Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Antimicrobial Compounds
2.3. MIC Testing
2.4. MPC Testing
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaudino, M.; Nagamine, B.; Ducatez, M.F.; Meyer, G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: A comprehensive literature review of experimental evidence. Vet. Res. 2022, 53, 70. [Google Scholar] [CrossRef]
- Callan, R.J.; Garry, F.B. Biosecurity and bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Blakebrough-Hall, C.; McMeniman, J.P.; González, L.A. An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods. J. Anim. Sci. 2020, 98, skaa005. [Google Scholar] [CrossRef]
- Loneragan, G.H.; Dargatz, D.A.; Morley, P.S.; Smith, M.A. Trends in mortality ratios among cattle in US feedlots. J. Am. Vet. Med. Assoc. 2001, 219, 1122–1127. [Google Scholar] [CrossRef]
- Preview: Economic Effects of Bovine Respiratory Disease. J. Anim. Sci. 2020, 98, skaa042. [CrossRef] [PubMed]
- Johnson, K.K.; Pendell, D.L. Market Impacts of Reducing the Prevalence of Bovine Respiratory Disease in United States Beef Cattle Feedlots. Front. Vet. Sci. 2017, 4, 189. [Google Scholar] [CrossRef]
- Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Apley, M. A mixed treatment comparison meta-analysis of metaphylaxis treatments for bovine respiratory disease in beef cattle. J. Anim. Sci. 2017, 95, 626–635. [Google Scholar] [CrossRef]
- Booker, C.W.; Lubbers, B.V. Bovine Respiratory Disease Treatment Failure: Impact and Potential Causes. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.J.; Kegley, E.B.; Sarchet, J.; Powell, J.G. Comparison of treatment protocols for bovine respiratory disease in high-risk, newly received beef calves. Appl. Anim. Sci. 2019, 35, 278–283. [Google Scholar] [CrossRef]
- Fally, M.; Israelsen, S.; Benfield, T.; Tarp, B.; Ravn, P. Time to antibiotic administration and patient outcomes in community-acquired pneumonia: Results from a prospective cohort study. Clin. Microbiol. Infect. 2021, 27, 406–412. [Google Scholar] [CrossRef]
- Frisch, A.W.; Tripp, J.T.; Barrett, C.D., Jr.; Pidgeon, B.E. The specific polysaccharide content of pneumonic lungs. J. Exp. Med. 1942, 76, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Fagon, J.; Chastre, J.; Trouillet, J.L.; Domart, Y.; Dombret, M.C.; Bornet, M.; Gibert, C. Characterization of distal bronchial microflora during acute exacerbation of chronic bronchitis. Use of the protected specimen brush technique in 54 mechanically ventilated patients. Am. Rev. Respir. Dis. 1990, 142, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Bingen, E.; Lambert-Zechovsky, N.; Leclercq, R.; Doit, C.; Mariani-Kurkdjian, P. Bactericidal activity of vancomycin, daptomycin, ampicillin and aminoglycosides against vancomycin-resistant Enterococcus facecium. J. Antimicrob. Chemother. 1990, 26, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Feldman, W. Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. J. Pediatr. 1976, 88, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, M.; Kunishima, Y.; Takahashi, S.; Takeyama, K.; Tsukamoto, T. Time courses of bacterial density in urine during antibacterial chemotherapy and influential factors in patients having positive bacteriuria with a complicated urinary tract. J. Infect. Chemother. 2007, 13, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Scott, V.C.; Haake, D.A.; Churchill, B.M.; Justice, S.S.; Kim, J.H. Intracellular Bacterial Communities: A Potential Etiology for Chronic Lower Urinary Tract Symptoms. Urology 2015, 86, 425–431. [Google Scholar] [CrossRef] [PubMed]
