Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,782)

Search Parameters:
Keywords = MIC value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10020 KB  
Article
Chitosan/Carboxymethyl Cellulose Nanocomposites Prepared via Electrolyte Gelation–Spray Drying for Controlled Ampicillin Delivery and Enhanced Antibacterial Activity
by Anh Dzung Nguyen, Vinh Nghi Nguyen, Vu Hoa Tran, Huu Hung Dinh, Dinh Sy Nguyen, Thi Huyen Nguyen, Van Bon Nguyen and San Lang Wang
Polymers 2026, 18(3), 319; https://doi.org/10.3390/polym18030319 (registering DOI) - 24 Jan 2026
Abstract
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose [...] Read more.
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose (M) at different mass ratios to form stable nanocomposites via electrostatic interactions and then collected in a spray dryer. The resulting particles exhibited mean diameters ranging from 800 to 1500 nm and zeta potentials varying from +90 to −40 mV, depending on the C/M ratio. The optimal formulation (C/M = 2:1 ratio) achieved a high recovery yield (71.1%), lower PDI (0.52), and ampicillin encapsulation efficiency EE (82.4%). Fourier transform infrared spectroscopy (FTIR) confirmed the presence of hydrogen bonding and ionic interactions among C/M, and ampicillin within the nanocomposite matrix. The nanocomposites demonstrated controlled ampicillin release and pronounced antibacterial activity against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.2 µg/mL and 5.3 µg/mL, respectively, which were lower than those of free ampicillin. These results indicate that the chitosan/carboxymethyl cellulose nanocomposites are promising, eco-friendly carriers for antibiotic delivery and antibacterial applications. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 11246 KB  
Article
Antiseptic Mouthwashes After Dental Surgical Procedures: Comparative Antimicrobial and Antibiofilm Efficacy Against Oral Postoperative Pathogens
by Marzena Korbecka-Paczkowska, Magdalena Paczkowska-Walendowska, Aneta A. Ptaszyńska, Jakub Piontek, Judyta Cielecka-Piontek and Tomasz M. Karpiński
Appl. Sci. 2026, 16(3), 1167; https://doi.org/10.3390/app16031167 - 23 Jan 2026
Abstract
This in vitro study compared the antimicrobial and antibiofilm efficacy of four commercially available chlorhexidine (CHX)-based mouthwashes, with different nominal CHX concentrations, against clinically relevant postoperative oral pathogens, including Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Candida albicans [...] Read more.
This in vitro study compared the antimicrobial and antibiofilm efficacy of four commercially available chlorhexidine (CHX)-based mouthwashes, with different nominal CHX concentrations, against clinically relevant postoperative oral pathogens, including Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and Candida auris. Antimicrobial potency was evaluated using MIC and CEMIC indices, while biofilm thickness reduction was quantified using 3D digital microscopy and custom image analysis software. Among the tested formulations, the excipient-enriched formulation exhibited the lowest MIC values and the most significant reduction in biofilm thickness, particularly against Gram-negative bacteria and Candida species. All mouthwashes achieved CEMIC < 0.1, confirming high theoretical applicability margins; however, CEMIC reflects potential clinical usefulness rather than clinical superiority. The findings demonstrate that the antimicrobial and antibiofilm activity of CHX rinses is formulation-dependent and cannot be predicted solely by CHX concentration. The influence of excipients is discussed as a possible contributing factor, but related mechanisms remain speculative and require direct validation in future studies. This work supports a formulation-driven, evidence-based approach to antiseptic comparison in postoperative dentistry, without assessing clinical wound-healing outcomes. Full article
(This article belongs to the Special Issue Oral Diseases and Clinical Dentistry—2nd Edition)
Show Figures

