-
Life Cycle Sustainability Assessment of Greywater Treatment and Rainwater Harvesting for Decentralized Water Reuse in Brazil and Germany
-
FinTech Adoption and Its Influence on Sustainable Mineral Resource Management in the United States
-
Research Progress of Mine Ecological Restoration Technology
-
Geosystem Services of Erratic Boulders in Selected Regions of Central Poland
Journal Description
Resources
Resources
is an international, peer-reviewed, open access journal on natural resources published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), GeoRef, PubAg, AGRIS, RePEc, and other databases.
- Journal Rank: JCR - Q2 (Environmental Sciences) / CiteScore - Q1 (Nature and Landscape Conservation)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 24.6 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Journal Clusters of Water Resources: Water, Journal of Marine Science and Engineering, Hydrology, Resources, Oceans, Limnological Review, Coasts.
Impact Factor:
3.2 (2024);
5-Year Impact Factor:
3.5 (2024)
Latest Articles
Valorization of Food By-Products: Formulation and Evaluation of a Feed Complement for Broiler Chickens Based on Bonito Fish Meal and Única Potato Peel Flour
Resources 2025, 14(8), 125; https://doi.org/10.3390/resources14080125 (registering DOI) - 1 Aug 2025
Abstract
►
Show Figures
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal (
[...] Read more.
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal (Sarda chiliensis chiliensis) and Única potato peel flour (Solanum tuberosum L. cv. Única). This study was conducted in three phases: (i) production and nutritional characterization of the two by-product flours; (ii) formulation of a 48:52 (w/w) blend, incorporated into broiler diets at 15%, 30%, and 45% replacement levels over a 7-week trial divided into starter (3 weeks), grower (3 weeks), and finisher (1 week) phases; and (iii) assessment of growth performance (weight gain, final weight, and feed conversion ratio), followed by a sensory evaluation of the resulting meat using a Check-All-That-Apply (CATA) analysis. The Bonito fish meal exhibited 50.78% protein, while the Única potato peel flour was rich in carbohydrates (74.08%). The final body weights of broiler chickens ranged from 1872.1 to 1886.4 g across treatments, and the average feed conversion ratio across all groups was 0.65. Replacing up to 45% of commercial feed with the formulated complement did not significantly affect growth performance (p > 0.05). Sensory analysis revealed that meat from chickens receiving 15% and 45% substitution levels was preferred in terms of aroma and taste, whereas the control group was rated higher in appearance. These findings suggest that the formulated feed complement may represent a viable poultry-feed alternative with potential sensory and economic benefits, supporting future circular-economy strategies.
Full article
Open AccessArticle
The Nexus Between Natural Resources, Renewable Energy and Economic Growth in the Gulf Cooperation Council Countries
by
Jamal Alnsour and Farah Mohammad AlNsour
Resources 2025, 14(8), 124; https://doi.org/10.3390/resources14080124 - 30 Jul 2025
Abstract
►▼
Show Figures
In sustainable development studies, a key question is how the abundance of natural resources influences long-run economic growth. However, there is no consensus on this issue. Some literature suggests a negative impact, while other studies find no effect at all, and other research
[...] Read more.
In sustainable development studies, a key question is how the abundance of natural resources influences long-run economic growth. However, there is no consensus on this issue. Some literature suggests a negative impact, while other studies find no effect at all, and other research indicates a positive impact. This study aims to examine the relationship between natural resource rents, renewable energy, and economic growth in the Gulf Cooperation Council (GCC) countries over the period from 1990 to 2023. The study utilizes the Method of Moments Quantile Regression (MMQR) to provide reliable findings across different quantiles. We also incorporate a series of control variables, including capital, labor force participation, non-renewable energy, and trade openness. The findings indicate that natural resources rent enhances economic growth in GCC countries, supporting the Rostow hypothesis. Although renewable energy has a positive impact on economic growth, it does not have an effect on natural resource rents. Additionally, capital, labor force participation, non-renewable energy, and trade openness play a critical role in raising economic growth in these countries. Based on the empirical results, this study provides several valuable recommendations for policymakers to enhance the management of natural resources in GCC countries.
Full article

