f-x Deconvolution and Wavelet Transform. IEEE Photonics J. 2020, 12, 7800208. [Google Scholar] [CrossRef]
- Tabjula, J.; Sharma, J. Feature extraction techniques for noisy distributed acoustic sensor data acquired in a wellbore. Appl. Opt. 2023, 62, E51–E61. [Google Scholar] [CrossRef]
- Isken, M.P.; Vasyura-Bathke, H.; Dahm, T.; Heimann, S. De-noising distributed acoustic sensing data using an adaptive frequency–wavenumber filter. Geophys. J. Int. 2022, 231, 944–949. [Google Scholar] [CrossRef]
- Turov, A.T.; Konstantinov, Y.A.; Barkov, F.L.; Korobko, D.A.; Zolotovskii, I.O.; Lopez-Mercado, C.A.; Fotiadi, A.A. Enhancing the distributed acoustic sensors’(das) performance by the simple noise reduction algorithms sequential application. Algorithms 2023, 16, 217. [Google Scholar] [CrossRef]
- Masoudi, A.; Newson, T.P. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution. Opt. Lett. 2017, 42, 290–293. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Yan, W.; Liu, W.; Zhang, X.; Li, C. Traffic flow detection using distributed fiber optic acoustic sensing. IEEE Access 2018, 6, 68968–68980. [Google Scholar] [CrossRef]
- Li, T.X.; Zhang, F.D.; Lin, J.; Bai, X.Y.; Liu, H.Z. Fading Noise Suppression Method of Φ-OTDR System Based on GA-VMD Algorithm. IEEE Sens. J. 2023, 23, 22608–22619. [Google Scholar] [CrossRef]
- Kishida, K.; Guzik, A.; Nishiguchi, K.; Li, C.H.; Azuma, D.; Liu, Q.; He, Z. Development of real-time time gated digital (TGD) OFDR method and its performance verification. Sensors 2021, 21, 4865. [Google Scholar] [CrossRef]
- Khacef, Y. Advanced Road Traffic Monitoring with Distributed Acoustic Sensing and Deep Learning. Ph.D. Thesis, Université Côte d’Azur, Nice, France, 2024. [Google Scholar]
- Tan, X.; Yiu, S.M. Self-Adaptive Incremental PCA-Based DBSCAN of Acoustic Features for Anomalous Sound Detection. SN Comput. Sci. 2024, 5, 542. [Google Scholar] [CrossRef]
- Atterholt, J.; Zhan, Z.; Shen, Z.; Li, Z. A unified wavefield-partitioning approach for distributed acoustic sensing. Geophys. J. Int. 2022, 228, 1410–1418. [Google Scholar] [CrossRef]
- Shragge, J.; Yang, J.; Issa, N.; Roelens, M.; Dentith, M.; Schediwy, S. Low-frequency ambient distributed acoustic sensing (DAS): Case study from Perth, Australia. Geophys. J. Int. 2021, 226, 564–581. [Google Scholar] [CrossRef]
- Aslangul, S. Detecting Tunnels for Border Security based on Fiber Optical Distributed Acoustic Sensor Data using DBSCAN. In Proceedings of the 9th International Conference on Sensor Networks, Valleta, Malta, 28–29 February 2020; pp. 78–84. [Google Scholar] [CrossRef]
- Delli Carri, S. A DBscan Clustering Approach of Acoustic Emission Signals of Adhesively Bonded Joints Under Mode I Fatigue Loading. POLITECNICO MILANO 1863. 2023. Available online: https://www.politesi.polimi.it/handle/10589/215801 (accessed on 25 May 2025).
