Differences in Drug-Susceptibility Patterns between Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chimaera Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Clinical Isolates
4.3. Microbiological Methods
4.3.1. Species Identification
4.3.2. DST
4.3.3. DST Quality Control
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowman, S.; Burns, K.; Benson, S.; Wilson, R.; Loebinger, M.R. The antimicrobial susceptibility of non-tuberculous mycobacteria. J. Infect. 2016, 72, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Ratnatunga, C.N.; Lutzky, V.P.; Kupz, A.; Doolan, D.L.; Reid, D.W.; Field, M. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front. Immunol. 2020, 11, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Ingen, J.; Turenne, C.Y.; Tortoli, E.; Wallace, R.J., Jr.; Brown-Elliott, B.A. A definition of the Mycobacterium avium complex for taxonomical and clinical purposes, a review. Int. J. Syst. Evol. Microbiol. 2018, 68, 3666–3667. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, V.; Ruth, M.M.; Pennings, L.J.; Svensson, E.M.; Wertheim, H.F.L.; Hoefsloot, W. An in vitro perspective on what individual antimicrobials add to Mycobacterium avium complex therapies. Antimicrob. Agents Chemother. 2021, 65, e0273020. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir. Res. 2017, 4, e000242. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, e1–e36. [Google Scholar] [CrossRef]
- Zweijpfenning, S.M.H.; van Ingen, J.; Hoefsloot, W. Geographic Distribution of Nontuberculous Mycobacteria Isolated from Clinical Specimens: A Systematic Review. Semin. Respir. Crit. Care Med. 2018, 39, 336–342. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Non-Tuberculous Mycobacterium (NTM) Infections and Heater-Cooler Devices. Interim Practical Guidance; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2015. Available online: www.cdc.gov/hai/pdfs/outbreaks/CDC-NoticeHeater-Cooler-Units-final-clean.pdf (accessed on 1 October 2022).
- European Centre for Disease Prevention and Control. Invasive Cardiovascular Infection by Mycobacterium chimaera Potentially Associated with Heater-Cooler—Units Used During Cardiac Surgery; European Centre for Disease Prevention and Control: Solna, Sweden, 2015; Available online: http://ecdc.europa.eu/en/publications/Publications/mycobacterium-chimaera-infection-associated-with-heater-cooler-unitsrapid-risk-assessment-30-April-2015.pdf (accessed on 1 October 2022).
- Quintas-Viqueiras, A.; Perez-Romero, C.; Toro-Rueda, C.; Sanchez-Calles, A.M.; Blasquez-Gonzalez, J.A.; Alejandre-Leyva, M. Mycobacterium chimaera in heater-cooler devices: An experience in a tertiary hospital in Spain. New Microbes New Infect. 2021, 39, 100757. [Google Scholar] [CrossRef]
- Boyle, D.P.; Zembower, T.R.; Reddy, S.; Qi, C. Comparison of clinical features, virulence, and relapse among Mycobacterium avium complex species. Am. J. Respir. Crit. Care Med. 2015, 191, 1310–1317. [Google Scholar] [CrossRef]
- Schweickert, B.; Goldenberg, O.; Richter, E.; Gobel, U.B.; Petrich, A.; Buchholz, P. Occurrence and clinical relevance of Mycobacterium chimaera sp. nov. Emerg. Infect. Dis. 2008, 14, 1443–1446. [Google Scholar] [CrossRef]
