Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of Erysipelothrix Strains
2.2. Serotyping of E. rhusiopathiae Isolates
2.3. Antimicrobial Susceptibility Test
2.4. Detection of Resistance Genes
2.5. Sequence and Analysis of the Selected PCR Products
3. Discussion
4. Materials and Methods
4.1. Isolation and Identification of Erysipelothrix Strains
4.2. Serotyping of E. rhusiopathiae Strains
4.3. Antimicrobial Susceptibility Test
4.4. Detection of Resistance Genes
4.5. Sequence and Analysis of the Selected PCR Products
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooke, C.J.; Riley, T.V. Erysipelothrix rhusiopathiae: Bacteriology, epidemiology and clinical manifestations of an occupational pathogen. J. Med. Microbiol. 1999, 48, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Takahasi, T.; Sawada, T.; Ohmae, K.; Terakado, N.; Muramatus, M.; Seto, K.; Maruyama, T.; Kanzaki, M. Antibiotic resistance of Erysipelothrix rhusiopathiae isolated from pigs with chronic swine erysipelas. Antimicrob. Agents Chemother. 1984, 25, 385–386. [Google Scholar] [CrossRef]
- Opriessnig, T.; Forde, T.; Shimoji, Y. Erysipelothrix spp.: Past, present, and future directions in vaccine research. Front. Vet. Sci. 2020, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Veraldi, S.; Girgenti, V.; Dassoni, F.; Gianotti, R. Erysipeloid: A review. Clin. Exp. Dermatol. 2009, 34, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Romney, M.; Ceung, S.; Montessori, A. Erysipelothrix rhusiopathiae endocarditis and presumed osteomyelitis. Can. J. Infect. Dis. 2001, 12, 254–256. [Google Scholar]
- Wang, T.; Khan, D.; Mobarakai, N. Erysipelothrix rhusiopathiae endocarditis. IDCases 2020, 22, e00958. [Google Scholar] [CrossRef]
- Bricker, J.M.; Saif, Y.M. Use of a live oral vaccine to immunize turkeys against erysipelas. Avian Dis. 1988, 32, 668–673. [Google Scholar] [CrossRef]
- Eriksson, H.; Brannstrom, S.; Skarin, H.; Chirico, J. Characterization of Erysipelothrix rhusiopathiae isolates from laying hens and poultry red mites (Dermanyssus gallinae) from an outbreak of erysipelas. Avian Pathol. 2010, 39, 505–509. [Google Scholar] [CrossRef]
- Mazaheri, A.; Lierz, M.; Hafez, H.M. Investigations on the pathogenicity of Erysipelothrix rhusiopathiae in laying hens. Avian Dis. 2005, 49, 574–576. [Google Scholar] [CrossRef]
- Bobrek, K.; Gaweł, A. Erysipelas Outbreaks in Flocks of Geese in Poland--Biochemical and Genetic Analyses of the Isolates. Avian Dis. 2015, 59, 436–439. [Google Scholar] [CrossRef]
- Bobrek, K.; Nowak, M.; Borkowska, J.; Bobusia, K.; Gaweł, A. An outbreak of erysipelas in commercial geese. Pak. Vet. J. 2016, 36, 372–374. [Google Scholar]