Figure 1

13 pages, 777 KB  
Article
Antimicrobial Effect of Postbiotics on Multidrug-Resistant Escherichia coli
by Çiğdem Sezer, Nebahat Bilge, Gönül Damla Büyük and Merve Ayyıldız Akın
Foods 2026, 15(2), 384; https://doi.org/10.3390/foods15020384 - 21 Jan 2026
Viewed by 75
Abstract
Pathogens that have developed resistance to antibiotics pose a threat to public health. The primary goal in preventing foodborne infections is to inhibit the growth of and, subsequently, eliminate antibiotic-resistant pathogens at every stage from production to consumption. Escherichia coli, which has acquired [...] Read more.
Pathogens that have developed resistance to antibiotics pose a threat to public health. The primary goal in preventing foodborne infections is to inhibit the growth of and, subsequently, eliminate antibiotic-resistant pathogens at every stage from production to consumption. Escherichia coli, which has acquired resistance to most known antibiotics, is frequently found in chicken meat. In many countries, due to unregulated antibiotic use in poultry farming, poor hygiene in slaughterhouses, or cross-contamination, extended-spectrum beta-lactamase (ESBL)-producing E. coli has been identified as the causative agent in poultry-associated food poisoning. The need for more effective antimicrobial agents against this pathogen, which is resistant to existing antibiotics, has led to increased attention being paid to postbiotics produced by lactic acid bacteria, particularly bacteriocins. This study aimed to determine the antimicrobial effects of postbiotics obtained from kefir-derived Lactiplantibacillus plantarum and Lactococcus lactis against ESBL-positive E. coli. To achieve this, E. coli strains were isolated from raw chicken meat samples collected from the market using culture-based methods, and their antimicrobial resistance profiles were determined using the disk diffusion method. The ESBL positivity of the isolates was assessed using the double-disk synergy test. The antimicrobial activities of the postbiotics against the identified ESBL-positive E. coli strains were tested using the macro-dilution method to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. ESBL-positive E. coli was detected in 48% of raw chicken meat samples. The antimicrobial effects of postbiotics were examined by disk diffusion, and postbiotics produced by 18 Lb. plantarum strains and 20 Lc. lactis strains showed strong antimicrobial activity. Significant differences in the antimicrobial effects of postbiotics were observed between the two species. Lb. plantarum postbiotics exhibited both bacteriostatic (concentration 60%) and bactericidal (concentration 80%) effects on ESBL-positive E. coli strains, whereas Lc. lactis postbiotics showed only bacteriostatic effects (80% concentration). Postbiotics derived from probiotic bacteria offer promising effects against multidrug-resistant E. coli due to their heat resistance, activity across different pH values, strong antimicrobial effects, affordability, and ease of production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 949 KB  
Article
Antimicrobial Activity of Submerged Cultures of Endophytic Fungi Isolated from Three Chilean Nothofagus Species
by Héctor Valenzuela, Daniella Aqueveque-Jara, Mauricio Sanz, Margarita Ocampo, Karem Henríquez-Aedo, Mario Aranda and Pedro Aqueveque
J. Fungi 2026, 12(1), 77; https://doi.org/10.3390/jof12010077 - 21 Jan 2026
Viewed by 78
Abstract
Endophyte fungi (EF) are considered a new and valuable reservoir of bioactive molecules of biotechnological interest for pharmacy, agricultural and forestry industries. In this study, thirty EFs, isolated from three Chilean Nothofagus species (N. alpina, N. dombeyi, N. oblicua) [...] Read more.
Endophyte fungi (EF) are considered a new and valuable reservoir of bioactive molecules of biotechnological interest for pharmacy, agricultural and forestry industries. In this study, thirty EFs, isolated from three Chilean Nothofagus species (N. alpina, N. dombeyi, N. oblicua) were identified and cultured in submerged liquid fermentations aimed at searching for natural active substances. The extracts obtained were evaluated against pathogenic bacteria and fungi. Sixteen extracts (53.3%) presented antibacterial and fourteen (46.6%) presented antifungal activities in different intensities. Extracts from isolates Coryneum sp.-72 and P. cinnamomea-78 exhibited the highest antimicrobial activity. Using bioautography, the compounds responsible for the antimicrobial activity exhibited by Coryneum sp.-72 and P. cinnamomea-78 were detected and characterized. Coryneum sp.-72 showed bactericidal properties at 200 μg/mL and bacteriostatic effects at 50 μg/mL against B. cereus, B. subtilis, L. monocytogenes and S. aureus. MIC values indicated that P. cinnamomea-78 exhibited a strong fungistatic and fungicidal effect against B. cinerea and C. gloesporioides at 10–50 μg/mL. Isolates were grouped in the following order: Botryosphaeriales, Diaporthales, Eurotiales, Helotiales, Hypocreales, Pleosporales, Magnaporthales, Sordariales and Polyporales. EF isolated, identified and evaluated constitute the first report for Chilean Nothofagus genus. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