Figure 1
Open AccessFeature PaperArticle
Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River
by
Emilia Bączkowska, Katarzyna Jankowska, Wojciech Artichowicz, Sylwia Fudala-Ksiazek and Małgorzata Szopińska
Resources 2025, 14(8), 123; https://doi.org/10.3390/resources14080123 - 29 Jul 2025
Abstract
►▼
Show Figures
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus
[...] Read more.
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus was on the municipal wastewater treatment plant in Jastrzębia Góra, located in a region exposed to seasonal tourist pressure and discharging effluent into the Czarna Wda River. A total of 90 wastewater samples were collected during five monitoring campaigns (July, September 2021; February, May, July 2022) and analysed for 13 pharmaceuticals and personal care products (PPCPs) using ultra-high-performance liquid chromatography tandem mass spectrometry with electrospray ionisation (UHPLC-ESI-MS/MS). The monitoring included both untreated (UTWW) and treated wastewater (TWW) to assess the PPCP removal efficiency and persistence. The highest concentrations in the treated wastewater were observed for metoprolol (up to 472.9 ng/L), diclofenac (up to 3030 ng/L), trimethoprim (up to 603.6 ng/L) and carbamazepine (up to 2221 ng/L). A risk quotient (RQ) analysis identified diclofenac and LI-CBZ as priority substances for monitoring. Multivariate analyses (PCA, HCA) revealed co-occurrence patterns and seasonal trends. The results underline the need for advanced treatment solutions and targeted monitoring, especially in sensitive coastal catchments with variable micropollutant presence.
Full article

Figure 1
Open AccessArticle
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by
Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Abstract
►▼
Show Figures
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified
[...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits.
Full article

Figure 1
Open AccessCommunication
Morphological and Nutritional Characterization of the Native Sunflower as a Potential Plant Resource for the Sierra Gorda of Querétaro
by
Ana Patricia Arenas-Salazar, Mark Schoor, María Isabel Nieto-Ramírez, Juan Fernando García-Trejo, Irineo Torres-Pacheco, Ramon Gerardo Guevara-González, Humberto Aguirre-Becerra and Ana Angélica Feregrino-Pérez
Resources 2025, 14(8), 121; https://doi.org/10.3390/resources14080121 - 29 Jul 2025
Abstract
►▼
Show Figures
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region.
[...] Read more.
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. In this regard, this study carries out the morphological and nutritional characterization of a native sunflower (Helianthus annuus) grown in the Sierra Gorda, Querétaro, Mexico, known as “Maíz de teja”, to implement a sustainable monoculture production system. The results were compared with some other sunflower varieties and other oilseeds grown and consumed in the country. This study determined that this native sunflower seed is a good source of linoleic acid (84.98%) and zinc (17.2 mg/100 g). It is an alternative protein source (18.6 g/100 g), comparable to foods of animal origin. It also provides a good amount of fiber (22.6 g/100 g) and bioactive compounds (total phenolic compounds (TPC) 3.434 ± 0.03 mg/g and total flavonoids (TFC) 0.67 ± 0.02 mg/g), and seed yield 341.13 kg/ha. This study demonstrated a valuable nutritional profile of this native seed and its potential for cultivation. Further research is needed to improve agricultural management to contribute to food security and improve the socioeconomic status of the community.
Full article

Figure 1
Open AccessReview
Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications
by
Nicolas Sesson Farré and Aaron Kinyu Hoshide
Resources 2025, 14(8), 120; https://doi.org/10.3390/resources14080120 - 28 Jul 2025
Abstract
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia,
[...] Read more.
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, Spain, within the context of historical biochar use. A literature review targeted searches of scholarly databases to compare the formiguer method to Amazonian terra preta and other traditional biochar use. We identified sources covering biochar properties, soil impacts, and historical agricultural practices within the Iberian Peninsula and briefly described the main methods or treatments used during this process. Past research demonstrates that the formiguer method, which involves pyrolytic combustion of biomass within soil mounds, improves microbial activity, increases soil phosphorus and potassium availability from soil structure, and leads to long-term carbon stabilization, even though it can result in short-term decreases in soil organic carbon and nitrogen losses. Despite being abandoned in Europe with the rise of chemical fertilizers, the use of formiguers exemplifies a decentralized approach to nutrient and agroecosystem management. The literature highlights the relevance that these traditional biochar practices can have in informing modern soil management and sustainable agricultural strategies. Understanding the formiguer can offer critical insights to optimize contemporary biochar applications and historical techniques into future sustainability frameworks.
Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Advancing Circularity in Small-Scale Rural Aquaponics: Potential Routes and Research Needs
by
Laura Silva, Francisco Javier Martinez-Cordero, Gösta Baganz, Daniela Baganz, Ariadne Hernández-Pérez, Eva Coronado and Maria Celia Portella
Resources 2025, 14(8), 119; https://doi.org/10.3390/resources14080119 - 23 Jul 2025
Abstract
►▼
Show Figures
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas,
[...] Read more.
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, reduced access to competitive markets for inputs and products, and family labor. Small-scale integrated circular aquaponic (ICAq) systems, in which systems’ component outputs are transformed into component inputs, have significant potential to increase circularity and promote economic development, especially in a rural context. We offer an integrated and comprehensive approach centered on aquaponics or aquaponic farming for small-scale aquaculture units. It aims to identify and describe a series of circular processes and causal links that can be implemented based on deep study in SSA and ICAq. Circular processes to treat by-products in ICAq include components like composting, vermicomposting, aerobic and anaerobic digestion, silage, and insect production. These processes can produce ICAq inputs such as seedling substrates, plant fertilizers, bioenergy, or feed ingredients. In addition, the plant component can supply therapeutic compounds. Further research on characterization of aquaponic components outputs and its quantifications, the impact of using circular inputs generated within the ICAq, and the technical feasibility and economic viability of circular processes in the context of SSA is needed.
Full article

