Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Phase
2.2. Second Phase
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obradovic, M.R.; Segura, M.; Segalés, J.; Gottschalk, M. Review of the Speculative Role of Co-Infections in Streptococcus Suis-Associated Diseases in Pigs. Vet. Res. 2021, 52, 49. [Google Scholar] [CrossRef] [PubMed]
- Neila-Ibáñez, C.; Casal, J.; Hennig-Pauka, I.; Stockhofe-Zurwieden, N.; Gottschalk, M.; Migura-García, L.; Pailler-García, L.; Napp, S. Stochastic Assessment of the Economic Impact of Streptococcus suis-Associated Disease in German, Dutch and Spanish Swine Farms. Front. Vet. Sci. 2021, 8, 676002. [Google Scholar] [CrossRef] [PubMed]
- Neila-Ibáñez, C.; Napp, S.; Casal, J. Evaluation of the Economic Impact of Streptococcus suis-Associated Disease. Methods Mol. Biol. 2024, 2815, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.J.; Karriker, L.A.; Ramirez, A.; Schwartz, K.J.; Stevenson, G.W. Diseases of Swine, 10th ed.; John Wiley & Sons: West Sussex, UK, 2012; p. 83. [Google Scholar]
- Segura, M.; Gottschalk, M. Streptococcus suis interactions with the murine macrophage cell line J774: Adhesion and cytotoxicity. Infect. Immun. 2002, 70, 4312–4322. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, C.; Feng, Y.; Yang, W.; Song, H.; Chen, Z.; Yu, H.; Pan, X.; Zhou, X.; Wang, H.; et al. Streptococcal Toxic Shock Syndrome Caused by Streptococcus suis Serotype 2. PLoS Med. 2006, 3, e151. [Google Scholar] [CrossRef]
- Hoa, N.T.; Chieu, T.T.B.; Nga, T.T.T.; Dung, N.V.; Campbell, J.; Anh, P.H.; Tho, H.H.; Chau, N.V.V.; Bryant, J.E.; Hien, T.T.; et al. Slaughterhouse pigs are a major reservoir of Streptococcus Suis serotype 2 capable of causing human infection in Southern Vietnam. PLoS ONE 2011, 6, e17943. [Google Scholar] [CrossRef] [PubMed]
- Amass, S.F.; Clark, K.; Ching Ching, W. Source and timing of Streptococcus suis infection in neonatal pigs: Implications for early weaning procedures. J. Swine Health Prod. 1995, 3, 189–193. [Google Scholar]
- Gottschalk, M.; Xu, J.; Calzas, C.; Segura, M. Streptococcus suis: A New Emerging or an Old Neglected Zoonotic Pathogen? Future Microbiol. 2010, 5, 371–391. [Google Scholar] [CrossRef]
- Clifton-Hadley, F.A. Studies of Streptococcus suis type 2 infection in pigs. Vet. Res. Commun. 1984, 8, 217–227. [Google Scholar] [CrossRef]
- Mengjie, L.; Zongming, L.; Xiaolin, Y.; Guoping, L. Pathogenicity of a Strain of Streptococcus suis Type 2 to Mice and Swine Isolated from Jingzhou City. Biotechnol. J. Int. 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Hoffmann, P.; Smith, A.; Sahin, O.; Clavijo, M.; Risser, J. Determination of Pradofloxacin Minimum Inhibitory Concentration of Streptococcus suis Isolates Associated with Septicemia in Swine. In Research Abstracts and Proceedings of the 2024 Allen D. Leman Swine Conference, Saint Paul, MN, USA, 21–24 September 2024; The University of Minnesota College of Veterinary Medicine and University of Minnesota Extension Regents of the University of Minnesota: Saint Paul, MN, USA, 2024; pp. 52–53. [Google Scholar]
- Drlica, K. Mechanism of fluoroquinolone action. Curr. Opin. Microbiol. 1999, 2, 504–508. [Google Scholar] [CrossRef]
- Sykes, J.E.; Blondeau, J.M. Pradofloxacin: A novel veterinary fluoroquinolone for treatment of bacterial infections in cats. Vet. J. 2014, 201, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sykes, J.E.; Papich, M.G. Greene’s Infectious Diseases of the Dog and Cat. In Antibacterial Drugs, 5th ed; W.B. Saunders: Philadelphia, PA, USA, 2021; pp. 103–126. [Google Scholar]
- Strahilevitz, J.; Hooper, D.C. Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: Direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob. Agents Chemother. 2005, 49, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M.; Fitch, S.D. Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Molecules 2024, 29, 5448. [Google Scholar] [CrossRef]
- Poole, K. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob. Agents Chemother. 2000, 44, 2595–2599. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother. 2000, 44, 2233–2241. [Google Scholar] [CrossRef]
- Fraile, L. Antimicrobial Therapy in Swine. Practical Approach; Editorial Servet: Zaragoza, Spain, 2013. [Google Scholar]
- European Commission. Guidelines for the Prudent Use of Antimicrobials in Veterinary Medicine (2015/C299/04). 2015. Available online: https://health.ec.europa.eu/system/files/2016-11/2015_prudent_use_guidelines_en_0.pdf (accessed on 20 August 2024).