17 pages, 1892 KB  
Article
A New Trichlorinated Xanthone and Compounds Isolated from Cladonia skottsbergii with Antimicrobial Properties
by Marvin J. Rositzki, Achara Raksat, Charles J. Simmons, Clifford Smith, Reverend Danette V. Choi, Supakit Wongwiwatthananukit and Leng Chee Chang
Pharmaceuticals 2026, 19(1), 174; https://doi.org/10.3390/ph19010174 - 19 Jan 2026
Viewed by 169
Abstract
Background/Objectives: The global rise in multidrug-resistant (MDR) bacteria, particularly methicillin-resistant and methicillin-susceptible Staphylococcus aureus (MRSA and MSSA), continues to pose a major public health challenge, including in Hawaii. This underscores the need to discover new antimicrobial agents from natural sources. Guided by [...] Read more.
Background/Objectives: The global rise in multidrug-resistant (MDR) bacteria, particularly methicillin-resistant and methicillin-susceptible Staphylococcus aureus (MRSA and MSSA), continues to pose a major public health challenge, including in Hawaii. This underscores the need to discover new antimicrobial agents from natural sources. Guided by teachings from a Buddhist master regarding the medicinal value of lichens, we investigated the endemic Hawaiian lichen Cladonia skottsbergii. Methods: Specimens of C. skottsbergii were collected from the Lotus Buddhist Monastery in Mountain View, Hawaii. A methanolic extract was prepared and purified using chromatographic techniques, and compound structures were elucidated through spectroscopic analyses and single-crystal X-ray diffraction. The antibacterial activity of the compounds was assessed against Gram-positive strains (MRSA, MSSA) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). Cytotoxicity was assessed using A549 (non-small cell lung cancer) and Vero E6 (non-tumorigenic) cell lines. Results: Three compounds were isolated: clarosione (1), a newly identified trichlorinated xanthone, and two known metabolites, (S)-usnic acid (2) and perlatolic acid (3). Compounds 2 and 3 demonstrated strong inhibitory effects against MRSA and MSSA. Their minimum inhibitory concentrations (MICs) ranged from 2 to 4 µg/mL, compared with vancomycin (0.5–1 µg/mL). Cytotoxicity testing showed higher sensitivity in A549 cells than in Vero E6 cells, resulting in favorable selectivity indices for the active compounds. Conclusions: In the current study, a new compound, clarosione (1) was discovered. This enhances our understanding of the constituents of C. skottsbergii and its potential antibacterial properties. Lichen-derived compounds may serve as lead candidates for further development, and further study is warranted. Full article
Show Figures

Graphical abstract

15 pages, 7553 KB  
Article
Assessment of Antibiotic Sensitivity in Biofilms Using GelMA Hydrogel Microspheres
by Junchi Zhu, Wenqi Chen, Zhenzhi Shi, Yiming Liu, Lulu Shi and Jiafei Xi
Gels 2026, 12(1), 85; https://doi.org/10.3390/gels12010085 - 18 Jan 2026
Viewed by 107
Abstract
Conventional antibiotic susceptibility testing (AST) primarily assesses planktonic bacteria. However, the three-dimensional architecture and barrier properties of biofilms mean that the minimum inhibitory concentration (MIC) for planktonic cells is typically far lower than the antibiotic exposure required for biofilm eradication. In this study, [...] Read more.
Conventional antibiotic susceptibility testing (AST) primarily assesses planktonic bacteria. However, the three-dimensional architecture and barrier properties of biofilms mean that the minimum inhibitory concentration (MIC) for planktonic cells is typically far lower than the antibiotic exposure required for biofilm eradication. In this study, gelatin methacryloyl (GelMA) microspheres were used to create a three-dimensional biofilm microenvironment for the quantitative evaluation of biofilm tolerance. Escherichia coli K-12 MG1655 was immersed in GelMA microspheres and subjected to a series of antibiotic concentration gradients. Bacterial viability was inferred from time-dependent changes in microsphere diameter. The results demonstrated substantial tolerance of the resulting biofilms to ampicillin, ciprofloxacin, and ceftriaxone, with biofilm antibiotic tolerance values exceeding 200 μg/mL, 10–50 μg/mL, and 20–50 μg/mL, respectively. Relative to planktonic MICs, these tolerance levels are elevated by one to two orders of magnitude and surpass the standard clinical breakpoint thresholds. This methodology includes a high-throughput platform, involving only several hundred microspheres and achieving completion within 24 h, thereby offering a useful platform for investigating biofilm resistance mechanisms and guiding antibiotic treatment strategies. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