Figure 1
Open AccessCommunication
From Resource Abundance to Responsible Scarcity: Rethinking Natural Resource Utilization in the Age of Hyper-Consumption
by
César Ramírez-Márquez, Thelma Posadas-Paredes and José María Ponce-Ortega
Resources 2025, 14(8), 118; https://doi.org/10.3390/resources14080118 - 22 Jul 2025
Abstract
►▼
Show Figures
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This
[...] Read more.
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This communication article calls for a fundamental paradigm shift from the long-standing assumption of resource abundance to a framework of responsible scarcity. Drawing from recent data on material throughput, on the transgression of planetary boundaries, and on the structural and geopolitical disparities underlying global resource use, this article highlights the urgent need to realign natural resource governance with ecological limits and social justice. A conceptual framework is proposed to support this transition, grounded in principles of ecological constraint, functional sufficiency, equity, and long-term resilience. The article concludes by outlining a forward-thinking research and policy agenda aimed at fostering sustainable and just modes of resource utilization in the face of growing environmental and socio-economic challenges.
Full article

Figure 1
Open AccessArticle
Forecasting Potential Resources of Humic Substances in the Ukrainian Lignite
by
Serhiy Pyshyev, Denis Miroshnichenko, Mariia Shved, Volodymyr Riznyk, Halyna Bilushchak, Olexandr Borisenko, Mikhailo Miroshnychenko and Yurii Lypko
Resources 2025, 14(8), 117; https://doi.org/10.3390/resources14080117 - 22 Jul 2025
Abstract
The present research deals with forecasting the potential content of humic acids (HA) in Ukrainian lignite based on the coal’s physicochemical characteristics. The focus is on developing an experimental–statistical model that considers moisture content, volatile matter yield, and calorific value of lignite. The
[...] Read more.
The present research deals with forecasting the potential content of humic acids (HA) in Ukrainian lignite based on the coal’s physicochemical characteristics. The focus is on developing an experimental–statistical model that considers moisture content, volatile matter yield, and calorific value of lignite. The development of the humic acid yield’s dependence on some lignite parameters is based on both original research data and literature sources. Humic acids were extracted using alkaline solutions, and HA content was calculated for various lignite deposits in Ukraine. The adequacy check of the model showed a relative prediction error of up to 12%, indicating good agreement between the model and experimental data. The highest potential yield of humic acids was recorded for lignite from the Dnipropetrovsk region (Dnieper-Donets Basin), amounting to 53–56 wt.%. The presented results demonstrate the feasibility of using mathematical forecasting to assess the industrial potential of humic acid production from lignite.
Full article
(This article belongs to the Special Issue Mineral Resource Management 2025: Assessment, Mining and Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Soft Rock Material Addition on Surface Charge Properties and Internal Force of Aeolian Sandy Soil Particles in the Maowusu Desert
by
Zhe Liu, Yang Zhang, Yingying Sun, Yuliang Zhang, Na Wang, Feinan Hu, Yuhu Luo and Tingting Meng
Resources 2025, 14(7), 116; https://doi.org/10.3390/resources14070116 - 21 Jul 2025
Abstract
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging
[...] Read more.
