Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6953 KB  
Article
Chayote [Sechium edule (Jacq.) Sw.] Fruit Quality Influenced by Plant Pruning
by Jorge Cadena-Iñiguez, Ma. de Lourdes Arévalo-Galarza, Juan F. Aguirre-Medina, Carlos H. Avendaño-Arrazate, Daniel A. Cadena-Zamudio, Jorge David Cadena-Zamudio, Ramón M. Soto-Hernández, Víctor M. Cisneros-Solano, Lucero del Mar Ruiz-Posadas, Celeste Soto-Mendoza and Jorge L. Mejía-Méndez
Horticulturae 2025, 11(8), 965; https://doi.org/10.3390/horticulturae11080965 - 14 Aug 2025
Viewed by 358
Abstract
Plant pruning is the selective removal of specific plant parts to enhance growth, shape, and health. In this work, the effects of pruning were evaluated regarding the physiological parameters, maturity, quality, and harvest indices and the nutritional quality features of twelve chayote [ [...] Read more.
Plant pruning is the selective removal of specific plant parts to enhance growth, shape, and health. In this work, the effects of pruning were evaluated regarding the physiological parameters, maturity, quality, and harvest indices and the nutritional quality features of twelve chayote [Sechium edule (Jacq.) Sw] (Cucurbitaceae) varieties. GC-FID approaches were utilized to determine CO2 assimilation rates. The results demonstrated that pruning upregulated the leaf temperature and conductance but decreased transpiration and CO2 assimilation rates within the evaluated period (06:30 a.m.–16:23 p.m.). It was noted that the implementation of pruning also impacted samples with enhanced photosynthetically active radiation activity, with a positive correlation with CO2 assimilation. The macro- and micronutrient content was higher in samples with an epidermis, especially for S. edule var. albus spinosum. Nevertheless, the analyzed samples presented low (5–10 mL CO2 kg−1 h−1), medium (10–15 mL CO2 kg−1 h−1), and high levels (15–20 mL CO2 kg−1 h−1) of respiratory intensity and weight loss (7–17%)—effects attributed to botanical differences between the studied chayote varieties. This work demonstrates, for the first time, the effects of pruning in chayote orchards and expands the knowledge regarding the implementation of effective approaches to produce plants with culinary, cultural, and medicinal implications. Further approaches are required to determine the effects of pruning on chayote after harvest. Full article
Show Figures

Figure 1

26 pages, 3326 KB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 - 3 Aug 2025
Viewed by 389
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

19 pages, 5967 KB  
Article
Chitosan Application Improves the Growth and Physiological Parameters of Tomato Crops
by Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Wilmer Tezara, Víctor Reynel, Luis Guillermo Hernández-Montiel and Antonio Juárez-Maldonado
Horticulturae 2025, 11(8), 878; https://doi.org/10.3390/horticulturae11080878 - 28 Jul 2025
Viewed by 572
Abstract
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan [...] Read more.
Tomato crops are treated with high concentrations of synthetic fertilizers and insecticides to increase yields, but the careless use of these chemicals harms the environment and human health and affects plant pathogen resistance. The effect of foliar spray of three concentrations of chitosan (500, 1000, and 2000 mg L−1) on plant growth, yield, fruit quality, and physiological performance in two tomato varieties (Floradade and Candela F1) was studied. Physiological traits such as photosynthesis, chlorophyll content, and leaf area index of the plants were positively affected by chitosan, an effective compound that biostimulates growth, with increases in biomass of organs with respect to the control treatment. Chitosan also improved tomato quality, such as increases in polyphenols, antioxidant capacity, flavonoids, carotenoids, vitamin C, and total soluble solids in both tomato varieties. Finally, yield increased by 76.4% and 65.4% in Floradade and Candela F1, respectively. The responses of tomato plants to chitosan application were different depending on the variety evaluated, indicating a differential response to the biostimulant. The use of chitosan in agriculture is a tool that has no negative effects on plants and the environment and can increase the productive capacity of tomato plants. Full article
Show Figures

Figure 1

16 pages, 866 KB  
Article
Integrated Cover Crop and Fertilization Strategies for Sustainable Organic Zucchini Production in Mediterranean Climate
by Francesco Montemurro, Mariangela Diacono, Vincenzo Alfano, Alessandro Persiani, Michele Mascia, Fabrizio Pisanu, Elisabetta Fois, Gioia Sannino and Roberta Farina
Horticulturae 2025, 11(7), 809; https://doi.org/10.3390/horticulturae11070809 - 8 Jul 2025
Viewed by 422
Abstract
The integration of different agroecological practices could significantly mitigate the impact of climate change. Therefore, a 2-year field experiment on organic zucchini was carried out to study the effects of clover (Trifolium alexandrinum L.) cover crop management (green manure, GM vs. flattening [...] Read more.
The integration of different agroecological practices could significantly mitigate the impact of climate change. Therefore, a 2-year field experiment on organic zucchini was carried out to study the effects of clover (Trifolium alexandrinum L.) cover crop management (green manure, GM vs. flattening using a roller crimper, RC), compared to a control without cover (CT). This agroecological practice was tested in combination with the following different fertilizer treatments: T1. compost produced by co-composting coal mining wastes with municipal organic wastes compost plus urea; T2. compost produced with the same matrices as T1, replacing urea with lawn mowing residues; T3. non-composted mixture of the industrial matrices; T4. on-farm compost obtained from crop residues. The GM management showed the highest marketable yield and aboveground biomass of zucchini, with both values higher by approximately 38% than those recorded in CT. The T1, T2, and T3 treatments showed higher SOC values compared to T4 in both years, with a gradual increase in SOC over time. The residual effect of fertilization on SOC showed a smaller reduction in T3 and T4 than in T1 and T2, in comparison with the levels recorded during the fertilization years, indicating a higher persistence of the applied organic matter in these treatments. The findings of this study pointed out that combining organic fertilization and cover cropping is an effective agroecological practice to maintain adequate zucchini yields and enhance SOC levels in the Mediterranean environment. Full article
Show Figures

Graphical abstract

14 pages, 3332 KB  
Article
Physiological Responses of Olive Cultivars Under Water Deficit
by Lorenzo León, Willem Goossens, Helena Clauw, Olivier Leroux and Kathy Steppe
Horticulturae 2025, 11(7), 745; https://doi.org/10.3390/horticulturae11070745 - 27 Jun 2025
Viewed by 360
Abstract
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. [...] Read more.
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. Characterizing drought stress tolerance in olive is a complex task due to the numerous traits involved in this response. In this study, plant growth, pressure–volume curves, gas-exchange and chlorophyll fluorescence traits, and stomata characteristics were monitored in nine cultivars to assess the effects of mild and severe drought stress conditions induced by withholding water for 7 and 21 days, respectively, and were compared to a well-watered control treatment. The plant materials evaluated included traditional cultivars, as well as new developed cultivars suited for high-density hedgerow olive orchards or resistant to verticillium wilt. Significant differences between cultivars were observed for most evaluated traits, with more pronounced differences under severe drought conditions. A multivariate analysis of the complete dataset recorded throughout the evaluation period allowed for the identification of promising cultivars under stress conditions (‘Sikitita’, ‘Sikitita-2’, and ‘Martina’) as well as highly discriminative traits that could serve as key selection parameters in future breeding programs. Full article
(This article belongs to the Special Issue Strategies of Producing Horticultural Crops Under Climate Change)
Show Figures