17 pages, 1782 KB  
Article
Production of Antimicrobial and Antioxidant Metabolites by Penicillium crustosum Using Lemon Peel as a Co-Substrate in Submerged Fermentation
by Arely Núñez-Serrano, Refugio B. García-Reyes, Juan A. Ascasio-Valdés, Cristóbal N. Aguilar-González and Alcione García-González
Foods 2026, 15(2), 348; https://doi.org/10.3390/foods15020348 - 18 Jan 2026
Viewed by 158
Abstract
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors [...] Read more.
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors and sustainable availability as an agro-industrial byproduct. Crude extracts, aqueous and organic fractions, and molecular-weight partitions were assessed for antioxidant activity using the DPPH assay and for antimicrobial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Semi-purified extracts from co-substrate fermentations exhibited enhanced bioactivity, showing MIC values of 185 µg/mL against P. aeruginosa and 225 µg/mL against MRSA, along with strong ABTS radical-scavenging capacity (238.95 ± 2.17 µmol TE). RP-HPLC-ESI-MS profiling revealed phenolic acids, flavanones, flavonols, and lignans, including ferulic acid 4-O-glucoside, bisdemethoxycurcumin, secoisolariciresinol, and quercetin 3-O-xylosyl-glucuronide. These findings demonstrate that lemon peel supplementation promotes the biosynthesis of antimicrobial and antioxidant metabolites by P. crustosum. This approach supports sustainable agro-waste valorization and offers a promising strategy for obtaining natural bioactive compounds with potential applications in food preservation and health-related formulations. Full article
Show Figures

Figure 1

30 pages, 8636 KB  
Article
Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties
by Kyriaki Marina Lyra, Aggeliki Papavasiliou, Caroline Piffet, Lara Gumusboga, Jean-Michel Thomassin, Yana Marie, Alexandre Hoareau, Vincent Moulès, Javier Alcodori, Pau Camilleri Lledó, Albany Milena Lozano Násner, Jose Gallego, Elias Sakellis, Fotios K. Katsaros, Dimitris Tsiourvas and Zili Sideratou
Materials 2026, 19(2), 346; https://doi.org/10.3390/ma19020346 - 15 Jan 2026
Viewed by 280
Abstract
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical [...] Read more.
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical characterization confirmed efficient cellulose functionalization and high-quality nanofibrillation, as well as the formation of uniformly dispersed ZnO nanoparticles (≈10–20 nm) strongly integrated within the cellulose network. The ZnO content was 30 and 20 wt. % for a-CNF/ZnO and c-CNF/ZnO, respectively. Antibacterial evaluation against Escherichia coli and Staphylococcus aureus revealed enhanced activity for both hybrids, with c-CNF/ZnO displaying the lowest MIC/MBC values (50/100 μg/mL). Antiviral assays revealed complete feline calicivirus inactivation at 100 μg/mL for c-CNF/ZnO, while moderate activity was observed against bovine coronavirus, highlighting the role of surface charge. Cytotoxicity assays on mammalian cells demonstrated high biocompatibility at antimicrobial concentrations. Life cycle assessment showed that c-CNF/ZnO exhibits a lower overall environmental burden than a-CNF/ZnO, with electricity demand being the main contributor, indicating clear opportunities for further reductions through process optimization and scale-up. Overall, these results demonstrate that CNF/ZnO nanohybrids effectively combine renewable biopolymers with ZnO antimicrobial functionality, offering a sustainable and safe platform for biomedical and environmental applications. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