- Makino, S.; Okada, Y.; Maruyama, T.; Ishikawa, K.; Takahashi, T.; Nakamura, M.; Ezaki, T.; Morita, H. Direct and rapid detection of Erysipelothrix rhusiopathiae DNA in animals by PCR. J. Clin. Microbiol. 1994, 32, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Takeshi, K.; Makino, S.; Ikeda, T.; Takada, N.; Nakashiro, A.; Nakanishi, K.; Oguma, K.; Katoh, Y.; Sunagawa, H.; Ohyama, T. Direct and rapid detection by PCR of Erysipelothrix sp. DNAs prepared from bacterial strains and animal tissues. J. Clin. Microbiol. 1999, 37, 4093–4098. [Google Scholar] [CrossRef]
- Shiraiwa, K.; Ogawa, Y.; Nishikawa, S.; Eguchi, M.; Shimoji, Y. Identification of serovar 1a, 1b, 2, and 5 strains of Erysipelothrix rhusiopathiae by a conventional gel-based PCR. Vet. Microbiol. 2018, 225, 101–104. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Wu, C.; Lv, C.; Zhao, Y.; Zhu, W.; Liu, L.; Wang, T.; Kang, C.; Yang, Y.; Sun, X.; Zhang, Q.; et al. Characterization of Erysipelothrix rhusiopathiae Isolates from Diseased Pigs in 15 Chinese Provinces from 2012 to 2018. Microorganisms 2021, 9, 2615. [Google Scholar] [CrossRef]
- Bailie, W.; Bury, R.; Bicknell, E.; Knudtson, W. Erysipelothrix infection in goslings. Avian Dis. 1970, 14, 555–556. [Google Scholar] [CrossRef]
- Brickford, A.; Corstvet, R.; Rosenwald, A. Pathology of experimental erysipelas in turkeys. Avian Dis. 1978, 22, 503–518. [Google Scholar] [CrossRef]
- Bobrek, K.; Gaweł, A.; Mazurkiewicz, M. Infections with Erysipelothrix rhusiopathiae in poultry flocks. World’s Poult. Sci. J. 2013, 69, 803–812. [Google Scholar] [CrossRef]
- Hess, C.; Bilic, I.; Jandreski-Cvetkovic, D.; Hess, M. Antimicrobial dilution susceptibility testing of Erysipelothrix rhusiopathiae according to CLSI Document VET06 reveals high resistance against penicillin G erythromycin and enrofloxacin. Poultry 2023, 2, 54–62. [Google Scholar] [CrossRef]
- Crespo, R.; Bland, M.; Opriessnig, T. Use of commercial swine live attenuated vaccine to control an Erysipelothrix rhusiopathiae outbreak in commercial cage-free layer chickens. Avian Dis. 2019, 63, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, H.; Hayashidani, H.; Higashi, J.; Kaneko, K.; Takahashi, T.; Ogawa, M. Occurrence of Erysipelothrix spp. in broiler chickens at an abattoir. J. Food Prot. 1998, 61, 807–909. [Google Scholar] [CrossRef] [PubMed]
- Chuma, T.; Kawamoto, T.; Shahada, F.; Fujimoto, H.; Okamoto, K. Antimicrobial susceptibility of Erysipelotrix rhusiopathiae isolated from pigs in Southern Japan with a modified agar dilution method. J. Vet. Med. Sci. 2010, 72, 643–645. [Google Scholar] [CrossRef]
- Dec, M.; Łagowski, D.; Nowak, T.; Piergas-Ożga, D.; Herman, K. Serotypes, antibiotic susceptibility, genotypie virulence profiles and SpaA variants of Erysipelothrix rhusiopathiae strains isolated from pigs in Poland. Pathogens 2023, 12, 409. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kijima, M.; Yoshimura, H.; Takahashi, T. Antimicrobial Susceptibilities of Erysipelothrix Rhusiopathiae Isolated from Pigs with Swine Erysipelas in Japan, 1988–1998. J. Vet. Med. B Infect. Dis. Vet. Public Health 2001, 48, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Venditti, M.; Gelfusa, V.; Tarasi, A.; Brandimarte, C.; Serro, P. Antimicrobial susceptibilities of Erysipelothrix rhusiopathiae. Animicrob. Agents Chemiother. 1990, 34, 2038–2040. [Google Scholar] [CrossRef]