Figure 1

19 pages, 4217 KB  
Article
The Efficiency of Artificial Pollination on the Hazelnut ‘Tonda Francescana®’ Cultivar and the Xenia Effects of Different Pollinizers
by Rodrigo José de Vargas, Simona Lucia Facchin, Chiara Traini, Nicola Cinosi, Fabiola Villa, Silvia Portarena, Marta Sánchez-Piñero, Mauro Brunetti, Angela Baiocco, Matteo Stabile and Daniela Farinelli
Horticulturae 2025, 11(7), 724; https://doi.org/10.3390/horticulturae11070724 - 21 Jun 2025
Viewed by 487
Abstract
Pollination is a determining factor in achieving economic yield in hazelnut cultivation, and together with variable climate conditions, this requires the use of artificial pollination. This study evaluated the efficiency of artificial pollination performed with a manual sprayer using pollen from three pollinizer [...] Read more.
Pollination is a determining factor in achieving economic yield in hazelnut cultivation, and together with variable climate conditions, this requires the use of artificial pollination. This study evaluated the efficiency of artificial pollination performed with a manual sprayer using pollen from three pollinizer cultivars on the ‘Tonda Francescana®’ commercial orchard and the effect of different pollen sources on nuts. Dry pollens were applied by a Pollen Blower machine twice during female blooming. The pollen of ‘Nocchione’ determined the highest fruit set and yield per tree, even if it did not determine the highest blank seed percentage. The open pollinizers exhibited a lower sphericity and shape index (NSI), ‘Camponica’ pollen was associated with the biggest nut and kernel; ‘San Giovanni’ pollen showed higher nut elongation. Artificial pollination turned out to be a good tool to increase yield, but its efficiency is strongly influenced by the pollen used. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Graphical abstract

17 pages, 7728 KB  
Article
Comparative Effects of Nitrogen Fertigation and Granular Fertilizer Application on Pepper Yield and Soil GHGs Emissions
by Antonio Manco, Matteo Giaccone, Luca Vitale, Giuseppe Maglione, Maria Riccardi, Bruno Di Matteo, Andrea Esposito, Vincenzo Magliulo and Anna Tedeschi
Horticulturae 2025, 11(6), 708; https://doi.org/10.3390/horticulturae11060708 - 19 Jun 2025
Viewed by 961
Abstract
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under [...] Read more.
Quantitative greenhouse gas (GHG) budgets for Mediterranean pepper cultivation are still missing, limiting evidence-based nitrogen management. Furthermore, mitigation value of fertigation respect to granular fertilization in vegetable systems remains uncertain. This study therefore compared the GHG footprint and productivity of ‘papaccella’ pepper under two nitrogen fertilization methods: granular fertilization versus low-frequency fertigation with urea, each supplying about 63 kg N ha−1. Eight automated static chambers coupled to a cavity ring-down spectrometer monitored soil CO2 and N2O fluxes throughout the season. Cumulative emissions did not differ between treatments (CO2: 811 ± 6 g m−2 vs. 881 ± 4 g m−2; N2O: 0.038 ± 0.008 g m−2 vs. 0.041 ± 0.015 g m−2, fertigation vs. granular), and marketable yield remained at ~11 t ha−1, leaving product-scaled global warming potential (GWP) unchanged. Although representing less than 2% of measured fluxes, “hot moments,” burst emissions exceeding four standard deviations (SD) from the mean, accounted for up to 4% of seasonal CO2 and 19% of N2O. Fertigation doubled the frequency of these events but reduced their peak magnitude, whereas granular application produced fewer but more extreme bursts (>11 SD). Results showed that fertigation did not mitigate GHGs emission nor improve productivity for Mediterranean pepper, mainly due to the low application frequency and the use of a urea fertilizer. Moreover, we can highlight that in horticultural systems, omitting ‘hot moments’ leads to systematic underestimation of emissions. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

14 pages, 3551 KB  
Article
Integration of Green and Far-Red Light with Red-Blue Light Enhances Shoot Multiplication in Micropropagated Strawberry
by Yali Li, Ping Huang, Xia Qiu, Feiyu Zhu, Hongwen Chen, Si Wang, Jiaxian He, Yadan Pang, Hui Ma and Fang Wang
Horticulturae 2025, 11(6), 701; https://doi.org/10.3390/horticulturae11060701 - 17 Jun 2025
Cited by 1 | Viewed by 460
Abstract
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured [...] Read more.
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured strawberry (Fragaria × ananassa cv. ‘Benihoppe’). After 28 days of cultivation under controlled conditions (25 °C/22 °C day/night, 50 μmol·m−2·s−1 PPFD), RBFR and RGB treatments significantly enhanced shoot multiplication (38.8% and 24.2%, respectively), plant height, and callus biomass compared to RB light. RGB elevated chlorophyll a and b by 1.8- and 1.6-fold, respectively, while RBFR increased soluble protein content by 16%. Transcriptome analysis identified 144 and 376 differentially expressed genes (DEGs) under RGB and RBFR, respectively, enriched in pathways linked to circadian rhythm, auxin transport, and photosynthesis. Far-red light upregulated light signaling and photomorphogenesis genes, whereas green light enhanced chlorophyll biosynthesis while suppressing stress-responsive genes. These findings elucidate the spectral-specific regulatory mechanisms underlying strawberry micropropagation and provide a framework for optimizing multispectral LED systems in controlled-environment horticulture. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

12 pages, 228 KB  
Article
Silicon Enhances Antioxidant Capacity and Photochemical Efficiency in Drought-Stressed Creeping Bentgrass (Agrostis stolonifera L.) Putting Greens
by Xunzhong Zhang, Travis Roberson, Mike Goatley, Taylor Flanary and David McCall
Horticulturae 2025, 11(6), 664; https://doi.org/10.3390/horticulturae11060664 - 11 Jun 2025
Cited by 1 | Viewed by 423
Abstract
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species that is not well understood. The objective of this study was to determine the effects of the mechanisms underlying silicon (Si) on creeping bentgrass drought tolerance under field conditions from 2022 [...] Read more.
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species that is not well understood. The objective of this study was to determine the effects of the mechanisms underlying silicon (Si) on creeping bentgrass drought tolerance under field conditions from 2022 to 2023. Five treatments, including a control (potassium silicate at 0.95 and 1.90 mL m−2), Dyamin-OSA at 0.64 and 1.28 mL m−2, and Agsil 21 at 0.35 mL m−2, were arranged in a randomized block design with four replications and applied biweekly to creeping bentgrass putting greens during summer months. Deficit irrigation was applied to induce drought stress in June and July. The Si treatments exhibited beneficial effects on turf quality, physiological fitness, and root viability. K-silicate at 1.90 mL m−2 and Agsil 21 at 0.35 mL m−2 increased the leaf Si content by 32.0% and 22.8%, respectively, when compared to the control, as measured at the end of the trial. Among the treatments, K-silicate at 1.90 mL m−2, Dyamin-OSA at 0.64 mL m−2, and Agsil 21 at 0.35 mL m−2 tended to have greater beneficial effects than other Si treatments. Exogenous Si may improve drought tolerance by enhancing root growth and viability, Si uptake by roots, and antioxidant capacity and by protecting photosynthetic function. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
Show Figures

