Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater
Abstract
:1. Introduction
2. Pyrite and Its Role in Catalyzing Fenton-like Reactions
2.1. Pyrite’s General Properties, Risks, and Potential
2.2. Pyrite-Catalyzed Fenton-like Reactions
2.2.1. Pyrite-Derived H2O2 Activation
- (a)
- Superoxide radical (O2·−):
- (b)
- Sulfate radicals (SO4·−):
2.2.2. PAA (C2H4O3) and Its Role in Pyrite-Derived AOPs
2.2.3. Activation of PMS by Pyrite
3. Pure Pyrite Derived Catalysts and Their Applications
3.1. Zero-Dimensional Pyrite Materials
3.2. One-Dimensional Pyrite Materials
3.3. Two-Dimensional Pyrite Materials
3.4. Three-Dimensional Pyrite Materials
4. Applications of Hybrid Pyrite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Junck, J.; Akpotu, S.O.; Düring, R.-A. Isolation of aqueous pesticides on surface-functionalized SBA-15: Glyphosate kinetics and detailed empirical insights for atrazine. Environ. Sci. Process. Impacts 2024, 26, 323–333. [Google Scholar] [CrossRef]
- Nassri, I.; Sayerh, F.; Souabi, S. Occurrence, pollution sources, and mitigation prospects of Antibiotics, anti-inflammatories, and endocrine disruptors in the aquatic environment. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100878. [Google Scholar] [CrossRef]
- Paz-Ramos, M.I.; Cruz, S.L.; Violante-Soria, V. Amphetamine-type stimulants: Novel insights into their actions and use patterns. Rev. Investig. Clín. 2023, 75, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xiao, J.; Xiao, Q.; Chen, Y.; Li, X.; Zheng, Q.; Ma, J.; Xu, J.; Fu, J.; Shen, J. Infant exposure to parabens, triclosan, and triclocarban via breastfeeding and formula supplementing in southern China. Sci. Total Environ. 2023, 858, 159820. [Google Scholar] [CrossRef] [PubMed]
- Couteau, C.; Philippe, A.; Galharret, J.-M.; Metay, E.; Coiffard, L. UV filters in everyday cosmetic products, a comparative study. Environ. Sci. Pollut. Res. 2024, 31, 2976–2986. [Google Scholar] [CrossRef]
- Nunes, R.F.; Teixeira, A.C.S.C. An overview on surfactants as pollutants of concern: Occurrence, impacts and persulfate-based remediation technologies. Chemosphere 2022, 300, 134507. [Google Scholar] [CrossRef]
- Tumu, K.; Vorst, K.; Curtzwiler, G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1337–1359. [Google Scholar] [CrossRef]
- Lin, B.; Yang, Y.; Yang, L.; Liu, G.; Li, C.; Xu, J.; Hou, S.; Zheng, M. Congener profiles and process distributions of polychlorinated biphenyls, polychlorinated naphthalenes and chlorinated polycyclic aromatic hydrocarbons from secondary copper smelting. J. Hazard. Mater. 2022, 423, 127125. [Google Scholar] [CrossRef]
- Rex, K.R.; Chandra, S.; Pavithra, K.; Tharmaraj, V.; Mukhopadhyay, M.; Chakraborty, P. Chemistry, production, and consumption of industrial endocrine disrupting chemicals. In Endocrine-Disrupting Chemicals; Elsevier: Amsterdam, The Netherlands, 2024; pp. 17–46. [Google Scholar]
- Nguyen, H.T.; Lee, Y.K.; Kwon, J.-H.; Hur, J. Microplastic biofilms in water treatment systems: Fate and risks of pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes. Sci. Total Environ. 2023, 892, 164523. [Google Scholar] [CrossRef]
- Mofijur, M.; Hasan, M.; Ahmed, S.F.; Djavanroodi, F.; Fattah, I.; Silitonga, A.; Kalam, M.; Zhou, J.L.; Khan, T.Y. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environ. Pollut. 2024, 341, 122889. [Google Scholar] [CrossRef] [PubMed]
- Hajalifard, Z.; Mousazadeh, M.; Khademi, S.; Khademi, N.; Jamadi, M.H.; Sillanpää, M. The efficacious of AOP-based processes in concert with electrocoagulation in abatement of CECs from water/wastewater. NPJ Clean Water 2023, 6, 30. [Google Scholar] [CrossRef]
- Song, B.; Zeng, Z.; Almatrafi, E.; Shen, M.; Xiong, W.; Zhou, C.; Wang, W.; Zeng, G.; Gong, J. Pyrite-mediated advanced oxidation processes: Applications, mechanisms, and enhancing strategies. Water Res. 2022, 211, 118048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, J.; Wang, C.; Wang, L.; Guo, Z.; Song, Y. Recent advance of Fe-based bimetallic persulfate activation catalysts for antibiotics removal: Performance, mechanism, contribution of the key ROSs and degradation pathways. Chem. Eng. J. 2024, 487, 150514. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; He, D.; Pan, X. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chem. Eng. J. 2021, 407, 127191. [Google Scholar] [CrossRef]
- Ye, F.; Liu, Y.; Lv, Q.; Gao, B.; Xia, J.; Li, X.; Dou, M.; Zhao, K.; Ahmad, M.; Xiao, Z.; et al. Unveiling the mechanism of efficient detoxification by Pd species in chlorinated pollutant degradation. Chin. Chem. Lett. 2025, in press. [CrossRef]
- Li, Y.; Dong, H.; Li, L.; Tang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q.; Jin, Z.; Xiao, J. Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res. 2021, 192, 116850. [Google Scholar] [CrossRef]
- Yu, J.; Yan, W.; Zhu, B.; Xu, Z.; Hu, S.; Xi, W.; Lan, Y.; Han, W.; Cheng, C. Degradation of carbamazepine by high-voltage direct current gas–liquid plasma with the addition of H2O2 and Fe2+. Environ. Sci. Pollut. Res. 2022, 29, 77771–77787. [Google Scholar] [CrossRef]
- Lv, W.; Li, H.; Wang, J.; Wang, L.; Wu, Z.; Wang, Y.; Song, W.; Cheng, W.; Yao, Y. Mass Transfer-Promoted Fe2+/Fe3+ Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable Advanced Oxidation Processes. Engineering 2024, 36, 264–275. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, H.; He, Y.; Huang, B.; Zhou, C.; Yao, G.; Lai, B. Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. Appl. Catal. B Environ. 2021, 286, 119900. [Google Scholar] [CrossRef]