- McVey, D.S.; Kuszak, J. Bacterial isolates from the lungs of beef calves with bronchopneumonia associated with acute bovine respiratory disease. In Proceedings of the Conference on Research Workers in Animal Diseases (CRWAD), Chicago, IL, USA, 4–5 December 2010. [Google Scholar]
- Blondeau, J.M. New concepts in antimicrobial susceptibility testing: The mutant prevention concentration and mutant selection window approach. Vet. Dermatol. 2009, 20, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Dagan, R.; Klugman, K.P.; Craig, W.A.; Baquero, F. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J. Antimicrob. Chemother. 2001, 47, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Lees, P. Pharmacokinetics, pharmacodynamics and therapeutics of pradofloxacin in the dog and cat. J. Vet. Pharmacol. Therap. 2013, 36, 209–221. [Google Scholar] [CrossRef]
- Sykes, J.E.; Blondeau, J.M. Pradofloxacin: A novel veterinary fluoroquinolone for treatment of bacterial infections in cats. Vet. J. 2014, 201, 207–214. [Google Scholar] [CrossRef]
- Silley, P.; Stephan, B.; Greife, H.A.; Pridmore, A. Bactericidal properties of pradofloxacin against veterinary pathogens. Vet. Microbiol. 2012, 157, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Dowers, K.L.; Tasker, S.; Radecki, S.V.; Lappin, M.R. Use of pradofloxacin to treat experimentally induced Mycoplasma hemofelis infection in cats. Am. J. Vet. Res. 2009, 70, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.D.; Helps, C.R.; Lappin, M.R.; Werckenthin, C.; Hartmann, K. Efficacy of Pradofloxacin in Cats with Feline Upper Respiratory Tract Disease due to Chlamydophila felis or Mycoplasma Infections. J. Vet. Intern. Med. 2008, 22, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Silley, P.; Stephan, B.; Greife, H.A.; Pridmore, A. Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats. J. Antimicrob. Chemother. 2007, 60, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Wetzstein, H.G. Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance. Antimicrob. Agents Chemother. 2005, 49, 4166–4173. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Shebelski, S.D. Comparative in vitro killing of canine strains of Staphylococcus pseudintermedius and Escherichia coli by cefovecin, cefazolin, doxycycline and pradofloxacin. Vet. Dermatol. 2016, 27, 267-e63. [Google Scholar] [CrossRef]
- Blondeau, J.M.; Fitch, S.D. In Vitro Killing of Canine Urinary Tract Infection Pathogens by Ampicillin, Cephalexin, Marbofloxacin, Pradofloxacin, and Trimethoprim/Sulfamethoxazole. Microorganisms 2021, 9, 2279. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standard (M31-A6); M31-A6; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibililty Tests for Bacteria Isolated from Animals; VET01; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Blondeau, J.M.; Zhao, X.; Hansen, G.T.; Drlica, K. Mutant prevention concentrations (MPC) of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 433–438. [Google Scholar] [CrossRef]