Graphical abstract

17 pages, 1213 KB  
Article
Characterization of Physiological Factors and Performance of Ungrafted GRN Rootstocks Under Moderate Water-Stress Conditions
by Jose R. Munoz, Jr., Jocelyn Alvarez Arredondo, Maria Alvarez Arredondo, Ava Brackenbury, John Howell, Jennifer Wootten, Myles Adams and Jean Catherine Dodson Peterson
Horticulturae 2025, 11(6), 663; https://doi.org/10.3390/horticulturae11060663 - 11 Jun 2025
Viewed by 392
Abstract
The commercial production of grapevines (Vitis vinifera L.) relies heavily on rootstocks that are hybrids of non-vinifera parentage. The relatively newly released GRN rootstocks (GRN-1, GRN-2, GRN-3, GRN-4, and GRN-5) were bred from especially under-studied genetic backgrounds. This study aimed to [...] Read more.
The commercial production of grapevines (Vitis vinifera L.) relies heavily on rootstocks that are hybrids of non-vinifera parentage. The relatively newly released GRN rootstocks (GRN-1, GRN-2, GRN-3, GRN-4, and GRN-5) were bred from especially under-studied genetic backgrounds. This study aimed to evaluate ungrafted GRN-series grape rootstocks under moderate water-stress conditions and to characterize and compare their physiological performances. Each of the GRN rootstocks had specific physiological characteristics that would make them suitable for a wide range of growing conditions and vineyard management goals. GRN-1 had growth habits which were more vigorous and the highest carbohydrate storage levels, while GRN-2 had the highest level of nitrogen and the largest leaf area, but the lowest levels of carbohydrate storage. GRN-3 was less tolerant to high-salinity soils, and had the longest internodes, while GRN-4 had high boron levels, which supports flowering and fruit set, and short internodes. GRN-5 was consistently moderate across all measured areas, except internode thickness, for which it was the highest. These findings show the variations in physiological growth habits among the ungrafted GRN-series rootstocks and suggest that growth habits, carbohydrate storage, leaf canopy, fruit production, and nutrition vary based on rootstock parentage. Further investigation is needed to determine whether these characteristics persist when grafted onto Vitis vinifera L. scions. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

13 pages, 2173 KB  
Article
Timing and Shoot Section Influence Success of Tea- Cutting Propagation in a Temperate Climate
by Srijana Shrestha and Carol Miles
Horticulturae 2025, 11(6), 645; https://doi.org/10.3390/horticulturae11060645 - 6 Jun 2025
Viewed by 685
Abstract
Tea (Camellia sinensis) is the second most popular beverage in the United States (water is the first), but there is essentially no commercial production due to limited knowledge regarding cultivars and propagation. The objective of this study was to determine the [...] Read more.
Tea (Camellia sinensis) is the second most popular beverage in the United States (water is the first), but there is essentially no commercial production due to limited knowledge regarding cultivars and propagation. The objective of this study was to determine the best time of year to collect tea cuttings, the section of the shoot to collect cuttings, and the number of nodes per cutting for successful propagation while optimizing resource efficiency. To address this objective, two experiments were conducted in western Washington, USA, using cv. Minto Pacific. The first experiment (Expt. 1) evaluated the time of year (September through February) for cutting collection and the role of shoot section on successful propagation. The second experiment (Expt. 2) tested one-, two-, and three-node cuttings on the success rate of propagation. In Expt. 1, 5 months after the cutting collection, the survival of tea cuttings collected from late September through early February was 97% in year 1 and 86% in year 2. Survival was similar for all the shoot sections 5 months after collection in year 1 (94%), and in year 2, the top shoot section had the greatest survival (93%). Overall, the plant height, number of new leaves, plant health rating, root number, and root length in the summer following collection were greatest for cuttings collected in early September through late October. Also, overall, the mid-section of the shoot had the greatest plant height, number of new leaves, plant health rating, and root length the summer following collection. In Expt. 2, the survival of all the cuttings was 100% in year 1 and 87% in year 2 at 5 months after cutting collection. The plant height, root number and root length the summer after collection were similar for all the treatments in both years. The results from these two experiments indicate late October may be the optimum time for tea-cutting collection in this temperate climate region, to optimize use of greenhouse facilities, and single-node cuttings maximize the number of cuttings without a reduction in size of the rooted plants. Full article
Show Figures

Figure 1

26 pages, 21987 KB  
Article
AHN-YOLO: A Lightweight Tomato Detection Method for Dense Small-Sized Features Based on YOLO Architecture
by Wenhui Zhang and Feng Jiang
Horticulturae 2025, 11(6), 639; https://doi.org/10.3390/horticulturae11060639 - 6 Jun 2025
Viewed by 692
Abstract
Convolutional neural networks (CNNs) are increasingly applied in crop disease identification, yet most existing techniques are optimized solely for laboratory environments. When confronted with real-world challenges such as diverse disease morphologies, complex backgrounds, and subtle feature variations, these models often exhibit insufficient robustness. [...] Read more.
Convolutional neural networks (CNNs) are increasingly applied in crop disease identification, yet most existing techniques are optimized solely for laboratory environments. When confronted with real-world challenges such as diverse disease morphologies, complex backgrounds, and subtle feature variations, these models often exhibit insufficient robustness. To effectively identify fine-grained disease features in complex scenarios while reducing deployment and training costs, this paper proposes a novel network architecture named AHN-YOLO, based on an improved YOLOv11-n framework that demonstrates balanced performance in multi-scale feature processing. The key innovations of AHN-YOLO include (1) the introduction of an ADown module to reduce model parameters; (2) the adoption of a Normalized Wasserstein Distance (NWD) loss function to stabilize small-feature detection; and (3) the proposal of a lightweight hybrid attention mechanism, Light-ES, to enhance focus on disease regions. Compared to the original architecture, AHN-YOLO achieves a 17.1 % reduction in model size. Comparative experiments on a tomato disease detection dataset under real-world complex conditions demonstrate that AHN-YOLO improves accuracy, recall, and mAP-50 by 9.5%, 7.5%, and 9.2%, respectively, indicating a significant enhancement in detection precision. When benchmarked against other lightweight models in the field, AHN-YOLO exhibits superior training efficiency and detection accuracy in complex, dense scenarios, demonstrating clear advantages. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