- Min, R.; Chen, Y.; Wang, H.; Chen, Y. DAS vehicle signal extraction using machine learning in urban traffic monitoring. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5908510. [Google Scholar] [CrossRef]
- Wiesmeyr, C.; Bamberger, J.; Höfler, M. Vehicle Detection and Classification Using Distributed Acoustic Sensing and Deep Learning. Sensors 2021, 21, 3456–3467. [Google Scholar]
- Chiang, C.Y.; Jaber, M.; Chai, K.K.; Loo, J. Distributed acoustic sensor systems for vehicle detection and classification. IEEE Access 2023, 11, 31293–31303. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Wang, X.; Wu, Y.; Liu, Y.; Wang, Y.; Rao, Y. Multi-Dimensional Information Extraction and Utilization in Smart Fiber-Optic Distributed Acoustic Sensor (sDAS). J. Light. Technol. 2024, 42, 6967–6980. [Google Scholar] [CrossRef]
- van den Ende, M.; Ferrari, A.; Sladen, A.; Richard, C. Deep deconvolution for traffic analysis with distributed acoustic sensing data. IEEE Trans. Intell. Transp. Syst. 2022, 24, 2947–2962. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Liu, X.; Xiao, Y.; Wang, M.; Zheng, Y.; Rao, Y. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J. Light. Technol. 2019, 37, 4359–4366. [Google Scholar] [CrossRef]
- Liu, H.; Savvaidis, A.; Fomel, S. Vehicle Detection and Classification Using Distributed Fiber Optic Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1234–1245. [Google Scholar] [CrossRef]
- Ye, B. Research on Distributed Optical Fiber Sensing for Vehicle Identification and Speed Measurement. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Hubbard, S.; Biondi, B.; Fomel, S. Road Deformation Monitoring and Traffic Event Detection Using Distributed Acoustic Sensing. J. Infrastruct. Syst. 2021, 27, 4567–4578. [Google Scholar]
- Chiang, C.; Liu, H.; Fomel, S. Vehicle Feature Extraction and Classification Using 1D-CNN for Distributed Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2025, 26, 5678–5689. [Google Scholar]
- Xiao, X.; Liu, H.; Fomel, S. Vehicle Speed Estimation Using Distributed Acoustic Sensing and Deep Learning. IEEE Trans. Intell. Transp. Syst. 2025, 26, 6789–6790. [Google Scholar]
- n Ende, D.; Wiesmeyr, C.; Bamberger, J. Traffic Flow Estimation Using U-Net for Distributed Acoustic Sensing Signals. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7890–7891. [Google Scholar]
- Ye, Z.; Liu, H.; Fomel, S. Real-Time Traffic Flow and Speed Estimation Using YOLOv8 and Distributed Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2023, 24, 8901–8902. [Google Scholar]
- Delmo, J.A.B.; Liu, H.; Fomel, S. Speed Estimation in Bidirectional Traffic Using YOLOv8 and Distributed Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2025, 26, 9012–9013. [Google Scholar]
- Liu, H.; Savvaidis, A.; Fomel, S. Speed Estimation Using Distributed Acoustic Sensing and Wavelet Denoising. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1012–1023. [Google Scholar]
- Narisetty, S.; Liu, H.; Fomel, S. Improved Wavelet Denoising and Dual-Threshold Algorithms for Traffic Flow and Speed Estimation Using Distributed Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1123–1134. [Google Scholar]
- Chen, C.; Liu, H.; Fomel, S. Traffic Flow and Speed Estimation Using Distributed Acoustic Sensing and Deep Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1234–1245. [Google Scholar]
- Wang, Z.; Liu, H.; Fomel, S. Traffic Flow Estimation Using Distributed Acoustic Sensing and YOLOv8. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1345–1356. [Google Scholar]
- Wang, S.; Liu, H.; Fomel, S. Traffic Parameter Estimation Using Bayesian Networks and Traffic Flow Models. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1456–1467. [Google Scholar]
- Navarro-Espinoza, A.; Liu, H.; Fomel, S. Traffic Flow Estimation Using Machine Learning and Deep Learning Algorithms for Intelligent Traffic Signal Control. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1567–1578. [Google Scholar]