- Opriessnig, T.; Hoffman, L.; Harris, D.; Gaul, S.; Halbur, P. Erysipelothrix rhusiopathiae: Genetic characterization of Midwest US isolates and live commercial vaccines using pulsed-field gel electroforesis. J. Vet. Diagn. Investig. 2004, 16, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, H.; Jansson, D.S.; Johansson, K.E.; Baverud, V.; Chirico, J.; Aspan, A. Characterization of Erysipelothrix rhusiopathiae isolates from poultry, pigs, emus, the poultry red mite and others animals. Vet. Microbiol. 2009, 137, 98–104. [Google Scholar] [CrossRef]
- Takahasi, T.; Sawada, T.; Muramatsu, M.; Tamura, Y.; Fujisawa, T.; Benno, Y.; Mitsuoka, T. Serotype, antimicrobial susceptibility and pathogenicity of Erysipelothrix rhusiopathiae isolated from tonsils of apparently healthy slaughter pigs. J. Clin. Microbiol. 1987, 25, 536–539. [Google Scholar] [CrossRef]
- Hooper, D.C. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect. Dis. 2002, 2, 530–538. [Google Scholar] [CrossRef]
- Takei, M.; Fukuda, H.; Kishii, R.; Hosaka, M. Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition Antimicrob. Agents Chemother. 2001, 45, 3544–3547. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Li, Y.; Xu, C.; Xie, X.; Li, P.; Ma, G.; Lei, C.; Liu, J.X.; Zhang, A. Genome sequence of multidrug-resistant Erysipelothrix rhusiopathiae ZJ carrying several acquired antimicrobial resistance genes. J. Glob. Antimicrob. Resist. 2020, 21, 13–15. [Google Scholar] [CrossRef]
- CLSI. Supplement Vet06: Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals, 1st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- CLSI. Supplement M100: Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Davison, H.; Low, J.; Woolhouse, M. What is antibiotic resistance and how can we measure it? Trends Microbiol. 2000, 8, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.; Cunha, E.; Baptista, L.; Tavares, L.; Oliveira, M. ESBL-Positive Enterobacteriaceae from Dogs of Santiago and Boa Vista Islands, Cape Verde: A Public Health Concern. Antibiotics 2023, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Malhotra-Kumar, S.; Lammens, C.; Piessens, J.; Goossens, H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob. Agents Chemother. 2005, 49, 4798–4800. [Google Scholar] [CrossRef]
Primer Name | Sequence | Targeting | Product Size [bp] | References | |
---|---|---|---|---|---|
Primers for genus and species identification | MO101-MO102 | 5′-AGATGCCTAGAAACTGTA-3′ 5′-CTGTATCCGCCATAACTA-3′ | Erysipelothrix spp. | 407 | [12] |