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; CLSI: Malvern, PA, USA, 2024; ISBN 978-1-68440-220-5/978-1-68440-221-2. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Standard VET01; CLSI: Wayne, PA, USA, 2013. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Standard VET01; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Weinert, L.; Chaudhuri, R.; Wang, J.; Peters, S.E.; Corander, J.; Jombart, T.; Baig, A.; Howell, K.J.; Vehkala, M.; Valimaki, N.; et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat. Commun. 2015, 6, 6740. [Google Scholar] [CrossRef] [PubMed]
- Grobbel, M.; Becker, A.L.; Wieler, L.H.; Froyman, R.; Friederichs, S.; Filios, S. Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Vet. Microbiol. 2007, 124, 73–81. [Google Scholar] [CrossRef]
- Dong, C.L.; Che, R.X.; Wu, T.; Qu, Q.W.; Chen, M.; Zheng, S.D.; Cai, X.H.; Wang, G.; Li, Y.H. New Characterization of Multi-Drug Resistance of Streptococcus suis and Biofilm Formation from Swine in Heilongjiang Province of China. Antibiotics 2023, 12, 132. [Google Scholar] [CrossRef]
- Freedom of Information (FOI). Original New Animal Drug Application Pradalex (Pradofloxacin Injection). 2024. Available online: https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/15250 (accessed on 3 September 2024).
- Andes, D.; Craig, W.A. Pharmacodynamics of the New Fluoroquinolone Gatifloxacin in Murine Thigh and Lung Infection Models. Antimicrob. Agents Chemother. 2002, 46, 1665–1670. [Google Scholar] [CrossRef]
- Boerlin, P.; White, D.G. Antimicrobial Resistance and Its Epidemiology. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 21–40. [Google Scholar]
- Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed]
- Havas, K.A.; Edler, R.; Ruesch, L.; Braun, M.; Nerem, J.; Dee, S.; Spronk, T.; Goodman, L.B.; Noyes, N.; Scott, H.M. Evaluation of antibiotic purchase data for ceftiofur and enrofloxacin and minimum inhibitory concentrations among Escherichia coli isolates from swine farms in the Midwestern United States using multiple statistical models. Prev. Vet. Med. 2024, 235, 106411. [Google Scholar] [CrossRef] [PubMed]
- Iancu, I.; Igna, V.; Popa, S.A.; Imre, K.; Pascu, C.; Costinar, L.; Degi, J.; Gligor, A.; Iorgoni, V.; Badea, C.; et al. Etiology and antimicrobial resistance of subclinical mastitis pathogens Staphylococcus aureus, Streptococcus spp. and Enterococcus spp. in sheep milk. Vet. Res. Commun. 2025, 49, 30. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, M.; Segura, M.; Xu, J. Streptococcus suis infections in Humans: The Chinese Experience and the Situation in North America. Anim. Health Res. Rev. 2007, 8, 29–45. [Google Scholar] [CrossRef]
Isolate ID | U.S. State * | Age (Week) | Type of Sample | Serotype | MLST Based Sequence Type |
---|---|---|---|---|---|
2022008942-1 | AR | 4 | Brain Swab | 17 | 778 |