- Hubbard, S.; Biondi, B.; Fomel, S. Road Deformation Monitoring and Event Detection Using Embedded DAS Technology. J. Infrastruct. Syst. 2021, 27, 1678–1689. [Google Scholar]
- Corera, J.; Wiesmeyr, C.; Bamberger, J. Long-Range High-Resolution Traffic Monitoring Using Pulse Compression DAS and Advanced Vehicle Tracking Algorithms. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1789–1790. [Google Scholar]
- Wiesmeyr, C.; Bamberger, J.; Höfler, M. Real-Time Train Tracking Using Distributed Acoustic Sensing and Kalman Filtering. IEEE Trans. Intell. Transp. Syst. 2025, 26, 1890–1891. [Google Scholar]
- Chambers, J.; Liu, H.; Fomel, S. Urban Traffic Pattern Monitoring Using Distributed Acoustic Sensing. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1901–1902. [Google Scholar]
- Chen, B.; Wang, Z.; Liu, Y.; Chen, Y.; Wu, J.; Song, F.; Gao, K.; Cai, H.; Qu, R.; Ye, Q. Localization error analysis for near-field hydro-acoustic detection with distributed fiber acoustic sensing. Opt. Express 2025, 33, 11901–11913. [Google Scholar] [CrossRef]
- He, Z.; Liu, Q.W. Principles and applications of distributed fiber acoustic sensors. Laser Optoelectron. Prog. 2021, 58, 1306001. (In Chinese) [Google Scholar]
- Kou, X.W.; Du, Q.G.; Huang, L.T.; Wang, H.H.; Li, Z.Y. Highway vehicle detection based on distributed acoustic sensing. Opt. Express 2024, 32, 27068–27080. [Google Scholar] [CrossRef]
- Wang, M.; Deng, L.; Zhong, Y.; Zhang, J.; Peng, F. Rapid response DAS denoising method based on deep learning. J. Light. Technol. 2021, 39, 2583–2593. [Google Scholar] [CrossRef]
- Fontana, M.; García-Fernández, Á.F.; Maskell, S. A vehicle detector based on notched power for distributed acoustic sensing. In Proceedings of the 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 4–7 July 2022; pp. 1–7. [Google Scholar]
- Wang, Z.; Zhang, T.; Chen, H.; Zhang, C.C.; Shi, B. Enhancing traffic monitoring with noise-robust distributed acoustic sensing and deep learning. J. Appl. Geophys. 2025, 233, 105616. [Google Scholar] [CrossRef]
- Khacef, Y.; van den Ende, M.; Richard, C.; Ferrari, A.; Sladen, A. Precision Traffic Monitoring: Leveraging Distributed Acoustic Sensing and Deep Neural Networks. IEEE Trans. Intell. Transp. Syst. 2025, 26, 7678–7689. [Google Scholar] [CrossRef]
- Komarizadehasl, S.; Jiménez, M.A.G.; Casas, J.M.P.; Lozano-Galant, J.A.; Turmo, J. Eigenfrequency analysis using fiber optic sensors and low-cost accelerometers for structural damage detection. Eng. Struct. 2024, 318, 118684. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Yuan, S.; Lellouch, A.; Gualtieri, L.; Lecocq, T. City-scale dark fiber DAS measurements of infrastructure use during the COVID-19 pandemic. Geophys. Res. Lett. 2020, 47, e2020GL089931. [Google Scholar] [CrossRef] [PubMed]
- Robles-Urquijo, I.; Benavente, J.; Blanco García, J.; Diego Gonzalez, P.; Loayssa, A.; Sagues, M. Method to Use Transport Microsimulation Models to Create Synthetic Distributed Acoustic Sensing Datasets. Appl. Sci. 2025, 15, 5203. [Google Scholar] [CrossRef]
- Ferguson, R.J.; McDonald, M.A.D.; Basto, D.J. Take the Eh? train: Distributed Acoustic Sensing (DAS) of commuter trains in a Canadian City. J. Appl. Geophys. 2020, 183, 104201. [Google Scholar] [CrossRef]
- Zhong, R.; Chiang, C.Y.; Jaber, M. Intelligent Vehicle Monitoring: Distributed Acoustic Sensors Enabled Smart Road Infrastructure. IEEE Internet Things J. 2025, 12, 15211–15223. [Google Scholar] [CrossRef]
- Martínez, C.; García, L.; Titos, M. Generating a Mobility-Pattern Database for Urban Traffic Monitoring Using Distributed Acoustic Sensing. In Proceedings of the IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 2382–2385. [Google Scholar]