- Wang, J.; Cai, J.; Zhou, X.; Wang, S.; Luo, F.; Yang, L.; Yu, J.; Chi, R.; Chen, Z. Accelerating of Fe2+ regeneration in Fenton reaction by biochar: Pivotal roles of carbon defects as electron donor and shuttle. Sep. Purif. Technol. 2025, 354, 128945. [Google Scholar] [CrossRef]
- Vaughan, D.J.; Lennie, A.R. The iron sulphide minerals: Their chemistry and role in nature. Sci. Prog. (1993-) 1991, 75, 371–388. [Google Scholar]
- Hall, A. Pyrite-pyrrhotine redox reactions in nature. Mineral. Mag. 1986, 50, 223–229. [Google Scholar] [CrossRef]
- Craig, J.R.; Vokes, F.M. The metamorphism of pyrite and pyritic ores: An overview. Mineral. Mag. 1993, 57, 3–18. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, H.; Javed, J.; Yang, C.; Quan, Y. Reductive sulfur mediated Fe2+ fixation and regeneration in valorizing waste activated sludge ash to Fe2+@ S-doped sodalite material for emerging contaminants degradation: Performance and mechanism. Chem. Eng. Sci. 2025, 308, 121438. [Google Scholar] [CrossRef]
- Graham, U.; Ohmoto, H. Experimental study of formation mechanisms of hydrothermal pyrite. Geochim. Cosmochim. Acta 1994, 58, 2187–2202. [Google Scholar] [CrossRef]
- Xi, J.; An, L.; Huang, Y.; Jiang, J.; Wang, Y.; Wei, G.; Xu, Z.; Fan, L.; Gao, L. Ultrasmall FeS2 nanoparticles-decorated carbon spheres with laser-mediated ferrous ion release for antibacterial therapy. Small 2021, 17, 2005473. [Google Scholar] [CrossRef]
- Kubas, G.T.; Spiro, T.G.; Terzis, A. Novel compound with a planar iron-sulfur-sulfur-iron bridge and its possible relation to ferredoxins. J. Am. Chem. Soc. 1973, 95, 273–274. [Google Scholar] [CrossRef]
- González-Paz, J.R.; del Carmen Monterrubio–Badillo, M.; Ordaz, A.; García-Peña, E.I.; Guerrero-Barajas, C. Influence of Fe2+ and Fe3+ on the Performance and Microbial Community Composition of a MFC Inoculated with Sulfate-Reducing Sludge and Acetate as Electron Donor. J. Chem. 2022, 2022, 5685178. [Google Scholar] [CrossRef]
- Czerewko, M.A.; Cripps, J.C. Implications of sulfur mineralogy and consequences of pyrite oxidation for ground engineering. J. Geol. Soc. 2023, 180, jgs2022-101. [Google Scholar] [CrossRef]
- de Souza Buriti, M. Étudecinétique Des Réactions de Précipitation et Dissolution de La K-Jarosite [KFe3(SO4)2(OH)6]. Ph.D. Thesis, Université de Pau et Des Pays de l’Adour, Pau, France, 2023. [Google Scholar]
- Dong, C.; Fang, W.; Yi, Q.; Zhang, J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere 2022, 308, 136205. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Ma, W.; Bai, X.; Ru, X.; Zhang, L.; Zhong, S.; Shu, X. Three-dimensional recyclable FeS2/reduced graphene oxide aerogel with high porosity reticulated structure for efficient removal of tylosin tartrate. Sep. Purif. Technol. 2023, 324, 124463. [Google Scholar] [CrossRef]
- Rehman, F.; Ahmad, W.; Parveen, N.; Zakir, S.K.; Khan, S.; Han, C. The catalytic degradation of the inflammatory drug diclofenac sodium in water by Fe2+/persulfate, Fe2+/peroxymonosulfate and Fe2+/H2O2 processes: A comparative analysis. Water 2023, 15, 885. [Google Scholar] [CrossRef]
- Chen, N.; Xia, J.; Li, L.; Lv, Q.; Zhao, K.; Ahmad, M.; Xiao, Z.; Wang, S.; Ye, F.; Zhang, Q. Comprehensive enhancement of photocatalytic H2O2 generation and antibacterial efficacy on carbon nitride through a straightforward polydopamine coating strategy. Surf. Interfaces 2025, 56, 105566. [Google Scholar] [CrossRef]
- Çinçin, Y.; Bayat, O. Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye. Politek. Derg. 2024. [Google Scholar] [CrossRef]
- Feng, X.; Wang, J.; Zhu, G.; Guo, N.; Zhu, Z. Experimental Study on Simultaneous Nitrogen and Sulfur Removal in a Sulfur Autotrophic Denitrification Coupled Sulfate Reduction System. Available online: https://ssrn.com/abstract=5063680 (accessed on 13 May 2025).
- Wei, X.; Yuan, H.; Li, J.; Chen, T.; Yuan, Y.; Chen, W.; Guan, C.; Wang, Z.; Guo, Q.; Han, B. Reactive oxygen species generated in iron sulfide mediated advanced oxidation systems: A critical review of mechanisms and implications for geochemistry and environmental remediation. J. Environ. Chem. Eng. 2022, 10, 108841. [Google Scholar] [CrossRef]
- Xing, D.; Shao, S.; Yang, Y.; Zhou, Z.; Jing, G.; Zhao, X. Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement. Water Res. 2022, 222, 118930. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Jin, L.; Wang, H.; Huang, Y.; Huang, D.; Liu, X. Peracetic Acid Activation by Modified Hematite for Water Purification: Performance, Degradation Pathways, and Mechanism. Langmuir 2024, 40, 15301–15309. [Google Scholar] [CrossRef]
- Wang, X.; Shen, T.; Yang, W.; Kang, L.; Li, B.; Tian, Y.; Li, J.; Zhang, L. A critical review on the application of pyrite in constructed wetlands: Contaminants removal and mechanism. J. Water Process Eng. 2024, 63, 105353. [Google Scholar] [CrossRef]
- Nguyen, N.T.K.; Le, D.T.T.; Vo, K.D.; Huynh, L.T.; Nguyen, H.M.; Tran-Thuy, T.-M.; Nguyen, L.Q.; Van Nguyen, D. Valorization of tropical almond (Terminalia catappa) leaves into iron-containing activated carbon for rapid catalytic degradation of methylene blue with hydrogen peroxide. J. Ecol. Eng. 2024, 25, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.-H.; Liu, J.-J.; Hu, Y.-X.; Kong, L.-J.; Jiang, D.; Xu, X.-R. Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: Reactivity, stability, products and mechanism. Sep. Purif. Technol. 2017, 184, 374–383. [Google Scholar] [CrossRef]
- Yue, X.; Qiao, B.; Wang, J.; Cao, B.; Li, L.; Cao, X.; Yang, Z.; Abudula, A.; Xie, Z.; Guan, G. Study on the Relationship between Sei Evolution and Electrochemical Performance of Fes2 for Sibs Under Different Voltage Ranges Based on Cryo-Em. Available online: https://ssrn.com/abstract=5111767 (accessed on 13 May 2025).