ER1F-ER1R | 5′-GTTCATCTCTCTAATGCACTAC-3′ 5′-TGTTGGACTACTAATCGTTTCG-3′ | E. rhusiopathiae | 339 | [13] | |
ER2F-ER2R | 5′-ATGTAATATGATCTGGTGATTTG-3′ 5′-AGGACTGCTGATTGTCTCATG-3′ | E. tonsillarum | 384 | [13] | |
ER3F-ER3R | 5′-TGGAGGACCGAACCGACTG-3′ 5′-AATTTTGGGACCTTAACTGGC-3′ | Erysipelothrix sp. strain 1 | 289 | [13] | |
ER4F-ER4R | 5′-TAAAGCACTAAGATCTGGTGG-3′ 5′-TCGGACTACTAATTGTCTCAG-3′ | Erysipelothrix sp. strain 2 | 387 | [13] | |
Primers for serotype identification | 1aF-1aR | 5′-CTCCTAACGCTTTAGCACGC-3′ 5′-TGATCCTTTGCCACTAATGC-3′ | E. rhusiopathiae serotype 1a | 356 | [14] |
1bF-1bR | 5′-CGAAAGCATCCCTTAATCATTGC-3′ 5′-TGCGTGTAAAACCTGATCGTGTAAATC-3′ | E. rhusiopathiae serotype 1b | 1357 | [14] | |
2F-2R | 5′−CCACGTCTTCCCACACTACAAAAAAGTAAATTC-3′ 5′- TCATCCTAATGCATATCATTATGTGGATATGAA-3 | E. rhusiopathiae serotype 2 | 541 | [14] | |
5F-5R | 5′-GCACGTTTCCAAATATTGTATCGAGTCT-3′ 5′-GAAATAATGCCGATAGATGGAGCACC-3′ | E. rhusiopathiae serotype 5 | 194 | [14] |
Phenotypic Antimicrobial Resistance | Genetic Antimicrobial Resistance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolate No | Serotype | Penicillin | Tetracyclines | Fluoroquinolones | Macrolides | MAR Index | Tetracyclines | Fluoroquinolones | ||||
AC | XL | PG | DC | TC | EF | NX | EM | tetM Gene Presence | gyrA Point Mutations | |||
1 | 1b | 0.016 | 0.016 | 0.032 | 16 | 12 | 32 | 64 | 0.38 | 0.375 | + | T |
2 | 2 | 0.016 | 0.016 | 0.047 | 0.25 | 16 | 0.125 | 0.094 | 0.125 | 0.125 | − | C |
3 | 1b | 0.032 | 0.032 | 0.032 | 0.5 | 0.38 | 0.125 | 0.38 | 0.19 | 0 | + | C |
4 | 2 | 0.064 | 0.064 | 0.047 | 0.94 | 1.5 | 0.25 | 0.125 | 0.125 | 0 | + | C |
5 | 2 | 0.032 | 0.032 | 0.006 | 32 | 32 | 32 | 48 | 0.19 | 0.5 | + | T |
6 | 5 | 0.032 | 0.032 | 0.012 | 34 | 96 | 12 | 32 | 0.125 | 0.5 | + | A |
7 | 1b | 0.047 | 0.047 | 0.047 | 1 | 1 | 32 | 0.19 | 0.125 | 0.125 | + | C |
8 | 1b | 0.023 | 0.023 | 0.023 | 0.75 | 0.5 | 0.094 | 0.125 | 0.19 | 0 | − | C |
9 | 1b | 0.032 | 0.032 | 0.016 | 24 | 32 | 32 | 48 | 0.19 | 0.5 | + | T |
10 | 5 | 0.047 | 0.047 | 0.003 | 32 | 24 | 32 | 32 | 0.25 | 0.5 | + | A |
11 | 1b | 0.016 | 0.016 | 0.19 | 12 | 8 | 12 | 48 | 0.5 | 0.25 | + | T |
12 | 2 | 0.094 | 0.094 | 0.032 | 0.38 | 3 | 0.5 | 0.125 | 0.19 | 0 | − | C |
13 | 1b | 0.032 | 0.032 | 0.025 | 32 | 32 | 32 | 48 | 0.23 | 0.5 | − | T |
14 | 1b | 0.032 | 0.032 | 0.032 | 32 | 48 | 32 | 48 | 0.25 | 0.5 | + | T |
15 | 1b | 0.023 | 0.023 | 0.047 | 48 | 16 | 32 | 24 | 0.19 | 0.375 | + | A |
16 | 2 | 0.064 | 0.064 | 0.064 | 0.5 | 0.75 | 0.064 | 0.125 | 0.064 | 0 | − | C |
17 | 5 | 0.032 | 0.032 | 0.032 | 48 | 48 | 32 | 48 | 0.125 | 0.5 | + | T |
18 | 2 | 0.023 | 0.023 | 0.047 | 48 | 256 | 32 | 48 | 0.19 | 0.5 | + | T |
19 | 1b | 0.047 | 0.047 | 0.012 | 32 | 16 | 32 | 24 | 0.5 | 0.5 | + | C |
20 | 2 | 0.047 | 0.047 | 0.012 | 0.75 | 0.38 | 0.064 | 0.38 | 0.25 | 0 | + | C |