2022008942-3 | IA | 4 | Brain | - ** | 977 |
2022008942-4 | IA | 5 | Brain | 7 | 32 |
2022008942-6 | IA | 7 | Brain | 4 | 977 |
2022008942-7 | IA | ≤11 | Brain | 7 | 29 |
2022008942-8 | IA | 10 | Brain | 2 | 28 |
2022008942-12 | IA | 10 | Brain | 2 | 1 |
2022008942-13 | IA | 4 | Brain | 1 | 1 |
2022008942-14 | IA | 5 | Brain | 10 | 1170 |
2022008942-17 | IA | 4 | Brain | 7 | 373 |
2022008942-25 | IA | 5.7 | Brain | 3 | 108 |
2022008942-11 | IL | 10 | Brain | 24 | 94 |
2022008942-15 | IL | 6 | Brain | 33 | 1381 |
2022008942-16 | IL | 2.7 | Brain | 23 | 108 |
2022008942-5 | IN | 5 | Brain | 1 | 1 |
2022008942-19 | IN | 8 | Brain | 7 | 108 |
2022008942-26 | IN | 5 | Brain Swab | 5 | 977 |
2022008942-9 | MI | 5 | Brain | 4 | 485 |
2022008942-29 | MI | 2 | Brain | 1 | 1 |
2022008942-20 | MN | 6 | Brain | 3 | 94 |
2022008942-22 | MN | 2.3 | Brain Swab | 1 | 1 |
2022008942-24 | MN | 6 | Brain | 5 | 977 |
2022008942-23 | MO | 3 | Brain | 17 | 977 |
2022008942-30 | MO | 4 | Brain | 1 | 1 |
2022008942-18 | OH | 5 | Brain | 5 | 977 |
2022008942-27 | OH | 7 | Brain | 23 | 108 |
2022008942-2 | OK | 2.8 | Brain | 1 | 1 |
2022008942-28 | PA | 3 | Brain | 1/2 | 28 |
2022008942-10 | SD | 4 | Brain | 1/2 | 28 |
2022008942-21 | SD | 7 | Brain | 4 | 977 |
Pathogens * | Origin of Sample | No. of Isolates | MICmode | MIC50 ** (μg/mL) | MIC90 ** (μg/mL) | MIC Range (μg/mL) |
---|---|---|---|---|---|---|
B. bronchiseptica | Lung/Pleural Swab | 116 | 0.12 | 0.12 | 0.12 | 0.12–0.25 |
G. parasuis | Lung/Pleural Swab | 119 | 0.002 | 0.002 | 0.004 | 0.00025–0.008 |
P. multocida | Lung/Pleural Swab | 118 | 0.004 | 0.004 | 0.008 | 0.004–0.015 |
M. hyopneumoniae | Lung/Pleural Swab | 37 | 0.004 | 0.004 | 0.008 | 0.00013–0.015 |
S. suis | Lung/Pleural Swab | 254 | 0.06 | 0.06 | 0.25 | 0.015–8 |
S. suis | Brain/Brain Swab | 30 | 0.06 | 0.06 | 0.12 | 0.015–0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risser, J.; Tessman, R.; Bade, D.; Sahin, O.; Clavijo, M.J.; Dhup, S.; Hoffmann, P. Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine. Pathogens 2025, 14, 88. https://doi.org/10.3390/pathogens14010088
Risser J, Tessman R, Bade D, Sahin O, Clavijo MJ, Dhup S, Hoffmann P. Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine. Pathogens. 2025; 14(1):88. https://doi.org/10.3390/pathogens14010088
Chicago/Turabian StyleRisser, Jessica, Ronald Tessman, Don Bade, Orhan Sahin, Maria J. Clavijo, Saumya Dhup, and Patrick Hoffmann. 2025. "Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine" Pathogens 14, no. 1: 88. https://doi.org/10.3390/pathogens14010088
APA StyleRisser, J., Tessman, R., Bade, D., Sahin, O., Clavijo, M. J., Dhup, S., & Hoffmann, P. (2025). Pradofloxacin Minimum Inhibitory Concentration Profiling of Streptococcus suis Isolates: Insights into Antimicrobial Susceptibility in Swine. Pathogens, 14(1), 88. https://doi.org/10.3390/pathogens14010088