- Lin, Y.; Niu, Z.; Li, J.; Li, S.; Li, H.; Li, L. Organic iron at ultralow doses catalyzes hydrogen peroxide to eliminate cyanobacterial blooms: A study on algicidal effects and mechanisms under natural conditions. Front. Environ. Eng. 2025, 3, 1516999. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Zhou, P.; Dahlgren, R.A.; Wang, X. Mechanisms for hydroxyl radical production and arsenic removal in sulfur-vacancy greigite (Fe3S4). J. Colloid Interface Sci. 2022, 606, 688–695. [Google Scholar] [CrossRef]
- Wang, Y. Degradation of Synthetic Organic Compounds by Sulfate-and Hydroxyl Radical-Based Advanced Oxidation Processes. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2012. [Google Scholar]
- Li, H.; Wang, Y.; He, L.; Wang, Y.; Liu, M.; Gu, L.; Liu, S.; Li, J.; Yang, Y.; Wang, R. Enhance Fe (III) reduction in sludge fermentation for vivianite formation using exogenous H2 assisted by activated carbon. Water Res. 2025, 268, 122708. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Z.; Jiang, L.; Peng, F.; Liu, W.; Chen, J.; Rao, X.; Feng, G.; Kang, C.; Fang, L. Molecular–level insights into the synergistic activation of peracetic acid by ultraviolet and ferrous ions for the degradation of sedimentation sludge water in drinking water treatment plants based on Fourier transform-ion cyclotron resonance mass spectrometry. Sep. Purif. Technol. 2025, 355, 129708. [Google Scholar]
- Muñoz, E.; Toro, N.; Reyes, M.; Reyes-Domínguez, I.; Teja-Ruiz, A.; Flores, M.U.; Martínez, J.I.; Flores, G.; Juárez, J.C. Evaluation of Silver Recovery from High Sulphur Mining Waste Using the Thiourea-Oxalate System. 2024. Available online: https://www.preprints.org/manuscript/202412.0585/v1 (accessed on 13 May 2025).
- Cai, M.; Javed, J.; Wu, H.; Zhou, Y.; Liyang, H.; Yang, C.; Tsui, T.-H.; Song, B.; Zhang, Q. Valorizing waste activated sludge incineration ash to S-doped Fe2+@ Zeolite 4A catalyst for the treatment of emerging contaminants exemplified by sulfamethoxazole. J. Environ. Manag. 2024, 369, 122382. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Wang, D.; Yan, M.; Liu, Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Sci. Total Environ. 2021, 772, 145522. [Google Scholar] [CrossRef]
- Rutherford, A.W.; Osyczka, A.; Rappaport, F. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O2. FEBS Lett. 2012, 586, 603–616. [Google Scholar] [CrossRef]
- Eddleman, K. Bioaccumulation of heavy metals from soils to plants in watersheds contaminated by acid mine drainage in SE Arizona. Master’s Thesis, The University of Arizona, Tucson, AZ, USA, 2012. [Google Scholar]
- Yang, M.; Lu, Y.; Zhang, W.; Xie, L.; Tian, J.; Baikeli, Y.; Wang, F.; Zhang, Y.-Z.; Zhang, D.-S.; Zhang, X. Accelerating peroxymonosulfate activation over fiber-shaped Fe@ Fe3C/CNF for ultrafast tetracyclines degradation: Active site synergy and mechanisms. J. Environ. Chem. Eng. 2024, 12, 114999. [Google Scholar] [CrossRef]
- Saif, T. Multi-scale multi-dimensional imaging and characterization of oil shale pyrolysis. Ph.D. Thesis, Imperial College London, London, UK, 2017. [Google Scholar]
- Zaka, A.; Alhassan, S.M.; Nayfeh, A. Iron pyrite in photovoltaics: A review on recent trends and challenges. ACS Appl. Electron. Mater. 2022, 4, 4173–4211. [Google Scholar] [CrossRef]
- Huang, L.; Wang, F.; Luan, Z.; Meng, L. Pyrite (FeS2) thin films deposited by sol–gel method. Mater. Lett. 2010, 64, 2612–2615. [Google Scholar] [CrossRef]
- Cai, Y.; Shi, Y.; Shi, W.; Bai, S.; Yang, S.; Guo, F. A one-photon excitation pathway in 0D/3D CoS2/ZnIn2S4 composite with nanoparticles on micro-flowers structure for boosted visible-light-driven photocatalytic hydrogen evolution. Compos. Part B Eng. 2022, 238, 109955. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Sharma, S.; Singh, K.; Kumar, A. Magnetoresponsive biocomposite hydrogels comprising gelatin and valine based magnetic ionic liquid surfactant as controlled release nanocarrier for drug delivery. Mater. Adv. 2022, 3, 484–492. [Google Scholar] [CrossRef]
- Runge, E.; Mansor, M.; Chiu, T.H.; Shuster, J.; Fischer, S.; Kappler, A.; Duda, J.-P. Hydrothermal sulfidation of biogenic magnetite produces framboid-like pyrite. Commun. Earth Environ. 2024, 5, 252. [Google Scholar] [CrossRef]
- Becerra-Paniagua, D.K.; Díaz-Cruz, E.B.; Baray-Calderón, A.; Garcia-Angelmo, A.R.; Regalado-Pérez, E.; del Pilar Rodriguez-Torres, M.; Martínez-Alonso, C. Nanostructured metal sulphides synthesized by microwave-assisted heating: A review. J. Mater. Sci. Mater. Electron. 2022, 33, 22631–22667. [Google Scholar] [CrossRef]
- Liu, H.; Shao, Y.; Dou, S.; Pan, C. Enhanced Photo-Fenton Degradation of Antibiotics through Internal Electric Field Formation at the Interface of Mixed-Phase FeS2. Sci. Energy Environ. 2024, 1, 9. [Google Scholar] [CrossRef]
- Srivastava, R.P.; Ingole, S. Reduction in Urbach energy and density of states for pyrite (FeS2) thin films: Healing of sulfur vacancies during hematite to pyrite transformation. J. Phys. Chem. Solids 2022, 167, 110753. [Google Scholar] [CrossRef]