- Kobashi, Y.; Yoshida, K.; Miyashita, N.; Niki, Y.; Oka, M. Relationship between clinical efficacy of treatment of pulmonary Mycobacterium avium complex disease and drug-sensitivity testing of Mycobacterium avium complex isolates. J. Infect. Chemother. 2006, 12, 195–202. [Google Scholar] [CrossRef]
- Cho, E.H.; Huh, H.J.; Song, D.J.; Moon, S.M.; Lee, S.H.; Shin, S.Y.; Kim, C.K.; Ki, C.-S.; Koh, W.-J.; Lee, N.Y. Differences in drug susceptibility pattern between Mycobacterium avium and Mycobacterium intracellulare isolated in respiratory specimens. J. Infect. Chemother. 2018, 24, 315–318. [Google Scholar] [CrossRef]
- Zheng, H.W.; Pang, Y.; He, G.X.; Song, Y.Y.; Zhao, Y.L. Comparing the Genotype and Drug Susceptibilities between Mycobacterium avium and Mycobacterium intracellulare in China. Biomed. Environ. Sci. 2017, 30, 517–525. [Google Scholar] [CrossRef]
- Lin, S.; Hua, W.; Wang, S.; Zhang, Y.; Chen, X.; Liu, H.; Shao, L.; Chen, J.; Zhang, W. In vitro assessment of 17 antimicrobial agents against clinical Mycobacterium avium complex isolates. BMC Microbiol. 2022, 22, 175. [Google Scholar] [CrossRef]
- Yamori, S.; Tsukamura, M. Comparison of prognosis of pulmonary diseases caused by Mycobacterium avium and by Mycobacterium intracellulare. Chest 1992, 102, 89–90. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.J.; Jeong, B.H.; Jeon, K.; Lee, N.Y.; Lee, K.S.; Woo, S.Y.; Shin, S.J.; Kwon, O.J. Clinical significance of the differentiation between Mycobacterium avium and Mycobacterium intracellulare in M. avium complex lung disease. Chest 2012, 142, 1482–1488. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Pang, Y.; Wang, Y.; Cohen, C.; Zhao, Y.; Liu, C. Differences in risk factors and drug susceptibility between Mycobacterium avium and Mycobacterium intracellulare lung disease in China. Int. J. Antimicrob. Agents 2015, 45, 491–495. [Google Scholar] [CrossRef]
- Renvoise, A.; Bernard, C.; Veziris, N.; Galati, E.; Jarlier, V.; Robert, J. Significant difference in drug susceptibility distribution between Mycobacterium avium and Mycobacterium intracellulare. J. Clin. Microbiol. 2014, 52, 4439–4440. [Google Scholar] [CrossRef] [Green Version]
- Litvinov, V.; Maakarova, M.; Galkina, K.; Khachaturiants, E.; Krasnova, M.; Guntupova, L.; Safonova, S. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using SLOMYCO test-system. PLoS ONE 2018, 13, e0203108. [Google Scholar] [CrossRef]
- Maurer, F.P.; Pohle, P.; Kernbach, M.; Sievert, D.; Hillemann, D.; Rupp, J.; Hombach, M.; Kranzer, K. Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clin. Microbiol. Infect. 2019, 25, e1–e379. [Google Scholar] [CrossRef]
- Schulthess, B.; Schafle, D.; Kalin, N.; Widmer, T.; Sander, P. Drug susceptibility distribution of M. chimaera and other non-tuberculous Mycobacteria. Antimicrob. Agents Chemother. 2021, 65, e02131-20. [Google Scholar] [CrossRef] [PubMed]
