- Article
A Study of Performance and Emission Characteristics of Diesel-Palm Oil Mill Effluent Gas on Dual-Fuel Diesel Engines Based on Energy Ratio
- Yanuandri Putrasari,
- Hafiziani Eka Putri and
- Achmad Praptijanto
- + 9 authors
Biogas from palm oil mill effluent (POME) is a promising fuel that has many advantages as an alternative fuel. The methane content in biogas derived from POME is up to 75% and can be used as an alternative fuel in an internal combustion engine. One of the technologies for utilizing biogas in compression ignition engines is the Diesel Dual-Fuel (DDF) technique due to the different characteristics of fuel and the impact on the environment due to significantly reducing emissions. This study aims to find the effect of biogas POME composition and energy ratio on the DDF engine’s performance and emissions. The simulations using AVL BOOST software were confirmed by experimental engine parameters. The modeling was conducted on the biogas energy ratio (20%, 40%, 60%, and 75% POME) and biogas POME composition (55% and 75% methane). The results showed that the fuel consumption of diesel fuel was reduced by up to 69%, and NOx and soot emissions were reduced by up to 92% and 80%, respectively, with dual-fuel mode operation. Meanwhile, the value of brake mean effective pressure (BMEP) and efficiency was reduced by up to 18%, volumetric efficiency decreased by up to 4%, the increase in brake specific energy consumption (BSEC) was up to 23%, and brake specific fuel consumption (BSFC) was up to 155%. The optimum of the engine’s performance and emission was 40% biogas ratio with 75% methane content.
20 October 2025