- Irham, M.A.; Fahmi, H.; Priambudi, H.H.; Iskandar, F. Effect of polyvinylpyrrolidone (PVP) on electrochemical performance of iron pyrite (FeS2) nanoparticle via hot-injection method. AIP Conf. Proc. 2023, 2623, 020015. [Google Scholar]
- Alam, E. Exploring recent progress in adsorbent technologies for As3+ and As5+ removal from water: A brief overview. Environ. Technol. Rev. 2024, 13, 814–848. [Google Scholar] [CrossRef]
- Sharma, P.; Nangare, S.N.; Bagade, S.B.; Sonawane, S.S.; Patil, D.D. Hydrogen Peroxide Quantification Using Zero Dimensional Carbon Nanostructured Materials: A Review. Crit. Rev. Anal. Chem. 2024, 1–21. [Google Scholar] [CrossRef]
- Rahimi, F.; van der Hoek, J.P.; Royer, S.; Javid, A.; Mashayekh-Salehi, A.; Sani, M.J. Pyrite nanoparticles derived from mine waste as efficient catalyst for the activation of persulfates for degradation of tetracycline. J. Water Process Eng. 2021, 40, 101808. [Google Scholar] [CrossRef]
- Mishra, S.R.; Gadore, V.; Ahmaruzzaman, M. Inorganic–organic hybrid quantum dots for AOP-mediated photodegradation of ofloxacin and para-nitrophenol in diverse water matrices. NPJ Clean Water 2023, 6, 78. [Google Scholar] [CrossRef]
- Georgin, J.; Ramos, C.G.; de Oliveira, J.S.; Dehmani, Y.; El Messaoudi, N.; Meili, L.; Franco, D.S. A Critical Review of the Advances and Current Status of the Application of Adsorption in the Remediation of Micropollutants and Dyes Through the Use of Emerging Bio-Based Nanocomposites. Sustainability 2025, 17, 2012. [Google Scholar] [CrossRef]
- Li, Y.; Han, Z.; Jiang, L.; Su, Z.; Liu, F.; Lai, Y.; Liu, Y. Template-directed synthesis of ordered iron pyrite (FeS2) nanowires and nanotubes arrays. J. Sol-Gel Sci. Technol. 2014, 72, 100–105. [Google Scholar] [CrossRef]
- Kar, S.; Chaudhuri, S. Solvothermal synthesis of nanocrystalline FeS2 with different morphologies. Chem. Phys. Lett. 2004, 398, 22–26. [Google Scholar] [CrossRef]
- Machín, A.; Fontánez, K.; Arango, J.C.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F.I.; Morant, C.; Márquez, F. One-dimensional (1D) nanostructured materials for energy applications. Materials 2021, 14, 2609. [Google Scholar] [CrossRef]
- Pavlenko, V.; Żółtowska, S.; Haruna, A.; Zahid, M.; Mansurov, Z.; Supiyeva, Z.; Galal, A.; Ozoemena, K.; Abbas, Q.; Jesionowski, T. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R Rep. 2022, 149, 100682. [Google Scholar] [CrossRef]
- Zhang, T.; Huo, X.; Wang, L.; Ma, F.; Hou, Y. Effectively improved energy storage performances of poly (vinylidene fluoride)-based nanocomposites via loading low fractions of TiO2@ Fe3O4@ ethylenediamine hybrid nanowires. J. Phys. D Appl. Phys. 2023, 56, 435503. [Google Scholar] [CrossRef]
- Cabán-Acevedo, M.; Liang, D.; Chew, K.S.; DeGrave, J.P.; Kaiser, N.S.; Jin, S. Synthesis, characterization, and variable range hopping transport of pyrite (FeS2) nanorods, nanobelts, and nanoplates. ACS Nano 2013, 7, 1731–1739. [Google Scholar] [CrossRef]
- Wang, M.; Xing, C.; Cao, K.; Zhang, L.; Liu, J.; Meng, L. Template-directed synthesis of pyrite (FeS2) nanorod arrays with an enhanced photoresponse. J. Mater. Chem. A 2014, 2, 9496–9505. [Google Scholar] [CrossRef]
- Qin, H.; Jia, J.; Lin, L.; Ni, H.; Wang, M.; Meng, L. Pyrite FeS2 nanostructures: Synthesis, properties and applications. Mater. Sci. Eng. B 2018, 236, 104–124. [Google Scholar] [CrossRef]
- Wang, M.; Shi, X.; Wen, Z.; Gu, Y.; Feng, Q.; Ma, K.; Chen, Q.; Zhu, Y.; Zhang, R.; Zhang, L. A crystallinity control strategy for controllable Heterogeneous-Homogeneous reaction and catalytic performance in wet-mechanochemical synthesized FeS2 Fenton system. Sep. Purif. Technol. 2025, 355, 129683. [Google Scholar] [CrossRef]
- Wu, K.-J.; Edmund, C.; Shang, C.; Guo, Z. Nucleation and growth in solution synthesis of nanostructures–from fundamentals to advanced applications. Prog. Mater. Sci. 2022, 123, 100821. [Google Scholar] [CrossRef]
- Kiyama, M. Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions. Bull. Chem. Soc. Jpn. 1974, 47, 1646–1650. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, X.; Yan, J.; Gong, C.; Zhu, W.; Luo, Y.; Yang, D.; Gao, X. Oxidized pyrite as an efficient Fenton reagent to generate active species for the degradation of carbamazepine in a wide pH range. Appl. Surf. Sci. 2023, 638, 158098. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Pi, K.; Zhang, H.; Yang, X.; Gerson, A.R. Current understanding and challenges for the utilisation of pyrite for environmental remediation: A review. Environ. Technol. Rev. 2024, 13, 461–477. [Google Scholar] [CrossRef]
- Zeng, L.; Gong, J.; Dan, J.; Li, S.; Zhang, J.; Pu, W.; Yang, C. Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: Catalytic activity, characterization and mechanism. Chemosphere 2019, 228, 232–240. [Google Scholar] [CrossRef]
- Bhatt, P.; Pandey, S.C.; Joshi, S.; Chaudhary, P.; Pathak, V.M.; Huang, Y.; Wu, X.; Zhou, Z.; Chen, S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. J. Hazard. Mater. 2022, 427, 128033. [Google Scholar] [CrossRef]
- Kousar, N.; Kumar, S.; Hojamberdiev, M.; Sannegowda, L.K. Substrate-driven electrocatalysis of natural and earth-abundant pyrite towards oxygen evolution reaction. Electrochim. Acta 2024, 475, 143575. [Google Scholar]