- Guthertz, L.S.; Damsker, B.; Bottone, E.J.; Ford, E.G.; Midura, T.F.; Janda, J.M. Mycobacterium avium and Mycobacterium intracellulare infections in patients with and without AIDS. J. Infect. Dis. 1989, 160, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, D.; Liu, H.; Wan, K.; Wang, R.; Yang, Z. Trends in the Prevalence and Antibiotic Resistance of Non-tuberculous Mycobacteria in Mainland China, 2000–2019: Systematic Review and Meta-Analysis. Front. Public Health 2020, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Maesaki, S.; Kohno, S.; Koga, H.; Miyazaki, Y.; Kaku, M. A clinical comparison between Mycobacterium avium and Mycobacterium intracellulare infections. Chest 1993, 104, 1408–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomioka, H.; Sato, K.; Saito, H.; Yamada, Y. Susceptibility of Mycobacterium avium and Mycobacterium intracellulare to various antibacterial drugs. Microbiol. Immunol. 1989, 33, 509–514. [Google Scholar] [CrossRef]
- Falkinham, J.O., III; Norton, C.D.; LeChevalier, M.W. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare and other Mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 2001, 67, 1225–1231. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, K.; van Ingen, J.; Koh, W.J.; Wagner, D.; Salfinger, M.; Inagaki, T.; Uchiya, K.-I.; Nakagawa, T.; Ogawa, K.; Yamada, K.; et al. Genetic diversity of clinical Mycobacterium avium subsp. hominissuis and Mycobacterium intracellulare isolates causing pulmonary diseases recovered from different geographical regions. Infect. Genet. Evol. 2015, 36, 250–255. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kobashi, Y.; Hirano, T.; Tode, N.; Santoso, A.; Tamada, T.; Fujimura, S.; Mitsuhashi, Y.; Honda, Y.; Nukiwa, T.; et al. Mycobacterium avium genotype is associated with the therapeutic response to lung infection. Clin. Microbiol. Infect. 2014, 20, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Shin, S.H.; Moon, S.; Yang, B.; Kim, H.; Kwon, O.J.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; Shin, S.J.; et al. Distribution and clinical significance of Mycobacterium avium complex species isolated from respiratory specimens. Diagn. Microbiol. Infect. Dis. 2017, 88, 125–137. [Google Scholar] [CrossRef]
- Rodriguez-Temporal, D.; Alcaide, F.; Marekovic, I.; O’Connor, J.; Gorton, R.; Van Ingen, J.; Bossche, A.V.D.; Héry-Arnaud, G.; Beauruelle, C.; Orth-Höller, D.; et al. Multicentre study on the reproducibility of MALDI-TOF MS for nontuberculous mycobacteria identification. Sci. Rep. 2022, 12, 1237. [Google Scholar] [CrossRef]
- Devulder, G.; De Montclos, M.P.; Flandrois, J.P. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int. J. Syst. Evol. Microbiol. 2005, 55, 293–302. [Google Scholar] [CrossRef]
- Adékambi, T.; Colson, P.; Drancourt, M. rpoB-based identification of non pigmented and late-pigmenting rapidly growing Mycobacteria. Int. J. Syst. Evol. Microbiol. 2004, 54, 2095–2105. [Google Scholar] [CrossRef]