- Blondeau, J.M.; Borsos, S.; Blondeau, L.D.; Blondeau, B.J.; Hesje, C. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine isolates of Mannheimia haemolytica. Vet. Microbiol. 2012, 160, 85–90. [Google Scholar] [CrossRef]
- Belew, S.; Kim, J.Y.; Hossain, M.A.; Park, J.Y.; Lee, S.J.; Park, Y.S.; Suh, J.W.; Kim, J.C.; Park, S.C. Pharmacokinetics of marbofloxacin after intravenous and intramuscular administration in Hanwoo, Korean native cattle. J. Vet. Med. Sci. 2015, 77, 327–329. [Google Scholar] [CrossRef]
- Menge, M.; Rose, M.; Bohland, C.; Zschiesche, E.; Kilp, S.; Metz, W.; Allan, M.; Röpke, R.; Nürnberger, M. Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle). J. Vet. Pharmacol. Ther. 2012, 35, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Modric, S.; Webb, A.I.; Davidson, M. Effect of respiratory tract disease on pharmacokinetics of tilmicosin in rats. Lab. Anim. Sci. 1999, 49, 248–253. [Google Scholar] [PubMed]
- Bretzlaff, K.N.; Neff-Davis, C.A.; Ott, R.S.; Koritz, G.D.; Gustafsson, B.K.; Davis, L.E. Florfenicol in non-lactating dairy cows: Pharmacokinetics, binding to plasma proteins, and effects on phagocytosis by blood neutrophils. J. Vet. Pharmacol. Ther. 1987, 10, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Shem-Tov, M.; Glickman, A.; Winkler, M.; Saran, A. Tilmicosin antibacterial activity and pharmacokinetics in cows. J. Vet. Pharmacol. Ther. 1995, 18, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Fitch, S.D. Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. PLoS ONE 2019, 14, e0210154. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Pelligand, L.; Lees, P.; Bousquet-Mélou, A.; Ferran, A.A.; Turnidge, J.D. The pharmacokinetic/pharmacodynamic paradigm for antimicrobial drugs in veterinary medicine: Recent advances and critical appraisal. J. Vet. Pharmacol. Ther. 2021, 44, 172–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, H.; Wang, Y.; Wang, H.; Hu, J.; Zhang, G. Pharmacodynamic Parameters of Pharmacokinetic/Pharmacodynamic (PK/PD) Integration Models. Front. Vet. Sci. 2022, 9, 860472. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Huang, L.; Hao, H.; Sanders, P.; Yuan, Z. Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction. BioMed Res. Int. 2016, 2016, 5465678. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, H.; Yang, X.; Lu, L. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance. BMC Vet. Res. 2013, 9, 126. [Google Scholar] [CrossRef]
- Cui, J.; Liu, Y.; Wang, R.; Weihang, T.; Drlica, K.; Zhao, X. The mutant selection window in rabbits infected with Staphylococcus aureus. J. Infect. Dis. 2006, 194, 1601–1608. [Google Scholar] [CrossRef]
- Olofsson, S.K.; Marcusson, L.L.; Komp Lindgren, P.; Hughes, D.; Cars, O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: Relation between drug exposure and mutant prevention concentration. J. Antimicrob. Chemother. 2006, 57, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Vilalta, C.; Giboin, H.; Schneider, M.; El Garch, F.; Fraile, L. Pharmacokinetic/pharmacodynamic evaluation of marbofloxacin in the treatment of Haemophilus parasuis and Actinobacillus pleuropneumoniae infections in nursery and fattener pigs using Monte Carlo simulations. J. Vet. Pharmacol. Ther. 2014, 37, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kang, Z.; Yao, L.; Gu, X.; Huang, Z.; Cai, Q.; Shen, X.; Ding, H. Pharmacokinetic/Pharmacodynamic Integration to Evaluate the Changes in Susceptibility of Actinobacillus pleuropneumoniae After Repeated Administration of Danofloxacin. Front. Microbiol. 2018, 9, 2445. [Google Scholar] [CrossRef] [PubMed]