- Ali, J.; Guo, S.; Chen, Y.; Shahzad, A.; Ullah, M.W.; Chen, F. Metal sulfides as emerging materials for advanced oxidation of wastewater: Recent developments, challenges, and prospects. Coord. Chem. Rev. 2024, 509, 215765. [Google Scholar] [CrossRef]
- Kirkeminde, A.; Ruzicka, B.A.; Wang, R.; Puna, S.; Zhao, H.; Ren, S. Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates. ACS Appl. Mater. Interfaces 2012, 4, 1174–1177. [Google Scholar] [CrossRef]
- Wu, L.; Dzade, N.Y.; Gao, L.; Scanlon, D.O.; Öztürk, Z.; Hollingsworth, N.; Weckhuysen, B.M.; Hensen, E.J.; de Leeuw, N.H.; Hofmann, J.P. Enhanced photoresponse of FeS2 films: The role of marcasite–pyrite phase junctions. Adv. Mater. 2016, 28, 9602–9607. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Z.; Jia, H.; Tang, Y.; Zhang, L. Selective Synthesis of FeS and FeS2 Nanosheet Films on Iron Substrates as Novel Photocathodes for Tandem Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 13037–13042. [Google Scholar] [CrossRef]
- Tan, M.; Zheng, X.; Yu, W.; Chen, B.; Chu, C. Facet-Dependent Productions of Reactive Oxygen Species from Pyrite Oxidation. Environ. Sci. Technol. 2024, 58, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yang, J. Advances in the synthesis and functionalization of two-dimensional iron sulfides for energy applications. MRS Energy Sustain. 2024, 12, 62–80. [Google Scholar] [CrossRef]
- Anuratha, K.S.; Su, Y.-Z.; Wang, P.-J.; Hasin, P.; Wu, J.; Hsieh, C.-K.; Chang, J.-K.; Lin, J.-Y. Free-standing 3D core-shell architecture of Ni3S2@ NiCoP as an efficient cathode material for hybrid supercapacitors. J. Colloid Interface Sci. 2022, 625, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-L.; Yao, Q.-Z.; Zhou, G.-T.; Qu, X.-F.; Mu, C.-F.; Fu, S.-Q. Microwave-assisted controlled synthesis of monodisperse pyrite microspherolites. CrystEngComm 2011, 13, 5936–5942. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, J.; Chen, X.; Liu, L.; Wang, Y.; Zhou, S.; Long, X.; Yu, J.; Jiao, F. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chem. Eng. J. 2021, 421, 127845. [Google Scholar] [CrossRef]
- Rhodes, J.M. Phase Controlled Synthesis of Iron Sulfide Nanocrystals. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, 2020. [Google Scholar]
- Zhao, Z.; Chen, Y.; Wu, D. Reactive oxidative species generation in pyrite abiotic-oxidation process: Origins, influencing factors, applications for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2025, 55, 397–421. [Google Scholar] [CrossRef]
- Ding, R.; Zhou, Y.P.; Zhang, Y.C.; Chen, H.; Zeng, F.R.; Wang, Y.T.; Liu, B.W.; Wang, Y.Z.; Zhao, H.B. Air-Pyrolysis Precision Synthesis of Functional Porous Carbon Materials. Adv. Funct. Mater. 2025, 35, 2415006. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Li, Y.; Zhang, L.; Zhong, S.; Ru, X.; Shu, X. Investigation into the synergistic roles of exposed crystal planes and S vacancies during the photo-Fenton degradation of sulfadiazine via pyrite with three different morphologies. Sep. Purif. Technol. 2025, 353, 128538. [Google Scholar] [CrossRef]
- Liu, D.; Yi, M.; Yang, S.; Liu, F.; Li, Y. Performance and mechanism of the pyrite-kerogen complexes oxidation with H2O2 at low temperature during shale stimulation: An experimental and modeling study. Appl. Geochem. 2022, 143, 105382. [Google Scholar] [CrossRef]
- Rezvani, A.; Raji, F.; Liu, Q.; Peng, Y. Identification and quantification of pyrrhotite superstructures in base metal sulfide ore samples: A critical review. Miner. Eng. 2024, 218, 108975. [Google Scholar] [CrossRef]
- Li, S.; Qi, M.; Yang, Q.; Shi, F.; Liu, C.; Du, J.; Sun, Y.; Li, C.; Dong, B. State-of-the-art on the sulfate radical-advanced oxidation coupled with nanomaterials: Biological and environmental applications. J. Funct. Biomater. 2022, 13, 227. [Google Scholar] [CrossRef]
- Kaese, A. Deciphering Gas Phase Synthesis of Sulfide Nanoparticles. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2024. [Google Scholar]
- Zhao, H.; Huang, X.; Wang, L.; Zhao, X.; Yan, F.; Yang, Y.; Li, G.; Gao, P.; Ji, P. Removal of polystyrene nanoplastics from aqueous solutions using a novel magnetic material: Adsorbability, mechanism, and reusability. Chem. Eng. J. 2022, 430, 133122. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Dhiman, P.; Sharma, G.; Stadler, F.J. Recent advances in wide spectral responsive and photothermal heterojunctions for photocatalytic pharmaceutical pollutant degradation and energy conversion. Mater. Today Commun. 2023, 35, 106333. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Liu, X.; Zhong, H.; Jin, F. Geochemistry-Inspired One-Pot CO2 Reduction and Pyrite Desulfurization Under Hydrothermal Conditions. ACS Sustain. Chem. Eng. 2024, 12, 5809–5818. [Google Scholar] [CrossRef]
- Van Yken, J.; Boxall, N.J.; Cheng, K.Y.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. E-waste recycling and resource recovery: A review on technologies, barriers and enablers with a focus on oceania. Metals 2021, 11, 1313. [Google Scholar] [CrossRef]