- Telenti, A.; Marchesi, F.; Balz, M.; Bally, F.; Böttger, E.C.; Bodmer, T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 1993, 31, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Woods, G.L.; Brown-Elliott, B.A.; Conville, P.S.; Desmond, E.; Hall, G.S.; Lin, G.; Pfyffer, G.E.; Ridderhof, J.C.; Siddiqi, S.H.; Wallace, R.J.; et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Report No.: M24-3nd ed-M62-1st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Brown-Elliott, B.A.; Woods, G.L. Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J. Clin. Microbiol. 2019, 57, e00834-19. [Google Scholar] [CrossRef]
M. avium (n = 402) | M. intracellulare (n = 273) | M. chimaera (n = 139) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ATB | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | p Value * | S (%) | I (%) | R (%) | p Value * |
CLA | 355 (87.0) | 37 (8.7) | 17 (4.2) | 430 (95.6) | 6 (1.0) | 12 (3.2) | 0.3 | 136 (97.8) | 3 (2.1) | 0 (0.0) | 0.01 |
CIPRO | 25 (6.2) | 61 (15.1) | 316 (78.6) | 42 (15.3) | 39 (14.2) | 192 (70.3) | 0.00001 | 16 (11.5) | 25 (17.9) | 98 (70.5) | 0.03 |
STREP | - | - | 389 (70.3) | - | - | 164 (60.0) | 0.00001 | - | - | 81 (58.2) | 0.00001 |
DOXY | 0 (0.0) | 1 (0.2) | 401 (99.7) | 2 (0.7) | 5 (1.8) | 266 (97.4) | 0.08 | 1 (0.7) | 2 (1.4) | 136 (97.8) | 0.08 |
ETHI | - | - | 92 (22.8) | - | - | 113 (41.3) | 2.8 | - | - | 58 (41.7) | 1.8 |
RIB | 381 (94.7) | - | 21 (5.2) | 266 (97.4) | - | 7 (2.5) | 0.08 | 136 (97.8) | - | 3 (2.1) | 0.1 |
EB | - | - | 394 (98.0) | - | - | 220 (80.5) | 0.00001 | - | - | 115 (82.7) | 0.00001 |
MOX | 180 (44.7) | 151 (37.5) | 71 (17.6) | 149 (54.5) | 93 (34.0) | 31 (11.3) | 0.007 | 71 (51.0) | 58 (41.7) | 10 (7.1) | 0.003 |
RIF | 65 (16.1) | - | 337 (83.8) | 136 (49.8) | - | 137 (50.1) | 0.00001 | 72 (51.7) | - | 67 (48.2) | 0.00001 |
AK | 387 (96.2) | 8 (1.9) | 7 (1.7) | 271 (99.2) | 0 (0.0) | 2 (0.7) | 0.2 | 137 (98.5) | 2 (1.4) | 0 (0.0) | 0.1 |
LNZ | 47 (11.6) | 97 (24.1) | 258 (64.1) | 84 (30.7) | 92 (33.6) | 97 (35.5) | 0.00001 | 47 (33.8) | 63 (45.3) | 29 (20.8) | 0.00001 |
SXT | 35 (8.7) | - | 367 (91.2) | 58 (21.2) | - | 215 (78.7) | 0.00001 | 21 (15.1) | - | 118 (84.8) | 0.03 |
M. avium | M. intracellulare | M. chimaera | ||
---|---|---|---|---|
MIC | Total Isolates (%) | Total Isolates (%) | Total Isolates (%) | |
Clarithromycin | ≤2 | 59 (14.6) | 204 (74.7) | 112 (80.5) |
4–8 | 296 (72.3) | 57 (20.8) | 24 (17.2) | |
16 | 37 (8.7) | 3 (1.0) | 3 (2.1) | |
≥32 | 17 (4.2) | 9 (3.2) | 0 (0.0) | |
Ethionamide | ≤2.5 | 243 (60.4) | 118 (43.2) | 60 (43.1) |
4–10 | 89 (22.1) | 53 (19.4) | 34 (24.4) | |
>10 | 70 (17.4) | 102 (37.3) | 45 (32.3) | |
Rifabutin | ≤2 | 381 (94.7) | 267 (97.8) | 136 (97.8) |
4–8 | 18 (4.4) | 4 (1.4) | 3 (2.1) | |
>8 | 3 (0.7) | 2 (0.7) | 0 (0.0) | |
Ethambutol | ≤2.5 | 8 (1.9) | 53 (19.4) | 24 (17.2) |
4–8 | 241 (59.9) | 164 (60.0) | 62 (44.6) | |
≥16 | 153 (38.0) | 56 (20.5) | 53 (38.1) | |
Moxifloxacin | ≤1 | 332 (82.3) | 242 (88.6) | 129 (92.8) |
4–8 | 58 (14.3) | 30 (10.9) | 9 (6.4) | |
>8 | 13 (3.2) | 1 (0.3) | 1 (0.7) | |
Rifampicin | ≤1 | 66 (16.4) | 136 (49.8) | 72 (51.7) |
2–8 | 183 (45.5) | 122 (44.6) | 59 (42.4) | |
>8 | 153 (38.0) | 15 (5.4) | 8 (5.7) | |
Amikacin | ≤1 | 2 (0.4) | 21 (7.6) | 7 (5.0) |
2–16 | 385 (95.7) | 250 (91.5) | 130 (93.5) | |
32 | 8 (1.9) | 0 (0.0) | 2 (1.4) | |
≥64 | 7 (1.7) | 2 (0.7) | 0 (0.0) | |