The Maowusu Desert is still suffering from serious ecological and environmental security issues such as wind erosion and desertification, influenced by both natural and human factors. The amendment of aeolian sandy soil with soft rock material presents an effective erosion control strategy, leveraging the complementary structural and compositional properties of both materials to enhance soil stability and rehabilitate degraded environments. However, there are few studies that investigate the effect of soil surface electrochemical properties and particle interaction forces on the structural stability of compound soils with soft rock and sandy soil. This decade-long field study quantified the electrochemical properties and interparticle forces and their synergistic effects on structural stability across five soft rock-to-aeolian sandy soil blend volume ratios (0:1, 1:5, 1:2, 1:1, 1:0) within the 0–30 cm soil profile. The results showed that the soil organic matter (SOM), specific surface area (SSA), and cation exchange capacity (CEC) significantly increased with the incorporation of soft rock material. For five different proportions, with the addition of soft rock and the extension of planting years, the content of SOM increased from 5.65 g·kg−1 to 11.36 g·kg−1, the CEC varied from 4.68 cmol kg−1 to 17.91 cmol kg−1, while the σ0 importantly decreased from 1.8 to 0.47 c m−2 (p < 0.05). For the interaction force at 2.4 nm between soil particles, the absolute value of van der Waals attractive force increased from 0.10 atm to 0.38 atm, and the net force decreased from 0.09 atm to −0.30 atm after the incorporation ratios of soft rock from 0:1 to 1:1. There was a significant negative correlation between the resultant net force between the particles of compound soil and the SSA and CEC. These results indicate that the addition of soft rock material positively improves the surface electrochemical properties and internal forces between aeolian sandy soil particles, further enhancing its structural stability. This study establishes a foundational theoretical framework for advancing our mechanistic understanding of aeolian sand stabilization and ecosystem rehabilitation in the Mu Us Desert.
Full article
(This article belongs to the Topic Advances in Water and Soil Management Towards Climate Change Adaptation)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Environmental Dynamics and Ecosystem Services of Guadua amplexifolia J. Presl in San Jorge River Basin, Colombia
by
Yiniva Camargo-Caicedo, Jorge Augusto Montoya Arango and Fredy Tovar-Bernal
Resources 2025, 14(7), 115; https://doi.org/10.3390/resources14070115 - 18 Jul 2025
Abstract
►▼
Show Figures
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services
[...] Read more.
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services remain poorly understood. This study (1) quantifies spatial and temporal land use/cover changes in the municipality of Montelíbano between 2002 and 2022 and (2) evaluates the ecosystem services that local communities derive from in 2002, 2012, and 2022, and they were classified in QGIS using G. amplexifolia. We applied a supervised classification of Landsat imagery (2002, 2012, 2022) in QGIS, achieving 85% overall accuracy and a Cohen’s Kappa of 0.82 (n = 45 reference points). For the social assessment, we held participatory workshops and conducted semi-structured interviews with artisans, fishers, authorities, and NGO representatives; responses were manually coded to extract key themes. The results show a 12% decline in total vegetated area from 2002 to 2012, followed by an 8% recovery by 2022, with bamboo-dominated stands following a similar pattern. Communities identified raw material provision (87% of mentions), climate regulation (82%), and cultural–recreational benefits (58%) as the most important services provided by G. amplexifolia. This is the first integrated assessment of G. amplexifolia’s landscape dynamics and community-valued services in the San Jorge basin, highlighting its dual function as a renewable resource and a natural safeguard against environmental risks. Our findings offer targeted recommendations for management practices and land use policies to support the species’ conservation and sustainable utilization.
Full article