19 pages, 1992 KB  
Article
Antimicrobial Use and Epidemiological Resistance Profiles of Commensal Escherichia coli from Swine Farms in Córdoba, Argentina
by Nicolás Javier Litterio, María del Pilar Zarazaga, Augusto Matías Lorenzutti, Juan Pablo Vico, Martín Alejandro Himelfarb, Mariano Guillermo Tinti, Ana Paola Zogbi, Sonia Rubio-Langre and Manuel Ignacio San Andrés Larrea
Antibiotics 2026, 15(1), 86; https://doi.org/10.3390/antibiotics15010086 - 15 Jan 2026
Viewed by 145
Abstract
Background/Objectives: The expansion of intensive swine production in Córdoba, Argentina, underscores the need to assess the risks associated with antimicrobial (AM) use, whose extensive application has driven antimicrobial resistance, a major global threat within the One Health framework. This study aimed to characterize [...] Read more.
Background/Objectives: The expansion of intensive swine production in Córdoba, Argentina, underscores the need to assess the risks associated with antimicrobial (AM) use, whose extensive application has driven antimicrobial resistance, a major global threat within the One Health framework. This study aimed to characterize AM use practices and evaluate the epidemiological resistance profiles (non-wild-type phenotypes, NWT) of commensal Escherichia coli of fecal origin from swine farms, using epidemiological cut-off values (ECOFFs) as a surveillance criterion. Methods: An observational cross-sectional study was conducted in 19 farrow-to-finish farms in Córdoba during 2023. Information on AM use (prophylaxis, metaphylaxis, treatment) across production categories was collected. A total of 437 E. coli isolates were obtained from fecal samples, and minimum inhibitory concentrations (MICs) were determined for 10 AMs of critical importance for human and animal health. NWT phenotypes were classified according to EUCAST ECOFFs, and multidrug resistance (MDR) was assessed. Results: AM use was frequent and predominantly prophylactic (89.5% of farms), mainly through mass medication (66.3%), with macrolides and amoxicillin being the most commonly administered AMs. NWT proportions were extremely high (90–92%) for ampicillin, tetracyclines, and chloramphenicol and substantial for ciprofloxacin (50.6%), sulfamethoxazole (68.2%), and trimethoprim (44.9%). Extended-spectrum β-lactamase (ESBL)-producing phenotypes were detected. Alarmingly, 92% of isolates were classified as MDR E. coli, with homogeneous distribution across production categories. Conclusions: Findings reveal intensive and largely empirical AM use that has consolidated a stable intestinal resistome in the swine population. High MDR levels, even in categories with limited direct AM exposure or involving banned compounds, suggest that co-selection and horizontal gene transfer are key drivers of resistance. This scenario highlights the urgent need to strengthen integrated surveillance and promote prudent AM use strategies under the One Health approach to preserve therapeutic efficacy. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Veterinary Science, 2nd Edition)
Show Figures