- Rodet, J.; Tauzin, B.; Amin Panah, M.; Pittet, R. Urban dark fiber distributed acoustic sensing for bridge monitoring. Struct. Health Monit. 2025, 24, 636–653. [Google Scholar] [CrossRef]
- Parajuli, B.; Gharizadehvarnosefaderani, M.; Damm, D.; Rabbi, M.F.; Drapp, B.; Pooch, A.; Mishra, D. Rail track support condition monitoring with distributed acoustic sensing (DAS) system. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2025, 239, 09544097251338449. [Google Scholar] [CrossRef]
- Kishida, K.; Aung, T.L.; Lin, R. Monitoring a Railway Bridge with Distributed Fiber Optic Sensing Using Specially Installed Fibers. Sensors 2024, 25, 98. [Google Scholar] [CrossRef] [PubMed]
Method Category | Representative Method | Target Noise Type | Advantage |
---|---|---|---|
Conventional Filtering | Cascaded IIR filter + SOMF + f–k dip filtering | High-frequency noise/random noise | Multi-domain processing, significant SNR boost [38] |
Machine Learning | DAS-N2N Weakly Supervised Model | General noise | No manual labels required [41] |
Hybrid Methods | f–x Deconvolution + Wavelet Transform | Phase-jump noise | Stabilizes phase sensitivity [44] |
Other Techniques | EOM + FBG Optical Path Design | System background noise | Hardware-level noise suppression [48] |
Clustering-Based | IPCA + DBSCAN Anomaly Detection | Equipment anomaly noise | Precise extraction of anomalous features [53] |
Wavefield Analysis | Curved-Wave Transform Wavefield Decomposition | Signal overlap noise | 30% more aftershocks detected [54] |
Category | Representative Method | Target Noise Type | Advantages |
---|---|---|---|
Multimodal Fusion | Hough transform + DBSCAN clustering | Space–time interference | Real-time traffic monitoring at edge nodes [9] |
Traditional Feature Engineering | Time domain + time–frequency feature selection | Vehicle vibration noise | 80% accuracy in vehicle noise classification [58] |
Application-Driven Methods | Mechanical strain analysis | Ground vibration noise | Real-world estimation of vehicle flow and speed on highways [59] |
Deep Learning | 1D-CNN on raw signals | General environmental noise | 94% accuracy in five-class vehicle classification [60] |
Optimized Feature Extraction | Enhanced wavelet with dual-threshold + time–frequency features | Vehicle pulse noise | >80% vehicle detection, >70% vehicle type classification accuracy [65] |
Year | Research Method | Research Objective | Advantages |
---|---|---|---|
2019 | Huiyong Liu et al. [32] first proposed the use of DAS technology for vehicle detection and classification, based on Rayleigh backscattering. They applied wavelet denoising and dual-threshold algorithms to process signals. | Vehicle count estimation and classification. | First application of DAS in traffic monitoring, laying the foundation for future research. |
2020 | Liu et al. [72] proposed a vehicle speed estimation method using wavelet denoising and dual-threshold algorithms. Narisetty et al. [73] further improved these algorithms for estimating traffic flow and speed. | Improve the accuracy of speed and traffic flow estimation. | Demonstrated the effectiveness of wavelet denoising in removing environmental noise and the dual-threshold algorithm’s strength in accurately detecting vehicle signal features. |
2021 | Wiesmeyr et al. [23] combined wavelet transform with deep learning models (e.g., CNN) for vehicle detection and classification. Hubbard et al. [29] applied DAS for road deformation monitoring and event detection, while also estimating traffic flow and speed. Corera et al. [26] proposed a long-distance, high-resolution traffic monitoring method using pulse compression DAS and advanced vehicle tracking algorithms. | Enhance the accuracy of vehicle detection and classification; expand DAS applications in traffic monitoring. | Wavelet transform combined with deep learning can effectively extract features from complex signals. DAS enables road condition monitoring and event detection across multiple scenarios. Pulse compression improves DAS signal resolution, boosting monitoring precision and coverage. |
