Antibiotic Resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum: Definition of Sensitivity/Resistance Profiles at the Species Level
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Selection and Acquisition
2.2. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ECDC. Sorveglianza Della Resistenza Antimicrobica in Europa. 2017. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2017 (accessed on 15 March 2025).
- WHO Antimicrobial Resistance. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 16 March 2025).
- Dadgostar, P. Antimicrobial Resistance: Implications and Cost. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Montassier, E.; Valdés-Mas, R.; Batard, E.; Zmora, N.; Dori-Bachash, M.; Suez, J.; Elinav, E. Probiotics Impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol. 2021, 6, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, X.; Loong Ho, C. Recent development of probiotic bifidobacteria for treating human diseases. Front. Bioeng. Biotechnol. 2021, 9, 770248. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Teng, D.; Mao, R.; Hao, Y.; Wang, X.; Wang, J. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Int. 2020, 136, 109571. [Google Scholar] [CrossRef]
- Duranti, S.; Lugli, G.A.; Mancabelli, L.; Turroni, F.; Milani, C.; Mangifesta, M.; Ferrario, C.; Anzalone, R.; Viappiani, A.; van Sinderen, D.; et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl. Environ. Microbiol. 2017, 83, e02894. [Google Scholar] [CrossRef]
- Moubareck, C.; Gavini, F.; Vaugien, L.; Butel, M.J.; Doucet-Populaire, F. Antimicrobial susceptibility of bifidobacteria. J. Antimicrob. Chemother. 2005, 55, 38–44. [Google Scholar] [CrossRef]
- Huddleston, J.R. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect. Drug Resist. 2014, 7, 167–176. [Google Scholar] [CrossRef]
- Area Scientifico-Culturale Infettivologia SIFO. Antibiogramma, Questo Sconosciuto: Istruzioni per Un’interpretazione Corretta. Società Italiana di Farmacia Ospedaliera e dei Servizi Farmaceutici Delle Aziende Sanitarie (SIFO). 2022. Available online: https://www.sifoweb.it/biblioteca-sifo/altre-edizioni/5991-antibiogramma,-questo-sconosciuto-istruzioni-per-un-interpretazione-corretta.html (accessed on 13 June 2025).
- Iskandar, K.; Murugaiyan, J.; Hammoudi Halat, D.; Hage, S.E.; Chibabhai, V.; Adukkadukkam, S.; Roques, C.; Molinier, L.; Salameh, P.; Van Dongen, M. Antibiotic discovery and resistance: The chase and the race. Antibiotics 2022, 11, 182. [Google Scholar] [CrossRef]
- Agenzia Italiana del Farmacco (AIFA). Dossier Stampa AIFA: Antibiotico-Resistenza 2024. Available online: https://www.aifa.gov.it/documents/20142/2604032/Dossier_stampa_AIFA_Antibiotico-resistenza_2024.pdf (accessed on 8 March 2025).
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Lourdes Bastos, M.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, 5206. [Google Scholar]
- CCOS. 2020. Available online: https://www.ccos.ch/bio_resources/special_property_strains/bifidobacteria (accessed on 8 March 2025).