Figure 1
Open AccessArticle
Investigating Attributes of Oil Source Rocks by Combining Geochemical Approaches and Basin Modelling (Central Gulf of Suez, Egypt)
by
Moataz Barakat, Mohamed Reda, Dimitra E. Gamvroula, Robert Ondrak and Dimitrios E. Alexakis
Resources 2025, 14(7), 114; https://doi.org/10.3390/resources14070114 - 16 Jul 2025
Abstract
►▼
Show Figures
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and
[...] Read more.
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and reefal limestone intercalated with clastic shale. This study integrated various datasets, including total organic carbon (TOC), Rock-Eval pyrolysis, visual kerogen examination, vitrinite reflectance (%Ro), and bottom-hole temperature measurements. The main objective of this study is to delineate the source rock characteristics of these strata regarding organic richness, thermal maturity, kerogen type, timing of hydrocarbon transformation and generation. The Upper Cretaceous Brown Limestone Formation is represented by 135 samples from four wells and is considered to be a fair to excellent source rock, primarily containing type I and II kerogen. It is immature to early mature, generating oil with a low to intermediate level of hydrocarbon conversion. The Eocene Thebes Formation is represented by 105 samples from six wells and is considered to be a good to fair oil source rock with some potential for gas, primarily containing type II and II/III kerogen. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. The Middle Miocene Lower Rudeis Formation is represented by 8 samples from two wells and considered to be a fair but immature source rock, primarily containing type III kerogen with a low level of conversion representing a potential source for gas. The Middle Miocene Belayim Formation is represented by 29 samples from three wells and is considered to be a poor to good source rock, primarily containing kerogen type II and III. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. 1D basin model A-5 well shows that the Upper Cretaceous Brown Limestone source rock entered the early oil window at 39 Ma, progressed to the main oil window by 13 Ma, and remains in this stage today. The Eocene Thebes source rock began generating hydrocarbons at 21.3 Ma, advanced to the main oil window at 11 Ma, and has been in the late oil window since 1.6 Ma. The Middle Miocene Lower Rudeis source rock entered the early oil window at 12.6 Ma, transitioned to the main oil window at 5.7 Ma, where it remains active. In contrast, the Middle Miocene Belayim source rock has not yet reached the early oil window and remains immature, with values ranging from 0.00 to 0.55 % Ro. The transformation ratio plot shows that the Brown Limestone Formation began transforming into the Upper Cretaceous (73 Ma), reaching 29.84% by the Miocene (14.3 Ma). The Thebes Formation initiated transformation in the Late Eocene (52.3 Ma) and reached 6.42% by 16.4 Ma. The Lower Rudeis Formation began in the Middle Miocene (18.7 Ma), reaching 3.59% by 9.2 Ma. The Belayim Formation started its transformation at 11.2 Ma, reaching 0.63% by 6.8 Ma.
Full article

Figure 1
Open AccessArticle
The Use of Carbonate-Clay Flour, Sewage Sludge and Waste Sulfate Sulfur as Fertilizer Agents
by
Ireneusz Skuta, Beata Kołodziej, Barbara Filipek-Mazur and Jacek Antonkiewicz
Resources 2025, 14(7), 113; https://doi.org/10.3390/resources14070113 - 16 Jul 2025
Abstract
►▼
Show Figures
Macro- and microelements in waste can be returned to the soil as fertilizers and their sustainable use can reduce the need to extract natural resources. For example, the use of carbonate-clay flour, sewage sludge and waste sulfate sulfur to improve soil properties enables
[...] Read more.
Macro- and microelements in waste can be returned to the soil as fertilizers and their sustainable use can reduce the need to extract natural resources. For example, the use of carbonate-clay flour, sewage sludge and waste sulfate sulfur to improve soil properties enables the natural recycling of the nutrients contained in these materials. Soil physicochemical properties with the application of waste and the bioavailability of nutrients and trace elements were assessed before and after a 3-month incubation period. This study showed that when carbonate-clay flour was applied alone or together with sewage sludge and waste sulfur, it improved the properties of the soil, inducing a reduction in acidification and an increase in the content of available P, K and Mg. Sewage sludge also provided Zn, Cu, Ni and Cr in addition to organic carbon. Sulfate did not cause soil acidification. The results indicate that the use of carbonate-clay flour alone, as well as with the addition of sewage sludge and sulfate sulfur, can be recommended for the deacidification of soil and serve as a remediation tool for, for example, the precipitation of chemical pollutants. The valorization of the waste used fits into the circular economy approach.
Full article