- Su, C.; Soyol-Erdene, T.-O.; Bayanjargal, O.; Jiang, K.; Jiang, G.; Lv, X.; Tang, W. Facile synthesis of coral-like nitrogen and sulfur co-doped carbon-encapsulated FeS2 for efficient electroreduction of nitrate to ammonia. Sep. Purif. Technol. 2024, 348, 127813. [Google Scholar] [CrossRef]
- Mi, Z.; Tan, H.H.; Abidi, I.H. Non-Layered 2D Materials; Elsevier: Amsterdam, The Netherlands, 2023; Volume 113. [Google Scholar]
- Cuong, D.V.; Wu, J.-C.; Khan, E.; Du Laing, G.; Ok, Y.S.; Hou, C.-H. Integrated 3D pore architecture design of bio-based engineered catalysts and adsorbents: Preparation, chemical doping, and environmental applications. Environ. Sci. Adv. 2023, 2, 1167–1188. [Google Scholar] [CrossRef]
- Wen, Z.; Shi, X.; Gu, Y.; Ma, K.; Song, X.; He, A.; Wang, C.; Zhang, N.; Sui, H.; Xu, C. Enhanced Fenton performance of wet-mechanochemically synthesized FeS2/Biochar: The multiple synergistic effect derived from mutual element doping. Chem. Eng. J. 2024, 493, 152080. [Google Scholar] [CrossRef]
- de Magalhães, L.F.; da Silva, G.R.; Peres, A.E.C. Zeolite application in wastewater treatment. Adsorpt. Sci. Technol. 2022, 2022, 4544104. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, Y.; Zhang, S.; Zhuang, L.; Hu, B.; Wang, S.; Chen, J.; Wang, X. Application of biochar-based photocatalysts for adsorption-(photo) degradation/reduction of environmental contaminants: Mechanism, challenges and perspective. Biochar 2022, 4, 45. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Cai, Y.; Wang, S.; Hu, B.; Li, B.; Ding, X.; Zhuang, L.; Wang, X. Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. Carbon Res. 2023, 2, 8. [Google Scholar] [CrossRef]
- de Oliveira Marques Cavalcanti, V.; Napoleão, D.C.; Santana, I.L.d.S.; Santana, R.M.d.R.; Lucena, A.L.A.d.; da Motta Sobrinho, M.A. Production of pyrite-based catalysts supported on graphene oxide and zinc oxide to treat drug mixture via advanced oxidation processes. Environ. Sci. Pollut. Res. 2024, 31, 55958–55973. [Google Scholar] [CrossRef]
- Zhao, B.; Gong, J.; Song, B.; Sang, F.; Zhou, C.; Zhang, C.; Cao, W.; Niu, Q.; Chen, Z. Effects of activated carbon, biochar, and carbon nanotubes on the heterogeneous Fenton oxidation catalyzed by pyrite for ciprofloxacin degradation. Chemosphere 2022, 308, 136427. [Google Scholar] [CrossRef]
- Ye, S.; Tian, J.; Yang, H.; Deng, Y.; Yang, S.; Chen, J.; Gu, X.; Zhou, Z.; Hu, J.; Tan, X. Dual synergistic function of pyrite modified biochar synthesized with chelating agent for mediating arsenic removal process: Reactive site identification and pathway mechanism exploration. Chem. Eng. J. 2024, 499, 156198. [Google Scholar] [CrossRef]
- Mohsin, M.Z.; Huang, J.; Hussain, M.H.; Zaman, W.Q.; Liu, Z.; Zhuang, Y.; Guo, M.; Mohsin, A. Revolutionizing bioremediation: Advances in zeolite-based nanocomposites. Coord. Chem. Rev. 2023, 491, 215253. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Lin, S.; Chen, M.; Tang, C.; Liu, X. Promising energy-storage applications by flotation of graphite ores: A review. Chem. Eng. J. 2023, 454, 139994. [Google Scholar] [CrossRef]
- Pantrangi, M.; Ashalley, E.; Hafiz, W.; Kamal Hadi, M.; Xiao, H.; Younis, U.; Singh, N.; Zhang, Y.; Ran, F.; Liang, P. Core-Shell Transition Metal Disulfide Grafted Carbon Matrix Composite as an Anode Material for High-Performance Lithium-Ion Batteries. J. Energy Storage 2025, 114, 115878. [Google Scholar] [CrossRef]
- Zander, J.; Marschall, R. Novel earth-abundant Cu and Fe-based chalcogenide cocatalysts for photocatalytic hydrogen evolution. ChemRxiv 2025. [Google Scholar]
- Ge, M.; Jiang, F.; Lin, H. Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections. Mater. Today Bio 2024, 29, 101255. [Google Scholar] [CrossRef]
- Song, H.; Wu, M.; Tang, X.; Liang, J.; Zhang, Y.; Xie, Y.; Tang, Q.; Qin, L.; Fan, X. Synthesis of Fe3O4/FeS2 composites via MOF-templated sulfurization for high-performance hybrid supercapacitors. J. Alloys Compd. 2025, 1010, 177658. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Sarinho, L.; Neves, M.C.; Nunes, M.I. Valorisation of residual iron dust as Fenton catalyst for pulp and paper wastewater treatment. Environ. Pollut. 2022, 310, 119850. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Sang, X.; Bi, J.; Liu, N.; Zhang, X.; Wang, Z.; Han, Y. In-situ encapsulation synthesis of Fe-SAPO-34 for efficient removal of tetracycline via peroxydisulfate activation: Highly dispersed active sites and ultra-low iron leaching. Sep. Purif. Technol. 2025, 354, 129369. [Google Scholar] [CrossRef]
- Hou, J.; Wan, J.; Yan, Z.; Wang, Y.; Ma, Y.; Xie, Y.; Chen, H.; Xue, Y. A novel polydopamine-modified metal organic frameworks catalyst with enhanced catalytic performance for efficient degradation of sulfamethoxazole in wastewater. Chemosphere 2022, 297, 134100. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, L.; Yang, C.; Ma, L.; Mao, W.; Yu, H. Bimetallic zeolitic imidazolate framework-derived nitrogen-doped porous carbon-coated CoFe2O4 core–shell composite with high catalytic performance for peroxymonosulfate activation in Rhodamine B degradation. J. Alloys Compd. 2022, 907, 164504. [Google Scholar] [CrossRef]