Figure 1

14 pages, 39400 KB  
Article
Antimicrobial and Antibiofilm Activity of a Lactobacillus reuteri SGL01, Vitamin C and Acerola Probiotic Formulation Against Streptococcus mutans DSM20523
by Adriana Antonina Tempesta, Gaia Vertillo Aluisio, Federica Di Gregorio, Roberta Lucia Pecora, Maria Lina Mezzatesta, Viviana Cafiso, Eleonora Chines, Giovanni Barbagallo and Maria Santagati
Biomolecules 2026, 16(1), 158; https://doi.org/10.3390/biom16010158 - 15 Jan 2026
Viewed by 291
Abstract
Dental caries is a multifactorial chronic infectious disease that impacts healthcare costs globally, caused by alterations of the plaque microbiome and proliferation of cariogenic Streptococcus mutans. Treatments targeting S. mutans, such as alternative strategies using probiotics, might be effective in preventing [...] Read more.
Dental caries is a multifactorial chronic infectious disease that impacts healthcare costs globally, caused by alterations of the plaque microbiome and proliferation of cariogenic Streptococcus mutans. Treatments targeting S. mutans, such as alternative strategies using probiotics, might be effective in preventing the development of dental caries. In this study, the probiotic formulation of Lactobacillus reuteri SGL01, vitamin C, and acerola was tested against S. mutans DSM20523. Antimicrobial activity was assessed by deferred antagonism and spot-on-lawn assays for L. reuteri SGL01. MIC and MBC of L. reuteri SGL01 cell-free supernatant (CFS), vitamin C, and acerola were determined with the microdilution method. Time–kill assays determined the bactericidal kinetics for each compound. The checkerboard method was used to evaluate the potential synergistic activity of CFS–vitamin C or CFS–acerola at scalar dilutions from 1 to 8X MIC. Lastly, antibiofilm activity was tested for each compound. Antimicrobial activity of L. reuteri SGL01 was first assessed by classic methods. MIC and MBC values differed for one dilution for all compounds, with values of 25% and 50% for CFS, 9.3 mg/mL and 18.7 mg/mL for vitamin C, and 18.7 mg/mL and 37.5 mg/mL for acerola, respectively. Moreover, time–kill assays confirmed the bactericidal activity at different timepoints: 4 h for CFS, 6 h for vitamin C, and 24 h for acerola. The fractional inhibitory concentration index (FICI) showed indifference for all combinations, and for associations tested at 2, 4, and 8XMIC. S. mutans biofilm production was impaired for all components, with stronger activity by vitamin C and acerola at lower concentrations. The probiotic formulation containing L. reuteri SGl01, vitamin C, and acerola extract exerts a bactericidal effect, especially strong for the CFS, as well as antibiofilm activity. Thus, the combination of these three components could be advantageous for their complementary effects, with use as a novel treatment against the development of dental caries by S. mutans. Full article
Show Figures

Graphical abstract

14 pages, 1263 KB  
Article
Natural Essential Oils as Promising Antimicrobial Agents to Improve Food Safety: Mechanistic Insights Against Multidrug-Resistant Campylobacter jejuni and Campylobacter coli Isolated from Tunisia
by Manel Gharbi, Chedia Aouadhi, Chadlia Hamdi, Safa Hamrouni and Abderrazak Maaroufi
Foods 2026, 15(2), 308; https://doi.org/10.3390/foods15020308 - 14 Jan 2026
Viewed by 209
Abstract
The increasing prevalence of multidrug-resistant (MDR) Campylobacter species poses a serious threat to food safety and public health, highlighting the urgent need for natural antimicrobial alternatives to conventional antibiotics. This study investigated the antibacterial potential and mechanism of action of seven essential oils [...] Read more.
The increasing prevalence of multidrug-resistant (MDR) Campylobacter species poses a serious threat to food safety and public health, highlighting the urgent need for natural antimicrobial alternatives to conventional antibiotics. This study investigated the antibacterial potential and mechanism of action of seven essential oils (EOs), Cymbopogon citratus, Mentha pulegium, Artemisia absinthium, Myrtus communis, Thymus algeriensis, Thymus capitatus, and Eucalyptus globulus, against multidrug-resistant Campylobacter jejuni and Campylobacter coli. The antimicrobial activity was first assessed by the agar disk diffusion and broth microdilution methods to determine inhibition zones, minimum inhibitory concentrations (MICs), and minimum bactericidal concentrations (MBCs). The most active EOs were further evaluated through time–kill kinetics, cell lysis, salt tolerance, and membrane integrity assays to elucidate their bactericidal mechanisms. Results showed that E. globulus, T. algeriensis, and M. communis exhibited the strongest inhibitory effects, particularly against C. jejuni, with MIC values ranging from 3.125% to 6.25%, while C. coli was more resistant. Time–kill and lysis experiments demonstrated rapid bacterial reduction and significant decreases in optical density, indicating cell disruption. Additionally, EO treatments reduced salt tolerance and induced leakage of cytoplasmic materials, confirming membrane damage. Overall, these findings suggest that selected essential oils exert potent antimicrobial effects through membrane disruption and osmotic imbalance, offering promising natural strategies to control MDR Campylobacter in food systems. The application of such bioactive compounds could contribute significantly to improving food quality, extending shelf life, and enhancing food safety. Full article
Show Figures