Figure 1
Open AccessArticle
Hydrological Assessment Using the SWAT Model in the Jundiaí River Basin, Brazil: Calibration, Model Performance, and Land Use Change Impact Analysis
by
Larissa Brêtas Moura, Tárcio Rocha Lopes, Sérgio Nascimento Duarte, Pietro Sica and Marcos Vinícius Folegatti
Resources 2025, 14(7), 112; https://doi.org/10.3390/resources14070112 - 15 Jul 2025
Abstract
Flow regulation and water quality maintenance are considered ecosystem services, as they provide environmental benefits with a measurable economic value to society. Distributed or semi-distributed hydrological models can help identify where land use decisions yield the greatest economic and environmental returns related to
[...] Read more.
Flow regulation and water quality maintenance are considered ecosystem services, as they provide environmental benefits with a measurable economic value to society. Distributed or semi-distributed hydrological models can help identify where land use decisions yield the greatest economic and environmental returns related to water resources. For these reasons, this study integrated simulations performed with the SWAT (Soil and Water Assessment Tool) model under varying land use conditions, aiming to balance potential benefits with the loss of ecosystem services. Among the tested parameters, those associated with surface runoff showed the highest sensitivity in simulating streamflow for the Jundiaí River Basin. Based on the statistical indicators R2, Nash–Sutcliffe efficiency (NS), and Percent Bias (PBIAS), the SWAT model demonstrated a reliable performance in replicating observed streamflows on a monthly scale, even with limited spatially distributed input data. Scenario 2, which involved converting 15% of pasture/agricultural land into forest, yielded the most favorable hydrological outcomes by increasing soil water infiltration and aquifer recharge while reducing surface runoff and sediment yield. These findings highlight the value of reforestation and land use planning as effective strategies for improving watershed hydrological performance and ensuring long-term water sustainability.
Full article
(This article belongs to the Special Issue Advanced Approaches in Sustainable Water Resources Cycle Management)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatial Optimization of Bioenergy Production by Introducing a Cooperative Manure Management System in Bangladesh
by
Zinat Mahal and Helmut Yabar
Resources 2025, 14(7), 111; https://doi.org/10.3390/resources14070111 - 10 Jul 2025
Abstract
►▼
Show Figures
This study anticipates cooperative manure management as a process for generating bioenergy from livestock manure, thereby reducing greenhouse gas (GHG) emissions in Bangladesh. Therefore, this study’s main objective was to identify clusters for cooperative society development and optimize suitable locations for biogas plant
[...] Read more.
This study anticipates cooperative manure management as a process for generating bioenergy from livestock manure, thereby reducing greenhouse gas (GHG) emissions in Bangladesh. Therefore, this study’s main objective was to identify clusters for cooperative society development and optimize suitable locations for biogas plant establishment within a cooperative system. Scenarios were explored based on manure types using cluster and network analyses of geographic information systems (GIS). The study observed 13 clusters, which have the potential to produce 6045 million m3 of biogas that can be converted to 9068.64 GWh of electricity yearly. Biogas plants additionally produced 5491.04 kilotons of biofertilizer by reducing GHG emissions estimated to be 10.16 million tons of CO2eq in 2024. This study also optimized 10, 6, and 8 optimum locations for biogas plants according to the scenarios. To implement the findings, this study recommended a coordinated action plan based on the circular economy, which helps to obtain both environmental and economic benefits for a cooperative society. These cooperatives can be implemented for renewable energy production from livestock manure at the community level for sustainable energy generation in Bangladesh.
Full article

Figure 1
Open AccessArticle
Enhancing Reservoir Modeling via the Black Oil Model for Horizontal Wells: South Rumaila Oilfield, Iraq
by
Dhyaa H. Haddad, Sameera Hamd-Allah and Mohamed Reda
Resources 2025, 14(7), 110; https://doi.org/10.3390/resources14070110 - 9 Jul 2025
Abstract
►▼
Show Figures
Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator
[...] Read more.
Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator is customized for horizontal well modeling and calibrated using extensive historical data from the South Rumaila Oilfield, Iraq. The simulator first achieves a strong match with historical pressure data (1954–2004) using vertical wells, with an average deviation of less than 5% from observed pressures, and is then applied to forecast the performance of hypothetical horizontal wells (2008–2011). The results validate the simulator’s reliability in estimating bottom-hole pressure (e.g., ±3% accuracy for HRU1 well) and water–oil ratios (e.g., WOR reduction of 15% when increasing horizontal well length from 1000 m to 2000 m). Notably, the simulator demonstrated that doubling the horizontal well length reduced WOR by 15% while increasing bottom-hole pressure by only 2%, highlighting the efficiency of longer wells in mitigating water encroachment. This work contributes to improved reservoir management by enabling efficient well placement strategies and optimizing extraction planning, thereby promoting both economic and resource-efficient hydrocarbon recovery.
Full article