- Jonidi Jafari, A.; Kakavandi, B.; Jaafarzadeh, N.; Rezaei Kalantary, R.; Ahmadi, M.; Akbar Babaei, A. Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies. J. Ind. Eng. Chem. 2017, 45, 323–333. [Google Scholar] [CrossRef]
Classification | Exempli Gratia | Ref. |
---|---|---|
Pesticides | Glyphosate and atrazine | [3] |
Pharmaceuticals | Diclofenac, ibuprofen, antibiotics, and hormones | [4] |
Licit and illicit drugs | Caffeine, cocaine, and amphetamines | [5] |
Preservatives | Parabens and triclosan | [6] |
Personal care products | Sunscreens and UV filters | [7] |
Surfactants, cleaning products, industrial formulations and chemicals | Bisphenol A and chlorinated solvents | [8] |
Food additives and packaging | Phthalates and plasticizers | [9] |
Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, halogenated polycyclic aromatic hydrocarbons, polychlorinated naphthalene, dioxins, hexachloro-1,3-butadiene, polyhalogenated carbazoles, and environmentally persistent free radicals | Naphthalene, Fluoranthene Aroclor 1254, PCB-77 Brominated fluoranthenes, Fluorinated pyrenes Tetrachloronaphthalene, Hexachloronaphthalene Tetrabromocarbazole, Hexachlorocarbazole | [10] |
Bromine-containing flame retardants, perfluorinated compounds and perfluorinated alkyl substances, brominated dioxins | Polybrominated diphenyl ethers (PBDEs) Perfluorooctanoic acid (PFOA) Hexabromodibenzofuran (HBDF) | [11] |
Antibiotic-resistant pathogenic bacteria | Escherichia coli producing extended-spectrum β-lactamase | [12] |
Other pollutants | Alkylphenols, metalloids, radionuclides, rare earth elements, nanomaterials, nanoparticles, microplastics, bioterrorism and sabotage agents, indoor pollutants, and pathogens | [2] |
Distinction | Homogenous Fenton Reaction | Pyrite Derived Heterogenous Fenton-like Reaction |
---|---|---|
Mechanism | Fe2+ + H2O2→Fe3+ + ·OH + OH− | Fe3+ + S22−→Fe2+ + S2·− Fe2+ + H2O2→Fe3+ + ·OH + OH− |
pH | 2.8–3.0 | Wide Range |
Reaction pathway with hydrogen peroxide/peroxide oxidants | Reaction of soluble Fe2+ with H2O2 | Reaction of in situ Fe2+ in pyrite or leached Fe2+ from the catalyst with peroxide oxidants |
Iron regeneration | Impossible | Redox derived Fe2+ regeneration and prolonged catalyst lifespan |
Parameter | Details |
---|---|
Catalyst | Pyrite |
Oxidant | HSO5− |
Main Reactive Species Generated | Sulfate radicals (SO4·−), hydroxyl radicals (·OH), peroxymonosulfate radicals (SO5·−), and superoxide radicals (O2·−). |
Role of Iron Species | Pyrite releases Fe2+, which activates PMS to generate radicals: Fe2+ + HSO5−→Fe3+ + SO4·− + OH− Fe3+ is reduced back to Fe2+, ensuring continuous redox cycling and sustained catalytic activity. |
Degradation Efficiency | Highly efficient degradation of organic pollutants, including antibiotics, dyes, and industrial chemicals. Achieves up to 85–90% removal under optimized conditions. |
Stability of Pyrite | Pyrite maintains structural integrity and catalytic efficiency over multiple reaction cycles. Sulfur species (S22−) aid electron transfer, further stabilizing radical formation. |
Applications | Waste water treatment, particularly for the degradation of persistent organic pollutants. |
pH Influence | Works in a wide pH range (3–8), but acidic conditions (pH 3–5) enhance Fe2+ regeneration, maximizing radical production. |
ROS | Redox Potential (E) | Selectivity | Preferred pH Range | Main Reaction Mechanism | Target Pollutants/Transformation Pathway |
---|---|---|---|---|---|
·OH | ~2.8 V | Non-selective | Acidic (~3–5) | H-abstraction, electron transfer, hydroxylation | Broad range: pharmaceuticals, dyes, organic acids; often leads to mineralization |
SO4·− | 2.5–3.1 V | Moderately selective | 3–9 | Electron transfer, H-abstraction | Electron-rich organics: phenols, antibiotics, EDCs |
CH3COO· | ~1.2–1.4 V | Highly selective (electrophilic) | 3–7 | Electrophilic attack, substitution | Electron-rich aromatics, halogenated compounds |
SO5·− (PMS radical) | ~1.1 V | Weak oxidant | Variable | Oxygen transfer, precursor to SO4·− | Secondary oxidant; promotes slow oxidation or initiates SO4·− generation |
Technique | Description | Key Features | Ref. |
---|---|---|---|
Hydrothermal synthesis | Involves the reaction of iron and sulfur precursors in an aqueous solution under high temperature and pressure in a sealed autoclave. | Produces highly crystalline nanoparticles. Environmentally friendly (uses water as solvent). Tunable size and morphology by adjusting temperature, pressure, and reaction time. | [64] |
Sol–gel Technique | A low-temperature (≤100 °C) wet-chemical process where nano structures form through polymerization and gelation. | Low-temperature synthesis for FeS2 nanoparticles. Controlled polymerization is required. | [65] |
Hot injection method | A high-temperature technique where a sulfur precursor is injected into an iron precursor under a protective atmosphere, forming FeS2 nanocrystals. | Produces high-quality single-crystalline FeS2 nanoparticles which could be used in photovoltaics and catalysis. Requires post-processing (washing, centrifugation, sintering at 540 °C for 4 h) | [60] |