17 pages, 2341 KB  
Article
Continuous Proximal Monitoring of Diameter Variation from Root to Fruit
by Arash Khosravi, Enrico Maria Lodolini, Veronica Giorgi, Francesco Belluccini, Adriano Mancini and Davide Neri
Horticulturae 2025, 11(6), 635; https://doi.org/10.3390/horticulturae11060635 - 5 Jun 2025
Viewed by 472
Abstract
Proximal plant-based monitoring provides high-resolution data about trees, leading to more precise orchard management and in-depth knowledge about tree physiology. The present work focuses on continuous real-time monitoring of olive cv. ‘Ascolana tenera’ over hourly intervals during the third stage of fruit growth [...] Read more.
Proximal plant-based monitoring provides high-resolution data about trees, leading to more precise orchard management and in-depth knowledge about tree physiology. The present work focuses on continuous real-time monitoring of olive cv. ‘Ascolana tenera’ over hourly intervals during the third stage of fruit growth (mesocarp cell expansion) under mild water stress conditions (ψStem above −2 MPa). This is achieved by mounting dendrometers on the root, trunk, branch, and fruit to assess and model the behavior of each organ. The diameter variation in each organ over different time intervals (daily, two-weeks, and throughout the entire experiment), as well as their hysteretic patterns relative to each other and vapor pressure deficit, are demonstrated. The results show different correlations between various organs, ranging from very weak to strongly positive. However, the trend of fruit versus root consistently shows a strong positive relationship throughout the entire experiment (R2 = 0.83) and a good one across various two-week intervals (R2 ranging from 0.54 to 0.93). Additionally, different time lags in dehydration and rehydration between organs were observed, suggesting that the branch is the most reactive organ, regulating dehydration and rehydration in the tree. Regarding the hysteretic pattern, different rotational patterns and characteristics (shape) were observed among the organs and in relation to vapor pressure deficit. This research provides valuable insight into flow dynamics within a tree, models plant water relations and time lags in terms of water storage and transport, and could be implemented for precise olive tree water status detection. Full article
(This article belongs to the Special Issue Fruit Tree Physiology, Sustainability and Management)
Show Figures

Figure 1

18 pages, 1346 KB  
Article
Broccoli Cultivation Under Different Sources and Rates of Specialty Phosphorus Fertilizers in the Brazilian Cerrado
by Dinamar Márcia da Silva Vieira, Reginaldo de Camargo, Miguel Henrique Rosa Franco, Valdeci Orioli Júnior, Arcângelo Loss, Hamilton César de Oliveira Charlo, Fausto Antônio Domingos Júnior and José Luiz Rodrigues Torres
Horticulturae 2025, 11(6), 631; https://doi.org/10.3390/horticulturae11060631 - 4 Jun 2025
Cited by 1 | Viewed by 644
Abstract
This study aimed to evaluate the agronomic performance and yield of broccoli grown under different sources and rates of specialty phosphorus (P) fertilizers in Uberaba, Minas Gerais, Brazil. The experiment was conducted in a randomized block design arranged in a split-plot scheme, testing [...] Read more.
This study aimed to evaluate the agronomic performance and yield of broccoli grown under different sources and rates of specialty phosphorus (P) fertilizers in Uberaba, Minas Gerais, Brazil. The experiment was conducted in a randomized block design arranged in a split-plot scheme, testing three P sources: (1) conventional monoammonium phosphate (CMP); (2) polymer-coated monoammonium phosphate (PCMP); and (3) organomineral fertilizer (Org). Four application rates were evaluated: 0 (no P applied), 50% (200 kg ha−1 of P2O5), 75% (300 kg ha−1 of P2O5), and 100% (400 kg ha−1 of P2O5) of the recommended phosphorus rate for broccoli, with four replications. The parameters assessed included plant nutritional status, soil fertility at harvest, number of leaves (NL), fresh head weight (FHW), dry head weight (DHW), and broccoli yield (YLD). In the first growing cycle, broccoli showed the highest NL (24), FHW (1.05 kg plant−1), DHW (0.27 kg plant−1), and YLD (18.81 Mg ha−1) values when PCMP was applied, which was 5, 25, 8 and 23% higher than Org and 20, 25, 14 and 34% higher than CMP. In the second cycle, broccoli showed higher values of NL (23), FHW (1.85 kg plant−1), DHW (0.26 kg plant−1), and YLD (33.01 Mg ha−1) where Org was applied, which was 4, 15, 8 and 5% higher than CMP and 2, 24, 4 and 14% higher than PCMP, respectively. All the variables evaluated showed the highest values at the 100% dose. Broccoli yield in the same area was 124%, 153%, and 115% higher in the second cycle compared to the first for CMP, PCMP, and Org, respectively. The greatest residual effect on soil fertility was observed in the area treated with the Org. Full article
Show Figures

Figure 1

19 pages, 2795 KB  
Article
De Novo Assembly of First Mitochondrial Genome in Melicope pteleifolia (Rutaceae): Resolving Inter-Organellar Gene Transfer Events Through Integrated Chloroplast Analysis
by Lijun Guo, Wenwen Shi, Yatao Luo, Kai Gao, Jingli Huang, Hong Wei, Pan Liang, Longfei He, Dong Xiao, Jie Zhan, Guangyu Zeng and Aiqin Wang
Horticulturae 2025, 11(6), 628; https://doi.org/10.3390/horticulturae11060628 - 4 Jun 2025
Viewed by 541
Abstract
Melicope pteleifolia (Rutaceae) is a shrub or tree with high medicinal value. Although the physical features of M. pteleifolia are evident, the mitochondrial (mt) genome has yet to be investigated, and its evolutionary relationship within Rutaceae is unclear. The organelle genomes of M. [...] Read more.
Melicope pteleifolia (Rutaceae) is a shrub or tree with high medicinal value. Although the physical features of M. pteleifolia are evident, the mitochondrial (mt) genome has yet to be investigated, and its evolutionary relationship within Rutaceae is unclear. The organelle genomes of M. pteleifolia were constructed using Nanopore and Illumina sequencing data. The circular mt genome is 780,107 base pairs (bp) long, with a GC content of 44.85%. It has 66 genes, consisting of 33 protein-coding genes (PCGs), 30 tRNA genes, and 3 rRNA genes. The length of the chloroplast (cp) genome was 158,987 bp, containing 88 PCGs, 37 tRNAs, and 8 rRNAs. The mtDNA and cpDNA contained 507 and 353 repetitive sequences, respectively. RNA editing sites were abundant in M. pteleifolia organelle genomes, including 323 sites in mtDNA and 260 sites in cpDNA. Phylogenetic research using the cp and mt genomes of M. pteleifolia and nine additional species of the Rutaceae family precisely delineates its evolutionary and taxonomic position. Ka/Ks and nucleotide diversity indicated that the majority of the PCGs in the mitochondrial genome had experienced negative selection. These findings provided comprehensive information on the M. pteleifolia mitogenome for studying phylogenetic relationships in Rutaceae, with chloroplast-derived sequences providing critical evidence for inter-organellar genome evolution. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