Figure 1
Open AccessArticle
Unlocking the Industrial Potential of Cambuci Peel: A Sustainable Approach Based on Its Physicochemical Profile
by
Juver Andrey Jimenez Moreno, Tiago Linhares Cruz Tabosa Barroso, Luiz Eduardo Nochi Castro, Leda Maria Saragiotto Colpini, Felipe Sanchez Bragagnolo, Mauricio Ariel Rostagno and Tânia Forster Carneiro
Resources 2025, 14(7), 109; https://doi.org/10.3390/resources14070109 - 4 Jul 2025
Abstract
►▼
Show Figures
Cambuci is a native fruit from Brazil, and during the processing of this fruit, the peel is typically discarded due to limited knowledge of its physicochemical characteristics, which restricts its potential applications across various industries. Given the lack of detailed physicochemical characterization of
[...] Read more.
Cambuci is a native fruit from Brazil, and during the processing of this fruit, the peel is typically discarded due to limited knowledge of its physicochemical characteristics, which restricts its potential applications across various industries. Given the lack of detailed physicochemical characterization of this by-product in the literature, this study aimed to analyze key parameters to expand on our understanding of this raw material and stimulate interest from both academia and industry. The cambuci peel was found to have a moisture content of 9.41 ± 1.69% dw (dry weight), total solids of 90.59 ± 1.69% dw, and volatile solids of 87.41 ± 1.69%. Its ash content was 3.18 ± 0.41%, while the chemical oxygen demand (COD) reached 420.54 ± 9.88 mg L−1. The total protein content was 4.93 ± 0.04 g/100 g dw, with reducing sugars at 108.22 ± 3.71 mg g−1 and non-reducing sugars at 30.58 ± 3.16 mg g−1. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined as 36.65 ± 0.19% dw and 18.91 ± 0.05% dw, respectively, with hemicellulose content of 17.74 ± 0.20% dw. Chromatographic analysis identified key bioactive compounds, including ellagic and gallic acid, which hold significant potential for pharmaceutical and food industry applications. Thermogravimetric analysis revealed three distinct decomposition zones, corresponding to physisorbed water, hemicellulose decomposition, and cellulose degradation, respectively. The results demonstrate the valuable physicochemical and biochemical properties of cambuci peel, supporting its potential for the development of new bioproducts aligned with circular economy principles. This study lays the foundation for further research into this underutilized by-product and its application in diverse industrial sectors.
Full article

Figure 1
Open AccessReview
Organic Crop Production in Kazakhstan: Agronomic Solutions and Bioresources
by
Timur Savin and Alexey Morgounov
Resources 2025, 14(7), 108; https://doi.org/10.3390/resources14070108 - 30 Jun 2025
Abstract
►▼
Show Figures
Crop production in Kazakhstan is characterized by vast resources, including over 200 M hectares of farmland and more than 23 M hectares of arable land located mainly in the arid zone with a short growing season. In 2023, the five most important crops
[...] Read more.
Crop production in Kazakhstan is characterized by vast resources, including over 200 M hectares of farmland and more than 23 M hectares of arable land located mainly in the arid zone with a short growing season. In 2023, the five most important crops in the country were spring wheat (12.5 M ha), spring barley (2.42 M ha), sunflower (1.13 M ha), flax (0.73 M ha), and winter wheat (0.59 M ha). Diverse agroecological conditions and low input farming represent good opportunities for the more sustainable use of resources through organic production. However, the area falling under certified organic farming recently varied from 0.1 to 0.3 M ha with wheat, flax, soybean and soybean meal, peas and lentils serving as the main commodities exported to Europe. Several factors limit organic farming development in the country, including the certification system, marketing, and the availability of crops, cultivars, and technologies. The current review summarizes the main organic agronomic practices and bioresources applicable in Kazakhstan into four main themes: crops and cultivars’ diversification; tillage systems for organic crops; crop nutrition; and protection. The technologies developed for organic farming in similar ecologies globally are highly relevant to Kazakhstan and need to be tested and adopted by producers. The lack of targeted cultivars and technology development for organic production in Kazakhstan impedes its progress and requires a longer-term producer-focused framework to extend related research.
Full article