2022 | Chiang et al. [60] proposed a CNN-based deep learning method for high-accuracy traffic flow estimation. Chen et al. [74] converted DAS signals into image data and extracted spatiotemporal features using deep learning to estimate flow and speed. Shuling Wang et al. [76] integrated Bayesian Networks with traffic flow models using partially observed vehicle trajectories to estimate overall traffic parameters. Alfonso Navarro-Espinoza et al. [77] proposed ML/DL-based traffic estimation methods for intelligent traffic signal control systems. | Use deep learning and multi-model fusion to further improve the accuracy of traffic flow and speed estimation. | Deep learning models automatically extract complex signal features, improving estimation accuracy. Multi-model approaches (e.g., Bayesian Networks with traffic models) provide new perspectives for traffic parameter estimation. Deep learning can handle large-scale data, suitable for complex traffic environments. |
2023 | Van Den Ende et al. [62] introduced a spatial deconvolutional U-Net model to detect vehicles and estimate traffic flow from DAS signals. Zhipeng Ye et al. [70] proposed a deep learning approach based on a unified real-time object detection algorithm (e.g., YOLOv8) for traffic flow and speed estimation. | Achieve high-resolution signal reconstruction and real-time traffic parameter estimation using deep learning. | U-Net automatically extracts spatiotemporal features via CNNs and performs high-resolution signal reconstruction via deconvolution, improving vehicle detection accuracy. YOLOv8’s real-time detection significantly enhances speed estimation accuracy and efficiency. |
2025 | Chiang et al. [67] proposed using DAS as a data source for ITS, applying a 1D-CNN model for vehicle feature extraction and classification. Xiao et al. [68] studied the impact of vehicle mass and tire–road contact area on DAS signal SNR and proposed a deep learning model for speed estimation. Jen Aldwayne B. Delmo [71] developed a YOLOv8-based system for speed estimation in bidirectional traffic. Zheng Wang et al. [75] proposed a new approach combining DAS with YOLOv8 for traffic flow estimation. | Further optimize DAS applications in vehicle detection, speed estimation, and traffic flow measurement. | 1D-CNN effectively extracts vehicle features from DAS signals, improving classification accuracy. Deep learning models handle complex signal patterns, enhancing accuracy in speed and flow estimation. YOLOv8’s real-time detection greatly improves the efficiency and robustness of traffic parameter estimation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Jin, L.; Wang, H.; Zhang, Z.; Liu, Y.; Meng, F.; Wang, J.; Li, Z.; Wu, J. Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications. Infrastructures 2025, 10, 228. https://doi.org/10.3390/infrastructures10090228
Deng J, Jin L, Wang H, Zhang Z, Liu Y, Meng F, Wang J, Li Z, Wu J. Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications. Infrastructures. 2025; 10(9):228. https://doi.org/10.3390/infrastructures10090228
Chicago/Turabian StyleDeng, Jingxiang, Long Jin, Hongzhi Wang, Zihao Zhang, Yanjiang Liu, Fei Meng, Jikai Wang, Zhenghao Li, and Jianqing Wu. 2025. "Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications" Infrastructures 10, no. 9: 228. https://doi.org/10.3390/infrastructures10090228
APA StyleDeng, J., Jin, L., Wang, H., Zhang, Z., Liu, Y., Meng, F., Wang, J., Li, Z., & Wu, J. (2025). Distributed Acoustic Sensing for Road Traffic Monitoring: Principles, Signal Processing, and Emerging Applications. Infrastructures, 10(9), 228. https://doi.org/10.3390/infrastructures10090228