19 pages, 3258 KB  
Article
IPM Adoption in Common Beans in Brazil
by Amanda Lopes Ferreira, Alcido Elenor Wander and Patricia Valle Pinheiro
Horticulturae 2025, 11(6), 611; https://doi.org/10.3390/horticulturae11060611 - 29 May 2025
Viewed by 657
Abstract
Common beans (Phaseolus vulgaris) are an important source of protein for the Brazilian population. They are cultivated all over the country, in three cropping seasons/year, totaling 2.7 million tons, mostly for domestic consumption. Pest management is a big challenge and is [...] Read more.
Common beans (Phaseolus vulgaris) are an important source of protein for the Brazilian population. They are cultivated all over the country, in three cropping seasons/year, totaling 2.7 million tons, mostly for domestic consumption. Pest management is a big challenge and is mostly carried out with the intensive use of pesticides. Integrated pest management (IPM) is essential for sustainability. This technology is based on applying insecticides only when the pest population reaches the Economic Threshold. For that, it is necessary to monitor the crop for the occurrence of pests and beneficial arthropods. Although the concept of IPM and its benefits have long been known and widespread, it is not clear whether bean producers adopt the technology, since informal reports suggest that preventive insecticide applications are still highly used in the crop. The objective of this study was to survey the level of IPM adoption among bean producers in different regions of Brazil, using a questionnaire, applied to 103 producers/consultants. The results show that the estimated rate of IPM adoption by common bean producers in Brazil is 46.6%. The main causes of the low adoption are a lack of understanding of IPM concepts, high confidence in the efficiency of pesticides, and high costs of crop monitoring. Full article
(This article belongs to the Section Insect Pest Management)
Show Figures

Figure 1

18 pages, 4090 KB  
Article
Spice Defense: Resistance, Capsaicin, and Photosynthesis in Diverse Capsicum Genotypes Under Root-Knot Nematode Stress
by Kansiree Jindapunnapat, Pornthip Sroisai, Nichaphat Auangaree, Nawarat Pornsopin, Suchila Techawongstien and Tanyarat Tarinta
Horticulturae 2025, 11(6), 607; https://doi.org/10.3390/horticulturae11060607 - 29 May 2025
Viewed by 713
Abstract
Meloidogyne enterolobii is an aggressive root-knot nematode that poses a significant threat to global chili (Capsicum spp.) production. This study evaluated the resistance levels, physiological responses, and capsaicin accumulation patterns of diverse Capsicum genotypes—including C. annuum, C. chinense, C. frutescens [...] Read more.
Meloidogyne enterolobii is an aggressive root-knot nematode that poses a significant threat to global chili (Capsicum spp.) production. This study evaluated the resistance levels, physiological responses, and capsaicin accumulation patterns of diverse Capsicum genotypes—including C. annuum, C. chinense, C. frutescens, and C. baccatum—under nematode-infested and non-infested conditions. Resistance was assessed using the gall index (GI), egg per g of root, and reproductive factor (Rf). Among these evaluated parameters, Rf and egg count consistently reflected nematode reproductive success, whereas the GI proved less reliable for resistance classification. Several genotypes—notably from C. chinense and C. frutescens—exhibited strong resistance (Rf < 1), suggesting their potential for nematode-infection cultivar development. Physiological assessments revealed variable photosynthetic responses, with some genotypes showing increased photosynthetic rates of post-infection, indicating potential compensatory mechanisms. In contrast, capsaicin accumulation was influenced by nematode stress and genetic background, indicating their roles in capsaicin biosynthesis. These findings highlight the genotype-specific biochemical and physiological responses of Capsicum species to M. enterolobii infection and underscore the value of integrating physiological, biochemical, and molecular data in breeding programs. Future research should focus on dissecting hormonal signaling pathways and post-infection metabolic shifts to accelerate the development of robust, high-yielding cultivars with durable resistance. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

22 pages, 3368 KB  
Article
Effect of Biostimulants on Drought Tolerance of Greenhouse-Grown Tomato
by Kalliopi I. Kadoglidou, Eleni Anthimidou, Konstantinos Krommydas, Eleni Papa, Eleftherios Karapatzak, Nektaria Tsivelika, Maria Irakli, Ifigeneia Mellidou, Aliki Xanthopoulou and Apostolos Kalivas
Horticulturae 2025, 11(6), 601; https://doi.org/10.3390/horticulturae11060601 - 28 May 2025
Viewed by 676
Abstract
The use of biostimulants is one of the recognized strategies for mitigating the adverse effects of drought on crops. In a greenhouse tomato experiment, the effect of two biostimulants in combination with three levels of drought was investigated. Specifically, the doses of 150 [...] Read more.
The use of biostimulants is one of the recognized strategies for mitigating the adverse effects of drought on crops. In a greenhouse tomato experiment, the effect of two biostimulants in combination with three levels of drought was investigated. Specifically, the doses of 150 mL and 1000 g ha−1 of a plant-derived polyhydroxy acids extract (B1) and a Sargassum seaweed extract (B2), respectively, were studied in combination with drought levels of 85, 63.75, and 42.5% of field capacity. Four applications were performed during key growth stages. The effects were comprehensively investigated by assessing agronomic and physiological traits of the plants at three defined time points during the experimental period. Furthermore, organoleptic characteristics, bioactive compounds, antioxidant activity in the fruits, and overall yield components were evaluated. Drought stress provoked a consistent negative impact on several physiological traits, such as stomatal conductance (up to −58.3%), net photosynthesis (up to −47.9%), and quantum yield. A comparable impact was observed on agronomic traits, such as plant height, stem thickness, and number of leaves, with reductions of up to 13.6%. Both biostimulants’ applications enhanced certain physiological features across all irrigation levels, including net photosynthesis by up to 44.3% and chlorophyll content index by up to 33.4%, while B2 further increased intrinsic water use efficiency by up to 42.9% compared to the respective controls. However, this trend was not reflected in the evaluated post-harvest parameters, such as fruit yield, fruit number, fruit weight, and quality indices. These findings suggest that biostimulants may have a supporting role in physiological responses under drought stress but have limited effects on fruit production. Future research should focus on optimizing the formulation, dosage, and timing of biostimulant applications, as these factors may be critical to enhancing plant tolerance to drought stress and improving fruit yield responses. Full article
Show Figures