Figure 1

9 pages, 865 KB  
Article
Two New Andrastin-Type Meroterpenoids from Marine Sponge-Derived Fungus Botryosporium sp. S5I2-1
by Hui-Xian Liang, Wan-Ying Guo, Shi-Hai Xu and Bing-Xin Zhao
Molecules 2026, 31(2), 294; https://doi.org/10.3390/molecules31020294 - 14 Jan 2026
Viewed by 129
Abstract
Botryomeroterpenoids A (1) and B (2), two new andrastin-type meroterpenoids, along with two known analogues (3 and 4), were isolated from sponge-derived fungus Botryosporium sp. S5I2-1. Their structures were characterized by detailed spectroscopic analysis. Meanwhile, the absolute [...] Read more.
Botryomeroterpenoids A (1) and B (2), two new andrastin-type meroterpenoids, along with two known analogues (3 and 4), were isolated from sponge-derived fungus Botryosporium sp. S5I2-1. Their structures were characterized by detailed spectroscopic analysis. Meanwhile, the absolute configurations of 1 and 2 were elucidated by comparing experimental and calculated ECD spectra. Compounds 1 and 2 were the first examples of andrastin-type meroterpenoids isolated from this genus, especially Compound 1 which represented the initial instance of 18-norandrastin-type meroterpenoids. Furthermore, the antibacterial activities of all compounds were also evaluated. However, the results indicated that these compounds showed no significant inhibitory activity against the tested bacteria with minimum inhibitory concentration (MIC) values of 32–64 μg/mL. Full article
Show Figures

Figure 1

15 pages, 1585 KB  
Article
Comparative Analysis of Phytochemical Profile and Antioxidant and Antimicrobial Activity of Green Extracts from Quercus ilex and Quercus robur Acorns
by Diego Gonzalez-Iglesias, Francisco Martinez-Vazquez, Laura Rubio, Jesús María Vielba, Trinidad de Miguel and Marta Lores
Molecules 2026, 31(2), 277; https://doi.org/10.3390/molecules31020277 - 13 Jan 2026
Viewed by 223
Abstract
An environmentally friendly extraction strategy based on an MSAT (Medium Scale Ambient Temperature) system was applied to Quercus ilex and Quercus robur acorns with the aim of maximizing polyphenolic yield and antioxidant activity while minimizing solvent consumption. Operational parameters were first optimized for [...] Read more.
An environmentally friendly extraction strategy based on an MSAT (Medium Scale Ambient Temperature) system was applied to Quercus ilex and Quercus robur acorns with the aim of maximizing polyphenolic yield and antioxidant activity while minimizing solvent consumption. Operational parameters were first optimized for Quercus ilex using a BBD-RSM (Box–Behnken response surface methodology), where the optimum working zone corresponds to the values of 200 g of acorn, 100 mL of extracting solvent, and 0.5 dispersant/acorn ratio. Subsequently, these conditions were applied to Quercus robur to enable an interspecific comparison. Extracts were evaluated in terms of total polyphenolic content, antioxidant activity, reducing sugars, proteins, targeted polyphenols quantified by UHPLC-QToF, and antimicrobial activity. Optimal extractions from Quercus ilex reached 25,072 mgGAE L−1 and 162 mmolTE L−1, while Quercus robur extracts showed markedly superior values of 35,822 mgGAE L−1 and 234 mmolTE L−1. Polyphenol quantification revealed higher concentrations of gallotannins in Quercus robur and procyanidins and catechin in Quercus ilex. The extracts showed strong antibacterial activity, especially Quercus ilex against S. aureus with a MIC ≤ 0.63%. Furthermore, it has been demonstrated for the first time that acorn extracts can inhibit the growth of Phytophthora cinnamomi in vitro, with Quercus robur extracts having a MIC ≤ 0.1% and Quercus ilex extracts ≤ 1%. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