Figure 1
Open AccessFeature PaperArticle
Tundish Deskulling Waste as a Source of MgO for Producing Magnesium Phosphate Cement-Based Mortars: Advancing Sustainable Construction Materials
by
Anna Alfocea-Roig, David Vera-Rivera, Sergio Huete-Hernández, Jessica Giro-Paloma and Joan Formosa Mitjans
Resources 2025, 14(7), 107; https://doi.org/10.3390/resources14070107 - 29 Jun 2025
Abstract
►▼
Show Figures
Currently, the cement industry stands as one of the sectors with the most significant environmental impact, primarily due to its substantial greenhouse gas emissions and energy consumption. To mitigate this impact, a roadmap has been followed in recent years, outlining a set of
[...] Read more.
Currently, the cement industry stands as one of the sectors with the most significant environmental impact, primarily due to its substantial greenhouse gas emissions and energy consumption. To mitigate this impact, a roadmap has been followed in recent years, outlining a set of objectives aimed at diminishing the environmental footprint of the construction industry. This research focuses on the development of mortars with different water/cement ratios employing an alternative cement, specifically magnesium phosphate cement (MPC) formulated with secondary sources. The goal of this research relays in developing mortars based on MPC by using waste from the metallurgical industry, named tundish deskulling waste (TUN), as an MgO source. The results revealed the optimal water/cement (W/C) ratio for MPC-TUN mortars production through the assessment of various characterization techniques, which was 0.55. This ratio resulted in the highest compressive strength after 28 days of curing and the formation of a stable K-struvite matrix. Furthermore, it demonstrated the effectiveness of aluminum sulphate in preventing efflorescence caused by carbonates. The development of alternative masonry mortars for application in building materials represents a significant stride towards advancing the principles of a circular economy, in alignment with the objectives laid out in the 2030 roadmap.
Full article

Figure 1
Open AccessArticle
Assessment of the Projects’ Prospects in the Economic and Technological Development of the Oil and Gas Complex in the Republic of Mozambique
by
Tatyana Semenova and Nunes Churrana
Resources 2025, 14(7), 106; https://doi.org/10.3390/resources14070106 - 28 Jun 2025
Abstract
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including
[...] Read more.
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including Coral South FLNG and Mozambique LNG, focused on their technological features, economic parameters and environmental impact. It is shown that the introduction of floating liquefaction technology reduces capital expenditures, increases operational flexibility, and minimizes infrastructure risks, especially in conditions of geopolitical instability. Based on a comparative analysis of the projects, it was found that the use of modular solutions and the integration of carbon capture and storage (CCS) systems contribute to improving sustainability and investment attractiveness. A patent analysis of technological innovations was carried out, which made it possible to substantiate the prospects for using nanotechnologies and advanced CO2 capture systems for further development of the sector. The results of the study indicate the need to strengthen content localization, develop human capital, and create effective revenue management mechanisms to ensure sustainable growth. The developed strategic development concept is based on the principles of the sixth technological paradigm, which implies an emphasis on environmental standards and technological modernization, including on the basis of nanotechnology. Thus, it is established that the successful implementation of gas projects in Mozambique can become the basis for long-term socio-economic development of the country, provided that technological and institutional innovations are integrated.
Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Resources Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Topical Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Energies, Minerals, Processes, Resources
New Advances in Mining Technology
Topic Editors: Shuai Li, Xinmin WangDeadline: 30 September 2025
Topic in
Economies, Resources, Agriculture, Agronomy, Sustainability
Zero Hunger: Health, Production, Economics and Sustainability
Topic Editors: Richard John Roberts, José-María Montero, María del Carmen Valls Martínez, Viviane Naimy, José Manuel Santos-JaénDeadline: 30 November 2025
Topic in
Economies, Energies, Resources, Sustainability, Water
Enabling Strategies and Policies Toward a Sustainable Environment, 2nd EditionTopic Editors: Abdul Majeed, Yuantao Xie, Judit OláhDeadline: 31 December 2025
Topic in
Agriculture, Climate, Sustainability, Water, Resources
Advances in Water and Soil Management Towards Climate Change Adaptation
Topic Editors: Nektarios N. Kourgialas, Ioannis Anastopoulos, Alexandros I. StefanakisDeadline: 30 January 2026

Conferences
Special Issues
Special Issue in
Resources
Alternative Use of Biological Resources
Guest Editors: Zoltán Lakner, Anita BorosDeadline: 20 August 2025
Special Issue in
Resources
Mineral Resource Management 2025: Assessment, Mining and Processing
Guest Editors: Jian Cao, Wanjia Zhang, Zhitao FengDeadline: 20 August 2025
Special Issue in
Resources
Resource Extraction from Agricultural Products/Waste: 2nd Edition
Guest Editors: Maria Dimopoulou, Athanasios Angelis Dimakis, Antonia VyrkouDeadline: 20 September 2025
Special Issue in
Resources
Critical Resources and Innovation for a Just and Sustainable Energy Transition
Guest Editors: Benjamin McLellan, Damien Giurco, Zhili ZuoDeadline: 20 October 2025
Topical Collections
Topical Collection in
Resources
Management, Environment, Energy and Sustainability under a Circular Economy
Collection Editors: Elena Magaril, Elena Rada