Figure 1

22 pages, 913 KB  
Review
Over Half a Century of Research on Blackberry Micropropagation: A Comprehensive Review
by Luca Regni and Arianna Cesarini
Horticulturae 2025, 11(5), 556; https://doi.org/10.3390/horticulturae11050556 - 21 May 2025
Viewed by 989
Abstract
Micropropagation of blackberry (Rubus spp.) has emerged as a key technique for large-scale production of genetically uniform, disease-free plants. This review summarizes more than half a century of in vitro blackberry culture research, covering fundamental aspects such as establishment, proliferation, rooting, acclimation, [...] Read more.
Micropropagation of blackberry (Rubus spp.) has emerged as a key technique for large-scale production of genetically uniform, disease-free plants. This review summarizes more than half a century of in vitro blackberry culture research, covering fundamental aspects such as establishment, proliferation, rooting, acclimation, genetic stability and conservation. Optimization of culture media, plant growth regulators and environmental conditions has significantly improved the efficiency of micropropagation. Recent advances, including bioreactors, cryopreservation and biostimulants, have further improved plant growth and stress tolerance. In addition, studies on bioactive compounds in micropropagated blackberries highlight their potential nutritional and pharmaceutical applications. Despite progress, challenges such as microbial contamination, somaclonal variation, and response variability among cultivars remain critical areas for future research. The integration of nanotechnology, alternative culture systems (i.e., bioreactors), synthetic seed technology should represent the future research trend of blackberry micropropagation, ensuring sustainable production and conservation of genetic resources. Full article
(This article belongs to the Special Issue Fruit Tree Physiology, Sustainability and Management)
Show Figures

Graphical abstract

37 pages, 12210 KB  
Review
A Review of Environmental Sensing Technologies for Targeted Spraying in Orchards
by Yunfei Wang, Zhengji Zhang, Weidong Jia, Mingxiong Ou, Xiang Dong and Shiqun Dai
Horticulturae 2025, 11(5), 551; https://doi.org/10.3390/horticulturae11050551 - 20 May 2025
Cited by 3 | Viewed by 1108
Abstract
Precision pesticide application is a key focus in orchard management, with targeted spraying serving as a core technology to optimize pesticide delivery and reduce environmental pollution. However, its accurate implementation relies on high-precision environmental sensing technologies to enable the precise identification of target [...] Read more.
Precision pesticide application is a key focus in orchard management, with targeted spraying serving as a core technology to optimize pesticide delivery and reduce environmental pollution. However, its accurate implementation relies on high-precision environmental sensing technologies to enable the precise identification of target objects and dynamic regulation of spraying strategies. This paper systematically reviews the application of orchard environmental sensing technologies in targeted spraying. It first focuses on key sensors used in environmental sensing, providing an in-depth analysis of their operational mechanisms and advantages in orchard environmental perception. Subsequently, this paper discusses the role of multi-source data fusion and artificial intelligence analysis techniques in improving the accuracy and stability of orchard environmental sensing, supporting crown structure modeling, pest and disease monitoring, and weed recognition. Additionally, this paper reviews the practical paths of environmental sensing-driven targeted spraying technologies, including variable spraying strategies based on canopy structure perception, precise pesticide application methods combined with intelligent pest and disease recognition, and targeted weed control technologies relying on weed and non-target area detection. Finally, this paper summarizes the challenges faced by multi-source sensing and targeted spraying technologies in light of current research progress and industry needs, and explores potential future developments in low-cost sensors, real-time data processing, intelligent decision making, and unmanned agricultural machinery. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

13 pages, 6174 KB  
Article
Dynamic Pollen–Stigma Coordination in Dendrobium Hybridization: A Strategy to Maximize Fruit Set and Hybrid Seed Viability
by Qian Wu, Yanbing Qian, Ao Guan, Yan Yue, Zongyan Li, Bruce Dunn, Jianwei Yang, Shuangshuang Yi, Yi Liao and Junmei Yin
Horticulturae 2025, 11(5), 544; https://doi.org/10.3390/horticulturae11050544 - 17 May 2025
Cited by 1 | Viewed by 653
Abstract
This study investigated dynamic pollen–stigma coordination to optimize interspecific hybridization in Dendrobium using D. ‘Burana Jade’ as the maternal parent and eight wild species as pollen donors. Stigma receptivity was comprehensively evaluated using a multi-indicator approach, including morphological characterization (crystal secretion and bulging [...] Read more.
This study investigated dynamic pollen–stigma coordination to optimize interspecific hybridization in Dendrobium using D. ‘Burana Jade’ as the maternal parent and eight wild species as pollen donors. Stigma receptivity was comprehensively evaluated using a multi-indicator approach, including morphological characterization (crystal secretion and bulging papillae), histochemical benzidine-H2O2 staining, and enzymatic activity profiling (esterase and superoxide dismutase). Concurrently, pollen viability was assessed through TTC testing coupled with ultrastructural observations. Results identified a critical synchronization window: pollen viability peaked at 1–3 days post anthesis (DPA) or during the mid-anthesis phase, while stigmas exhibited maximal receptivity when secretory activity and antioxidant enzyme levels significantly increased. Using stage-specific pollination criteria, 8.4% of crosses (8/95) produced viable fruits, outperforming empirical methods by 2.8-fold. D. ‘Burana Jade’ showed cross-compatibility with four Dendrobium species (D. aphyllum, D. chrysotoxum, D. hercoglossum, D. thyrsiflorum), with D. thyrsiflorum hybrids achieving 54.81% embryogenesis and 22.38% germination. Three compatible combinations germinated successfully in vitro within 45–55 days on 1/4 MS medium supplemented with 20 g/L sucrose, 1 g/L tryptone, 180 mL/L coconut water, and 2.2 g/L Phytagel. Our findings establish that synchronizing pollen viability windows with stigma receptivity phases significantly enhances fruit set and hybrid seed viability, providing a phenology-driven strategy to overcome reproductive barriers in orchid breeding programs. This study provides key physiological criteria for Dendrobium hybridization, though their applicability to other orchids needs validation. Future multi-omics studies should explore cross-species compatibility mechanisms. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

19 pages, 16201 KB  
Article
An AI-Based Horticultural Plant Fruit Visual Detection Algorithm for Apple Fruits
by Bin Yan, Xiameng Li and Rongshan Yan
Horticulturae 2025, 11(5), 541; https://doi.org/10.3390/horticulturae11050541 - 16 May 2025
Cited by 1 | Viewed by 977
Abstract
In order to improve the perception accuracy of the apple tree fruit recognition model and to reduce the model size, a lightweight apple target recognition method based on an improved YOLOv5s artificial intelligence algorithm was proposed, and relevant experiments were designed. The Depthwise [...] Read more.
In order to improve the perception accuracy of the apple tree fruit recognition model and to reduce the model size, a lightweight apple target recognition method based on an improved YOLOv5s artificial intelligence algorithm was proposed, and relevant experiments were designed. The Depthwise Separable Convolution (DWConv) module has many advantages: (1) It has high computational efficiency, reducing the number of parameters and calculations in the model; (2) It makes the model lightweight and easy to deploy in hardware; (3) DWConv can be combined with other modules to enhance the multi-scale feature extraction capability of the detection network and improve the ability to capture multi-scale information; (4) It balances the detection accuracy and speed of the model; (5) DWConv can flexibly adapt to different network structures. Because of its efficient computing modes, lightweight design, and flexible structural adaptation, the DWConv module has significant advantages in multi-scale feature extraction, real-time performance improvement, and small-object detection. Therefore, this method improves the original YOLOv5s network architecture by replacing the embedded Depthwise Separable Convolution in its Backbone network, which reduces the size and parameter count of the model while ensuring detection accuracy. The experimental results show that for the test-set images, the proposed improved model has an average recognition accuracy of 92.3% for apple targets, a recognition time of 0.033 s for a single image, and a model volume of 11.1 MB. Compared with the original YOLOv5s model, the average recognition accuracy was increased by 0.8%, the recognition speed was increased by 23.3%, and the model volume was compressed by 20.7%, effectively achieving lightweight improvement of the apple detection model and improving the accuracy and speed of detection. The detection algorithm proposed in the study can be extended to the intelligent measurement of apple biological and physical characteristics, including for size measurement, shape analysis, and color analysis. The proposed method can improve the intelligence level of orchard management and horticultural technology, reduce labor costs, assist precision agriculture technology, and promote the transformation of the horticultural industry toward sustainable development. Full article
(This article belongs to the Special Issue Advances in Tree Crop Cultivation and Fruit Quality Assessment)
Show Figures