21 | 2 | 0.023 | 0.023 | 0.047 | 48 | 24 | 32 | 32 | 0.5 | 0.5 | + | T |
22 | 5 | 0.064 | 0.064 | 0.025 | 24 | 24 | 32 | 12 | 0.38 | 0.5 | + | A |
23 | 1b | 0.047 | 0.047 | 0.094 | 32 | 32 | 32 | 64 | 0.5 | 0.5 | + | A |
24 | 1b | 0.047 | 0.047 | 0.032 | 32 | 32 | 0.25 | 0.19 | 0.125 | 0.25 | + | C |
25 | 1b | 0.064 | 0.064 | 0.094 | 24 | 24 | 32 | 24 | 0.19 | 0.5 | + | T |
26 | 2 | 0.064 | 0.064 | 0.012 | 16 | 24 | 32 | 96 | 0.19 | 0.5 | + | A |
27 | 1b | 0.032 | 0.032 | 0.016 | 24 | 24 | 32 | 32 | 0.19 | 0.5 | + | T |
28 | 5 | 0.094 | 0.094 | 0.047 | 24 | 32 | 32 | 48 | 0.25 | 0.5 | + | T |
29 | 1b | 0.064 | 0.064 | 0.012 | 24 | 32 | 32 | 48 | 0.25 | 0.5 | + | T |
30 | 1b | 0.125 | 0.125 | 0.047 | 0.75 | 24 | 0.125 | 0.125 | 0.25 | 0.125 | + | C |
31 | 5 | 0.016 | 0.016 | 0.016 | 0.75 | 256 | 0.094 | 48 | 0.125 | 0.25 | + | A |
32 | 1b | 0.016 | 0.016 | 0.006 | 32 | 32 | 32 | 24 | 0.38 | 00.5 | + | A |
33 | 1b | 0.064 | 0.064 | 0.016 | 24 | 24 | 32 | 32 | 0.19 | 0.5 | − | T |
34 | 1b | 0.064 | 0.064 | 0.025 | 64 | 64 | 32 | 48 | 0.5 | 0.5 | + | T |
35 | 1b | 0.094 | 0.094 | 0.032 | 16 | 0.38 | 0.125 | 0.125 | 0.5 | 0.125 | + | C |
36 | 1b | 0.125 | 0.125 | 0.047 | 0.75 | 0.38 | 0.125 | 0.125 | 0.25 | 0 | − | C |
37 | 1b | 0.032 | 0.032 | 0.006 | 32 | 24 | 32 | 48 | 0.25 | 0.5 | + | A |
38 | 2 | 0.032 | 0.032 | 0.032 | 1 | 0.38 | 0.125 | 0.125 | 0.19 | 0 | − | C |
39 | 2 | 0.016 | 0.016 | 0.032 | 16 | 12 | 32 | 64 | 0.25 | 0.375 | + | A |
40 | 5 | 0.023 | 0.023 | 0.047 | 32 | 16 | 32 | 24 | 0.19 | 0.5 | + | T |
41 | 1b | 0.016 | 0.016 | 0.19 | 12 | 8 | 12 | 32 | 0.125 | 0.25 | + | T |
42 | 1b | 0.023 | 0.023 | 0.016 | 48 | 64 | 32 | 32 | 0.5 | 0.5 | + | T |
43 | 2 | 0.094 | 0.094 | 0.032 | 0.38 | 0.75 | 0.5 | 0.125 | 0.19 | 0 | − | C |
44 | 5 | 0.032 | 0.032 | 0.032 | 12 | 0.38 | 0.125 | 0.38 | 0.125 | 0 | + | C |
45 | 1b | 0.064 | 0.064 | 0.025 | 24 | 32 | 32 | 12 | 0.125 | 0.5 | + | T |
46 | 2 | 0.032 | 0.032 | 0.006 | 12 | 12 | 0.064 | 0.125 | 025 | 0 | + | C |
47 | 1b | 0.032 | 0.032 | 0.016 | 24 | 32 | 32 | 32 | 0.19 | 0.5 | + | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrek, K.; Gaweł, A. Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine. Antibiotics 2023, 12, 1339. https://doi.org/10.3390/antibiotics12081339
Bobrek K, Gaweł A. Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine. Antibiotics. 2023; 12(8):1339. https://doi.org/10.3390/antibiotics12081339
Chicago/Turabian StyleBobrek, Kamila, and Andrzej Gaweł. 2023. "Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine" Antibiotics 12, no. 8: 1339. https://doi.org/10.3390/antibiotics12081339
APA StyleBobrek, K., & Gaweł, A. (2023). Antimicrobial Resistance of Erysipelothrix rhusiopathiae Strains Isolated from Geese to Antimicrobials Widely Used in Veterinary Medicine. Antibiotics, 12(8), 1339. https://doi.org/10.3390/antibiotics12081339