Linezolid | ≤8 | 47 (11.6) | 84 (30.7) | 47 (33.8) |
16 | 97 (24.1) | 92 (33.6) | 63 (45.3) | |
≥32 | 258 (64.1) | 97 (35.5) | 29 (20.8) | |
Cotrimoxazole | ≤2 | 35 (8.7) | 58 (21.2) | 21 (15.1) |
4–8 | 113 (28.1) | 83 (30.4) | 47 (33.8) | |
>8 | 254 (63.1) | 132 (48.3) | 71 (51.0) | |
Ciprofloxacin | ≤2 | 86 (21.3) | 81 (29.6) | 41 (29.4) |
4–8 | 152 (37.8) | 136 (49.8) | 71 (51.0) | |
≥16 | 164 (40.7) | 56 (20.5) | 27 (19.4) | |
Streptomycin | ≤2 | 3 (0.7) | 40 (14.6) | 16 (11.5) |
4–16 | 78 (19.4) | 179 (65.5) | 77 (55.3) | |
>16 | 321 (79.8) | 54 (19.7) | 46 (33.0) | |
Doxycycline | ≤1 | 0 (0.0) | 2 (0.7) | 1 (0.7) |
2–4 | 1 (0.2) | 5 (1.8) | 2 (1.4) | |
≥8 | 401 (99.7) | 266 (97.4) | 136 (97.8) |
Antibiotic | Reference | MIC (µg/mL) | ||
---|---|---|---|---|
Susceptible | Intermediate | Resistant | ||
Clarithromycin | CLSI [35] | ≤8 | 16 | ≥32 |
Ciprofloxacin | CLSI [36] | ≤1 | 2 | ≥4 |
Streptomycin | CLSI [35] | - | - | ≥10 |
Doxycycline | CLSI [36] | ≤1 | 2–4 | ≥8 |
Ethionamide | CLSI [35] | - | - | ≥10 * |
Rifabutin | CLSI [36] | ≤2 | - | ≥4 |
Ethambutol | CLSI [35] | - | - | ≥4 |
Moxifloxacin | CLSI [35] | ≤1 | 2 | ≥4 |
Rifampicin | CLSI [36] | ≤1 | - | ≥2 |
Amikacin | CLSI [35,36] | ≤16 | 32 | ≥64 |
Linezolid | CLSI [35] | ≤8 | 16 | ≥32 |
Cotrimoxazole | CLSI [36] | ≤2/38 | - | ≥4/76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Pittol, M.; Batista-Arnau, S.; Román, A.; San Nicolás, L.; Oliver, L.; González-Moreno, O.; Martínez, J.A.; Amaro-Rodríguez, R.; Soler, N.; Gené, A.; et al. Differences in Drug-Susceptibility Patterns between Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chimaera Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories. Antibiotics 2023, 12, 64. https://doi.org/10.3390/antibiotics12010064
Fernandez-Pittol M, Batista-Arnau S, Román A, San Nicolás L, Oliver L, González-Moreno O, Martínez JA, Amaro-Rodríguez R, Soler N, Gené A, et al. Differences in Drug-Susceptibility Patterns between Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chimaera Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories. Antibiotics. 2023; 12(1):64. https://doi.org/10.3390/antibiotics12010064
Chicago/Turabian StyleFernandez-Pittol, Mariana, Sara Batista-Arnau, Angely Román, Lorena San Nicolás, Laura Oliver, Olga González-Moreno, José Antonio Martínez, Rosanel Amaro-Rodríguez, Néstor Soler, Amadeu Gené, and et al. 2023. "Differences in Drug-Susceptibility Patterns between Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chimaera Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories" Antibiotics 12, no. 1: 64. https://doi.org/10.3390/antibiotics12010064
APA StyleFernandez-Pittol, M., Batista-Arnau, S., Román, A., San Nicolás, L., Oliver, L., González-Moreno, O., Martínez, J. A., Amaro-Rodríguez, R., Soler, N., Gené, A., González-Cuevas, A., Tudó, G., & Gonzalez-Martin, J. (2023). Differences in Drug-Susceptibility Patterns between Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium chimaera Clinical Isolates: Prospective 8.5-Year Analysis by Three Laboratories. Antibiotics, 12(1), 64. https://doi.org/10.3390/antibiotics12010064