Figure 1

26 pages, 7613 KB  
Article
Orthodox vs. Recalcitrant? Germination and Early Growth of Phoenix Species (Arecaceae) Stored for up to Ten Years
by Concepción Obón, Sofía Pardo-Pina, Dennis Johnson and Diego Rivera
Horticulturae 2025, 11(5), 537; https://doi.org/10.3390/horticulturae11050537 - 15 May 2025
Viewed by 833
Abstract
This study investigated seed storage behavior and seedling development patterns in the genus Phoenix L. (Arecaceae), addressing the knowledge gap regarding orthodox versus recalcitrant characteristics in these ecologically and economically significant palms. We examined the germination capacity and subsequent growth in [...] Read more.
This study investigated seed storage behavior and seedling development patterns in the genus Phoenix L. (Arecaceae), addressing the knowledge gap regarding orthodox versus recalcitrant characteristics in these ecologically and economically significant palms. We examined the germination capacity and subsequent growth in 31 seed samples from various Phoenix species stored for up to 10 years at approximately 5 °C, at the Germplasm Bank at the Escuela Politécnica Superior de Orihuela, comprising 465 seeds monitored over a one-year period. The seed germination trials involved planting seeds in pots placed in an open-air greenhouse after ambient temperatures consistently exceeded 20 °C, typically after mid-June. Phoenix dactylifera, P. canariensis, P. theophrasti, the hybrid P. dactylifera × P. canariensis, and P. × “Palmeri” demonstrated orthodox seed storage behavior, maintaining viability for up to nine years. Conversely, P. sylvestris, P. pusilla, P. rupicola, and P. loureiroi consistently failed to germinate despite previous germination success, suggesting potential recalcitrant characteristics. Statistical analyses revealed that species identity and geographic origin exerted greater influence on germination success than seed age. Seedling development exhibited a conserved seasonal pattern across all species, with synchronized leaf emergence in September and March–July, followed by winter dormancy. Significant intraspecific variation was observed, particularly within P. dactylifera varieties, in both leaf production and final leaf length. These findings provide valuable insights into germplasm preservation and cultivation strategies, demonstrating that while some Phoenix species are suitable for long-term seed banking, others may require alternative conservation approaches. The observed species-specific and variety-specific differences offer important selection criteria for horticultural applications and conservation efforts. Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
Show Figures

Graphical abstract

11 pages, 1254 KB  
Article
The Role of Root Endophyte Pseudomonas putida A32 in the Protection of Two Pepper Genotypes from Pseudomonas syringae pv. aptata
by Aleksandra Mesaroš, Marija Nedeljković, Iva Atanasković, Marija Anđelković, Dario Danojević, Slaviša Stanković and Jelena Lozo
Horticulturae 2025, 11(5), 536; https://doi.org/10.3390/horticulturae11050536 - 15 May 2025
Viewed by 637
Abstract
Endophytes, as an integral part of plants, form unique relationships with their hosts that go beyond classical definitions of symbiosis and influence plant development, immunity, and stress responses. The pepper endophyte strain Pseudomonas putida A32 has several plant growth-promoting properties and increases the [...] Read more.
Endophytes, as an integral part of plants, form unique relationships with their hosts that go beyond classical definitions of symbiosis and influence plant development, immunity, and stress responses. The pepper endophyte strain Pseudomonas putida A32 has several plant growth-promoting properties and increases the tolerance of pepper to drought, but its biocontrol potential is unknown. In this study, we investigated the protective role of P. putida A32 against infection with the pathogenic bacterium P. syringae pv. aptata P21 in two pepper genotypes in laboratory experiments. The percentage of lesion reduction in genotype 26 treated with P. putida A32 was 46.62%. The results showed a significant reduction in hydrogen peroxide and malondialdehyde levels by 29.45 and 20.22%, respectively, in infected genotype 26. The treated but uninfected controls showed a significant increase in superoxide dismutase activity in genotype 26 by 41.26% and ascorbate peroxidase activity in genotype 19 by 40.28% in the treated infected plants. The tolerant genotype 19 was much less dependent on the bacterial treatment under stress conditions than the susceptible genotype 26. Future research will investigate the role of P. putida A32 in the induced systemic resistance of different pepper genotypes to protect against pathogens. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 691 KB  
Review
Research Progress of Selenium-Enriched Edible Fungi
by Tai-Zeng Xin, Yang Fu, Xiao-Shuai Wang, Ning Jiang, Dan-Dan Zhai, Xiao-Dong Shang, Hao-Ran Dong, Teng-Ye Luan, Gui-Rong Tang and Hai-Long Yu
Horticulturae 2025, 11(5), 531; https://doi.org/10.3390/horticulturae11050531 - 14 May 2025
Cited by 1 | Viewed by 707
Abstract
Selenium is a crucial trace element that necessitates exogenous supplementation and plays an essential role in human health, but its facilitation requires the conversion from inorganic to bioavailable organic forms. Selenium-enriched edible fungi provide an effective strategy for selenium fortification. Their easy cultivation, [...] Read more.
Selenium is a crucial trace element that necessitates exogenous supplementation and plays an essential role in human health, but its facilitation requires the conversion from inorganic to bioavailable organic forms. Selenium-enriched edible fungi provide an effective strategy for selenium fortification. Their easy cultivation, rapid growth, and excellent conversion capabilities make them ideal candidates for achieving selenium enrichment goals. This article reviews various methods for producing selenium-enriched products and highlights the benefits and functional properties of these fungi. It summarizes the mechanisms underlying selenium absorption and transformation within fungal biomass while considering influencing factors, such as environmental conditions, types of edible fungi, and sources of selenium. Furthermore, this article offers developmental recommendations to address current industrial challenges, providing theoretical references to foster healthy and sustainable advancements in this field. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