- Gueimonde, M.; Sánchez, B.G.; de los Reyes-Gavilán, C.; Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 2013, 4, 202. [Google Scholar] [CrossRef]
- Yang, S.; Qiao, J.; Zhang, M.; Kwok, L.-Y.; Bogovič Matijašić, B.; Zhang, H.; Zhang, W. Prevention and treatment of antibiotics-associated adverse effects through the use of probiotics: A review. J. Adv. Res. 2025, 71, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Lamberte, L.E.; van Schaik, W. Antibiotic resistance in the commensal human gut microbiota. Curr. Opin. Microbiol. 2022, 68, 102150. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Singh, R. Antibiotic resistance in food lactic acid bacteria a review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Wang, J.; Zhou, A.; Ma, C.; Wu, X.; Moore, J.E.; Millar, B.C.; Xu, J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr. Microbiol. 2011, 62, 1081–1089. [Google Scholar] [CrossRef]
- Imperial, I.C.V.J.; Ibana, J.A. Addressing the antibiotic resistance problem with probiotics: Reducing the risk of its double-edged sword effect. Front. Microbiol. 2016, 7, 1983. [Google Scholar] [CrossRef]
- Aquilina, G.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; de Knecht, J.; Dierick, N.A.; Gralak, M.A.; Gropp, J.; Halle, I.; Hogstrand, C.; et al. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar]
- Marbun, K.T.; Sugata, M.; Purnomo, J.S.; Dikson; Sudana, S.O.; Jan, T.T.; Jo, J. Genomic characterization and safety assessment of Bifidobacterium breve BS2-PB3 as functional food. J. Microbiol. Biotechnol. 2024, 34, 871–879. [Google Scholar] [CrossRef]
- Wang, C.; Tian, Z.; Luan, X.; Zhang, H.; Zhang, Y.; Yang, M. Distribution of antibiotic resistance genes on chromosomes, plasmids and phages in aerobic biofilm microbiota under antibiotic pressure. J. Environ. Sci. 2024, 10, 41. [Google Scholar] [CrossRef]
- Rozman, V.; Lorberg, P.M.; Accetto, T.; Matijašić, B.B. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol. 2020, 314, 108388. [Google Scholar] [CrossRef]
- Nøhr-Meldgaard, K.; Struve, C.; Ingmer, H.; Agersø, Y. The Tetracycline resistance gene, tet(W) in Bifidobacterium animalis subsp. lactis follows phylogeny and differs from tet(W) in other species. Front. Microbiol. 2021, 12, 658943. [Google Scholar] [CrossRef]
- Kiwaki, M.; Sato, T. Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int. J. Food Microbiol. 2009, 134, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.A.; Cooper, R.K.; Cloeckaert, A.; Siebeling, R.J. Plasmid-mediated high-level gentamicin resistance among enteric bacteria isolated from pet turtles in Louisiana. Appl. Environ. Microbiol. 2006, 72, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; O’Sullivan, D.J. Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector. Appl. Environ. Microbiol. 2006, 72, 527–535. [Google Scholar] [CrossRef] [PubMed]
- van Schaik, W. The human gut resistome. Phil. Trans. R. Soc. B. Biol. Sci. 2015, 370, 20140087. [Google Scholar] [CrossRef]
- Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Järvinen, A. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG. Clin. Infect. Dis. 2004, 38, 62–69. [Google Scholar] [CrossRef]
- Boyle, R.J.; Robins-Browne, R.M.; Tang, M.L. Probiotic use in clinical practice: What are the risks? Am. J. Clin. Nutr. 2006, 83, 1256–1264. [Google Scholar] [CrossRef]
- Manuale MSD. 2020. Available online: https://www.msdmanuals.com/it-it/professionale/malattie-infettive/batteri-e-farmaci-antibatterici/panoramica-sui-farmaci-antibatterici (accessed on 29 March 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terlizzi, M.; Speranza, B.; Sinigaglia, M.; Corbo, M.R.; Bevilacqua, A. Antibiotic Resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum: Definition of Sensitivity/Resistance Profiles at the Species Level. Microorganisms 2025, 13, 1647. https://doi.org/10.3390/microorganisms13071647
Terlizzi M, Speranza B, Sinigaglia M, Corbo MR, Bevilacqua A. Antibiotic Resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum: Definition of Sensitivity/Resistance Profiles at the Species Level. Microorganisms. 2025; 13(7):1647. https://doi.org/10.3390/microorganisms13071647
Chicago/Turabian StyleTerlizzi, Mario, Barbara Speranza, Milena Sinigaglia, Maria Rosaria Corbo, and Antonio Bevilacqua. 2025. "Antibiotic Resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum: Definition of Sensitivity/Resistance Profiles at the Species Level" Microorganisms 13, no. 7: 1647. https://doi.org/10.3390/microorganisms13071647
APA StyleTerlizzi, M., Speranza, B., Sinigaglia, M., Corbo, M. R., & Bevilacqua, A. (2025). Antibiotic Resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum: Definition of Sensitivity/Resistance Profiles at the Species Level. Microorganisms, 13(7), 1647. https://doi.org/10.3390/microorganisms13071647