- Alieva, K.N.; Strukova, E.N.; Golikova, M.V.; Portnoy, Y.A.; Firsov, A.A. Concentration-Dependent Enrichment of Linezolid-Resistant Staphylococcus aureus in an in vitro Dynamic Model. Antibiot. Chemother. 2016, 61, 28–32. [Google Scholar]
- Xiong, M.; Wu, X.; Ye, X.; Zhang, L.; Zeng, S.; Huang, Z.; Wu, Y.; Sun, J.; Ding, H. Relationship between Cefquinome PK/PD Parameters and Emergence of Resistance of Staphylococcus aureus in Rabbit Tissue-Cage Infection Model. Front. Microbiol. 2016, 7, 874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gu, X.; Li, Y.; Li, X.; Gu, M.; Zhang, N.; Shen, X.; Ding, H. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model. BMC Vet. Res. 2014, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Med. Sci. 2021, 9, 14. [Google Scholar] [CrossRef]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Gill, J.; Graham, D.W.; Kahn, L.H.; Morley, P.S.; Salois, M.J.; Simjee, S.; et al. Critically important antibiotics: Criteria and approaches for measuring and reducing their use in food animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 8–16. [Google Scholar] [CrossRef]
Drug | Bacteriostatic(S)/ Bactericidal(C) | MIC/MPC Distribution Values (µg/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.016 | 0.031 | 0.063 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | ≥32 | ||||
MIC | MIC Breapoint | MIC50/90/100 | |||||||||||||
Ceftiofur | C | 33 | 1 | ≤2 | ≤0.016/≤0.016/0.031 | ||||||||||
Enrofloxacin | C | 33 | 1 | ≤0.25 | ≤0.016/≤0.016/0.031 | ||||||||||
Florfenicol | S | 23 | 11 | ≤2 | 1/2/2 | ||||||||||
Marbofloxacin | C | 34 | ≤1 * | ≤0.016/≤0.016/2 | |||||||||||
Pradofloxacin | C | 34 | ≤0.125 | ≤0.016/≤0.016/≤0.016 | |||||||||||
Tildipirosin | S | 2 | 19 | 13 | ≤4 | 0.5/1/1 | |||||||||
Tilmicosin | S | 2 | 18 | 2 | 1 | 2 | 9 | ≤8 | 0.5/8/8 | ||||||
Tulathromycin | S | 22 | 11 | 1 | ≤16 | 0.5/1/2 | |||||||||
MPC | MPC50/90/100 | ||||||||||||||
Ceftiofur | 3 | 13 | 6 | 3 | 9 | 0.25/1/1 | |||||||||
Enrofloxacin | 7 | 15 | 10 | 2 | 0.125/0.25/0.5 | ||||||||||
Florfenicol | 1 | 25 | 8 | 2/4/4 | |||||||||||
Marbofloxacin | 1 | 32 | 1 | 0.063/0.063/0.125 | |||||||||||
Pradofloxacin | 6 | 22 | 6 | 0.031/0.063/0.063 | |||||||||||
Tildipirosin | 28 | 4 | 2 | 2/4/8 | |||||||||||
Tilmicosin | 10 | 3 | 9 | 12 | 16/≥32/≥32 | ||||||||||
Tulathromycin | 18 | 10 | 6 | 2/4/8 |
Drug | Bacteriostatic(S)/ Bactericidal(C) | MIC/MPC Distribution Values (µg/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.016 | 0.031 | 0.063 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | ≥32 | ||||
MIC | MIC Breakpoint | MPC50/90/100 | |||||||||||||
Ceftiofur | C | 41 | ≤2 | ≤0.016/≤0.016/≤0.016 | |||||||||||
Enrofloxacin | C | 41 | ≤0.25 | ≤0.016/≤0.016/≤0.016 | |||||||||||
Florfenicol | S | 18 | 23 | ≤2 | 0.5/0.5/0.5 | ||||||||||
Marbofloxacin | C | 36 | 5 | ≤1 * | ≤0.016/0.031/0.031 | ||||||||||