Method | Iron Source | Sulfur Source | Reaction Conditions | Morphology | Ref. |
---|---|---|---|---|---|
Solvothermal | FeSO4·7H2O, FeCl3, Fe(NO3)3·9H2O | Thiourea (NH2CSNH2) | Ethylene diamine (EDA), 12 h at varying temperatures | Nanorods, nanowires | [78] |
Direct thermal sulfidation | FeCl2, FeBr2 | Sulfur vapor | 425 °C, controlled sulfur super saturation | Nanorods, nanobelts, nanoplates | [79] |
Hydrothermal template approach | ZnO nanorods (precursor) | Fe(NO3)3 and sulfur | 350 °C for 3 h | Nanorod arrays | [80] |
Type of Pyrite | Application | Performance Achieved | Main Findings | Ref. |
---|---|---|---|---|
0D Pyrite (nanoparticles) | Nitrogen removal in wastewater treatment. | Removed 85% of ammonia (NH3) and nitrate (NO3−) in 4 h. | Pyrite nanoparticles facilitated electron transfer, enabling rapid nitrogen conversion. | [44] |
1D Pyrite (nanorods) | Sulfate radical-based AOP. | Achieved 90% removal of bisphenol A (BPA) in wastewater. | Nanorods exhibited enhanced sulfate radical activation, leading to superior degradation. | [105] |
1D Pyrite (nanowires) | Gas-phase removal of hydrogen sulfide (H2S). | Removed 95% of H2S from industrial gas streams. | 1D Pyrite acted as a sulfur scavenger, oxidizing toxic H2S into environmentally safe forms. | [106] |
2D Pyrite (nanosheets) | Removal of microplastics from water. | Adsorbed 90% of polystyrene microplastics within 2 h. | 2D Pyrite nanosheets provided high surface area for micro plastic entrapment and degradation. | [107] |
2D Pyrite (thin films) | Photothermal degradation of organic pollutants. | Achieved 92% degradation of pharmaceutical pollutants under sunlight. | Pyrite thin films enhanced solar energy absorption, generating localized heat and ROS for effective pollutant breakdown. | [108] |
3D Pyrite (porous structures) | CO2 capture and conversion. | Converted 80% of CO2 into carbonates and formic acid. | 3D Pyrite structures improved CO2 adsorption, facilitating catalytic conversion. | [109] |
3D Pyrite (hierarchical structures) | Detoxification of cyanide from mining waste. | Decomposed 97% of cyanide (CN−) in mining effluents. | 3D hierarchical pyrite provided active sites for rapid cyanide degradation. | [110] |
Material | Application | Key Functions | Ref. |
---|---|---|---|
Zeolites | Water purification and wastewater treatment. | - Removes heavy metals (Pb, Cd, Cr, Ni) through ion exchange, adsorption and redox. - Eliminates ammonium (NH4+), nitrates (NO3−), and sulfates (SO42−) from water. - Improves sedimentation and oxygen consumption in sewage treatment. | [115] |
Biochar | Heavy metal adsorption and organic pollutant degradation. | - Adsorbs toxic metals like Pb, Cd, As, and Zn from contaminated water and soil. - Enhances persulfate activation for the breakdown of persistent organic pollutants. | [116] |
Metal–organic frameworks (MOFs) | Pollutant removal, gas storage, and catalysis. | - Adsorbs and degrades organic pollutants and pharmaceutical residues. - Enhances heterogeneous catalysis for photocatalysis, hydrogen evolution, and AOPs. | [117] |
Hybrid Material | Advantages | Ref. |
---|---|---|
FeS2-Graphene | Improved electronic conductivity, pollutant adsorption, and catalytic activity. | [123] |
FeS2-TiO2 | Enhanced photocatalytic efficiency under visible light. | [124] |
FeS2-MoS2 | High hydrogen evolution reaction (HER) efficiency. | [125] |
FeS2-Metal–Organic Frameworks (MOFs) | Increased surface area and selective adsorption properties. | [126] |
Catalyst | Fe Stabilization Strategy | System | Leached Fe | Ref. |
---|---|---|---|---|
Residue Fe dust | None | pH = 7 H2O2 | 274.4 mg L−1 | [127] |
Fe oxide-SAPO-34 | Fe oxide encapsuled in a zeolite cage | pH = 3 Peroxydisulfate | 0.70 mg g−1 | [128] |
MOF-Fe | PDA-modified Fe-containing MOF | pH = 7 Persulfate | 1.50 mg g−1 | [129] |
CoFe2O4@NPC | N-doped porous carbon coated bimetallic zeolitic imidazolate framework | pH = 6 Persulfate | 11.33 mg g−1 | [130] |
Fe3O4@Activated carbon | Iron-based oxide dispersed on carbon material | pH = 3 Persulfate | 2.50 mg g−1 | [131] |
Pyrite@zeolite | S-Fe interaction | pH = 7 PAA | 1.62 mg g−1 | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, J.; Zhou, Y.; Ullah, S.; Gao, T.; Yang, C.; Han, Y.; Wu, H. Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater. Molecules 2025, 30, 2194. https://doi.org/10.3390/molecules30102194
Javed J, Zhou Y, Ullah S, Gao T, Yang C, Han Y, Wu H. Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater. Molecules. 2025; 30(10):2194. https://doi.org/10.3390/molecules30102194
Chicago/Turabian StyleJaved, Jannat, Yuting Zhou, Saad Ullah, Tianjiu Gao, Caiyun Yang, Ying Han, and Hao Wu. 2025. "Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater" Molecules 30, no. 10: 2194. https://doi.org/10.3390/molecules30102194
APA StyleJaved, J., Zhou, Y., Ullah, S., Gao, T., Yang, C., Han, Y., & Wu, H. (2025). Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater. Molecules, 30(10), 2194. https://doi.org/10.3390/molecules30102194