14 pages, 2262 KB  
Article
Improved Biological Control of Bacterial Leaf Blight Using a Surfactant Complex of CO2 Micro-Nanobubbles Coated with Crude Ethyl Acetate Extract of Trichoderma polyalthiae UBZSN2-1
by Wasan Seemakram, Thanapat Suebrasri, Saranya Chantawong, Sornamol Traiphop, Sriprajak Krongsuk, Jirawat Sanitchon, Thanawan Gateta and Sophon Boonlue
Plants 2026, 15(2), 245; https://doi.org/10.3390/plants15020245 - 13 Jan 2026
Viewed by 222
Abstract
The bacterium Xanthomonas oryzae pv. oryzae is an important pathogen that causes wilt leaf blight disease in rice (Oryza sativa L.), leading to a reduction in rice yield. Therefore, this study aimed to investigate the potential of a surfactant complex composed of [...] Read more.
The bacterium Xanthomonas oryzae pv. oryzae is an important pathogen that causes wilt leaf blight disease in rice (Oryza sativa L.), leading to a reduction in rice yield. Therefore, this study aimed to investigate the potential of a surfactant complex composed of CO2 nanobubbles (CO2-NBs) coated with sorbitan monostearate (Sp60) and a crude extract of Trichoderma polyalthiae as active ingredient delivery agents for controlling leaf blight under both laboratory and greenhouse conditions. The addition of Sp60 and crude extract as surfactants significantly influenced the size uniformity and stability of CO2-NBs at the nano level, with the nanobubbles remaining intact in water for up to 14 days. In addition, CO2-NBs with crude extract and Sp60 reduced the severity of wilt, with an minimum inhibitory concentration (MIC) value of 64 µg/mL and an minimum bactericidal concentration (MBC) value of 128 µg/mL, and inhibited the disease by more than 50% in greenhouse conditions. Therefore, this study presents a creative and eco-friendly approach to managing bacterial leaf blight in rice that is innovative and relevant to sustainable plant protection. Full article
Show Figures

Graphical abstract

21 pages, 3919 KB  
Article
Myristicin from Athamanta sicula L.: A Potential Natural Antimicrobial Agent
by Antonella Porrello, Alessia Sordillo, Natale Badalamenti, Giusy Castagliuolo, Giuseppe Bazan, Daniela Di Girolamo, Mario Varcamonti, Anna Zanfardino and Maurizio Bruno
Antibiotics 2026, 15(1), 79; https://doi.org/10.3390/antibiotics15010079 - 13 Jan 2026
Viewed by 197
Abstract
Athamanta L. is a small genus of the Apiaceae family, comprising only sixteen species and subspecies, which are distributed in the Canary Islands, Central Europe, and the Mediterranean basin. Background/Objectives: Since the time of Dioscurides, the species of this genus have been [...] Read more.
Athamanta L. is a small genus of the Apiaceae family, comprising only sixteen species and subspecies, which are distributed in the Canary Islands, Central Europe, and the Mediterranean basin. Background/Objectives: Since the time of Dioscurides, the species of this genus have been reported to have had several ethnopharmacological activities, and some of them are also used currently. Athamanta sicula L., growing in Italy, Tunisia, Algeria, and Morocco, is the only species of this genus present in Sicily. To further explore the phytochemical profile and biological properties of this species, the present study focused on the essential oil (EO) extracted from the aerial parts of wild A. sicula populations collected in central Sicily. Methods: The chemical composition of the EO, obtained by hydrodistillation, was determined by GC–MS analysis. The presence of myristicin was confirmed by isolation and by 1H-NMR spectroscopic characterization. Results: The EO and its main constituents have been tested for possible antimicrobial properties against several bacterial strains, showing MIC values in the of 15–30 mg/mL range, and the mechanism of action was further investigated, revealing membrane-targeting effects consistent with outer membrane permeabilization. In addition, antibiofilm activity (with up to ~80% inhibition of biofilm formation at sub-MICs), antioxidant potential (demonstrating dose-dependent radical scavenging activity), and biocompatibility with eukaryotic cells were assessed to provide a comprehensive pharmacological profile of A. sicula EO. Specifically, the most abundant constituent was myristicin (62.2%), the principal representative of the phenylpropanoid class (64.4%). Hydrocarbon monoterpenes represented the second class of the EO (27.4%), with β-phellandrene (12.2%) as the main compound. Conclusions: Myristicin emerged as the key contributor to the antimicrobial and antibiofilm activity of the EO. The obtained results highlight the relevance of A. sicula EO as a myristicin-rich essential oil with notable in vitro biological activity. Full article
(This article belongs to the Section Plant-Derived Antibiotics)
Show Figures

Figure 1

Back to TopTop