Pradofloxacin | C | 38 | 3 | ≤0.125 | ≤0.016/≤0.016/0.031 | ||||||||||
Tildipirosin | S | 1 | 1 | 5 | 14 | 10 | 10 | ≤8 | 0.5/2/2 | ||||||
Tilmicosin | S | 2 | 2 | 20 | 15 | 2 | ≤8 ** | 2/4/8 | |||||||
Tulathromycin | S | 8 | 24 | 9 | ≤16 | 0.25/0.5/0.5 | |||||||||
MPC | MPC50/90/100 | ||||||||||||||
Ceftiofur | 3 | 8 | 5 | 12 | 12 | 1 | 0.125/0.25/0.5 | ||||||||
Enrofloxacin | 4 | 11 | 15 | 11 | 0.063/0.125/0.125 | ||||||||||
Florfenicol | 3 | 38 | 1/1/1 | ||||||||||||
Marbofloxacin | 4 | 10 | 13 | 12 | 2 | 0.063/0.125/0.25 | |||||||||
Pradofloxacin | 22 | 18 | 1 | ≤0.016/0.031/0.063 | |||||||||||
Tildipirosin | 2 | 8 | 28 | 3 | 4/4/8 | ||||||||||
Tilmicosin | 2 | 8 | 20 | 7 | 4 | 8/16/≥32 | |||||||||
Tulathromycin | 10 | 27 | 2 | 2 | 1/2/8 |
Compound | Cmax | Tissuemax | AUC24 | Cmax/ MIC90 | Cmax/ MPC90 | AUC24/ MIC90 | AUC24/ MPC90 | T>MIC90 | T>MPC90 | % Protein Binding | Concentration (C) or Time (T) Dependent |
---|---|---|---|---|---|---|---|---|---|---|---|
M. haemolytica | |||||||||||
Ceftiofur * | 6.9 | 2.64 | 376 | 431.3 | 6.9 | 23,500 | 376 | 10 days | 4–5 days | 95 ** | T>MIC |
Enrofloxacin | 1.9 | 4.6 | 20.71 | 118.8 | 7.6 | 1294.4 | 80.7 | >24 h | 22 h | ~46 | AUC/MIC, CMAX/MIC |
Florfenicol | 3.7 | 2.94 | 101.9 | 1.85 | 0.93 | 50.9 | 25.5 | 24 h | 2 h | ~20 | T>MIC |
Marbofloxacin [33] | 1.5 | 6.9 | 93.8 | 23.8 | 431.3 | 109.5 | >24 h | ~18 h | ~30 | AUC/MIC, CMAX/MIC | |
Pradofloxacin | 3.4 | 0.81 | 13.2 | 212.5 | 53.9 | 825 | 209.5 | >72 h | >24 h | ~40 | AUC/MIC, CMAX/MIC |
Tildipirosin [34] | 0.77 | 14.8 | 24.9 | 0.77 | 0.19 | 24.9 | 6.2 | 0 | 0 | ~30 | AUC/MIC |
Tilmicosin [35,36,37] | 0.87 | 17.2 | 0.11 | 0.03 | 2.2 | 0.54 | 0 | 0 | ~25 | T>MIC | |
Tulathromycin | 0.6 | 3.2 | 63.7 | 0.6 | 0.08 | 63.7 | 15.9 | 0 | 0 | ~40 | T>MIC |
P. multocida | |||||||||||
Ceftiofur | 6.9 | 2.64 | 376 | 431.3 | 27.6 | 23,500 | 1504 | 10 days | 6 days | ||
Enrofloxacin | 1.9 | 4.6 | 20.71 | 118.8 | 15.2 | 1294.4 | 165.7 | >24 h | >24 h | ||
Florfenicol | 3.7 | 2.94 | 101.9 | 7.4 | 3.7 | 203.8 | 101.9 | 96 h | >2 h | ||
Marbofloxacin | 1.5 | 6.9 | 93.8 | 12 | 222.6 | 55.2 | 20 h | ~10 h | |||
Pradofloxacin | 3.4 | 0.81 | 13.2 | 212.5 | 109.7 | 825 | 425.8 | >24 h | >12 <18 h | ||
Tildipirosin | 0.77 | 14.8 | 24.9 | 0.38 | 0.19 | 12.5 | 6.2 | 0 | 0 | ||
Tilmicosin | 0.87 | 17.2 | 0.21 | 0.05 | 4.3 | 1.1 | 0 | 0 | |||
Tulathromycin | 0.6 | 3.2 | 63.7 | 1.2 | 0.3 | 127.4 | 31.9 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blondeau, J.M.; Fitch, S.D. Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida. Pathogens 2024, 13, 399. https://doi.org/10.3390/pathogens13050399
Blondeau JM, Fitch SD. Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida. Pathogens. 2024; 13(5):399. https://doi.org/10.3390/pathogens13050399
Chicago/Turabian StyleBlondeau, Joseph M., and Shantelle D. Fitch. 2024. "Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida" Pathogens 13, no. 5: 399. https://doi.org/10.3390/pathogens13050399
APA StyleBlondeau, J. M., & Fitch, S. D. (2024). Comparative Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and Seven Other Antimicrobial Agents Tested against Bovine Isolates of Mannheimia haemolytica and Pasteurella multocida. Pathogens, 13(5), 399. https://doi.org/10.3390/pathogens13050399