12 pages, 1010 KB  
Article
Black Knot Unraveled: Phenotypic Characterization of Disease Resistance in Japanese Plums
by Chloe Shum, Wendy McFadden-Smith, Walid El Kayal and Jayasankar Subramanian
Horticulturae 2025, 11(5), 482; https://doi.org/10.3390/horticulturae11050482 - 30 Apr 2025
Viewed by 474
Abstract
Black knot (BK) disease, caused by Apiosporina morbosa (Schwein.) v. Arx, significantly afflicts Japanese plums (Prunus salicina L.), resulting in substantial economic losses due to its destructive invasion of branches and trunks. Phenotyping for disease severity is critical to understanding resistance and [...] Read more.
Black knot (BK) disease, caused by Apiosporina morbosa (Schwein.) v. Arx, significantly afflicts Japanese plums (Prunus salicina L.), resulting in substantial economic losses due to its destructive invasion of branches and trunks. Phenotyping for disease severity is critical to understanding resistance and susceptibility across diverse genotypes. In this study, 200 Japanese plum trees from a mixed lineage breeding program were phenotyped for BK severity using a rating scale from 0 to 5. Trees were rated by two independent raters and repeated on a second day, in early spring 2023, before leaf emergence, for peak visibility. The rating system was designed to capture varying levels of infection, with 0 representing no symptoms and 5 indicating severe infection with major effects to the tree’s overall health. Compared to data from 2015 and 2018, there was a noticeable increase in the number of heavily diseased trees relative to symptom-free trees. In 2023, the proportion of completely resistant trees remained the same as in 2018, suggesting true resistance. Median scores were calculated from four independent ratings per tree, comprised of two individuals on two different days, minimizing individual biases. Additionally, inter-rater reliability was assessed using the weighted Kappa statistic, which yielded a value of 0.903, indicating strong agreement between raters. This phenotypic assessment provides a robust dataset for correlation with genetic markers and supports further breeding efforts aimed at developing BK-resistant cultivars. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Graphical abstract

11 pages, 1447 KB  
Article
Quantifying Yield Losses in Canola (Brassica napus) Caused by Verticillium longisporum
by Ji Cui, Stephen E. Strelkov and Sheau-Fang Hwang
Horticulturae 2025, 11(5), 494; https://doi.org/10.3390/horticulturae11050494 - 30 Apr 2025
Viewed by 440
Abstract
Verticillium stripe, a soilborne disease of canola (Brassica napus) caused by Verticillium longisporum, was first identified on the Canadian Prairies in 2014. Despite its increasing incidence, the impact of this disease on canola yields has not been quantified. To address [...] Read more.
Verticillium stripe, a soilborne disease of canola (Brassica napus) caused by Verticillium longisporum, was first identified on the Canadian Prairies in 2014. Despite its increasing incidence, the impact of this disease on canola yields has not been quantified. To address this gap, the relationship between Verticillium stripe severity and yield was investigated in two canola hybrids, ‘45H31’ and ‘CS2000’, at two infested field sites near St. Albert, Alberta, in 2020 and 2021. In 2020, a year with above-average rainfall, both hybrids developed moderate levels of the disease, whereas in 2021, a drought year, symptoms and signs of infection were milder. Regression analysis indicated that seed yield per plant declined with increasing Verticillium stripe severity in both years of the study. In both hybrids, the relationship between disease severity and yield was best explained by second-degree quadratic equations. Although single-plant seed yield declined by up to 80% with increasing Verticillium stripe severity, these reductions did not translate into significant yield losses at the plot level, suggesting that losses experienced by individual plants were offset by reduced competition among the surviving plants. These results underscore the complexity of assessing disease impacts solely based on symptom severity. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Graphical abstract

21 pages, 10218 KB  
Article
Integrative Analysis of Transcriptomic and Metabolomic Profiles Identifies Distinct Dynamic Changes in Primary and Secondary Metabolites in Grape Berries Under Fruit-Specific Light Exposure
by Xuan Luo, Jiahao Wu, Hongjuan Li, Xintong Wang, Wendi Wang, Hui Li, Kunfeng Li and Songling Bai
Horticulturae 2025, 11(5), 481; https://doi.org/10.3390/horticulturae11050481 - 30 Apr 2025
Viewed by 417
Abstract
Light influences fruit development and quality through two primary pathways: its effect on vegetative organs, which subsequently impacts the fruit, and its direct effect on the fruit itself. While the mechanism of the former pathway is well-documented, the direct impact of light on [...] Read more.
Light influences fruit development and quality through two primary pathways: its effect on vegetative organs, which subsequently impacts the fruit, and its direct effect on the fruit itself. While the mechanism of the former pathway is well-documented, the direct impact of light on fruit has been less studied due to limitations in applying controlled light exposure to preharvest fruit. This study addresses this gap by developing a novel device that delivers fruit-specific light treatment, enabling precise light exposure without altering the light conditions of vegetative tissues. The integration of metabolomics and transcriptomics reveals that light can directly affect the growth and development of fruits and the formation of quality, independent of the vegetative organs. Our findings reveal distinct regulatory patterns for primary and secondary metabolites during maturation. Direct light exposure activates primary metabolites and photosynthetic gene expression, though this effect diminishes as the fruit matures. Conversely, light enhances secondary metabolites, such as flavonoids, and their associated gene expressions, maintaining consistent activation throughout development and leading to higher accumulation during maturation. This study provides the first transcriptomic and metabolomic characterization of grape berries exposed to fruit-specific light treatment, advancing our understanding of light-dependent fruit development and quality formation mechanisms. Full article
(This article belongs to the Special Issue Novel Insights into Sustainable Viticulture)
Show Figures

Figure 1

24 pages, 4812 KB  
Article
The Effect of the Ripening Period on the Quality Attributes of Pear Fruit
by Smaranda-Oana Boghean, Mădălina Militaru, Eugenia Gherghina (Mareși), Radu E. Sestras, Orsolya Borsai, Andreea F. Andrecan, Catalina Dan, Adriana F. Sestras and Anca Livia Butiuc-Keul
Horticulturae 2025, 11(5), 468; https://doi.org/10.3390/horticulturae11050468 - 27 Apr 2025
Cited by 1 | Viewed by 966
Abstract
Pear fruit quality is a key determinant of consumer preference, yet it remains insufficiently characterized in many newly developed cultivars. This study aimed to evaluate 25 pear genotypes (Pyrus communis L.), internationally renowned cultivars and new cultivars developed through Romanian breeding programs, [...] Read more.
Pear fruit quality is a key determinant of consumer preference, yet it remains insufficiently characterized in many newly developed cultivars. This study aimed to evaluate 25 pear genotypes (Pyrus communis L.), internationally renowned cultivars and new cultivars developed through Romanian breeding programs, with distinct ripening periods, using an integrative approach based on morphological, biochemical, and sensory traits. Standardized methods were applied to assess attributes including fruit size, firmness, soluble solids, organic acid composition, skin color, and hedonic sensory responses for taste, aroma, texture, and visual appeal. Results revealed significant variability across ripening groups, with several cultivars, such as ‘Paradox’, ‘Pandora’, ‘Isadora’, and ‘Daciana’, displaying favorable combinations of appearance, internal quality, and consumer-rated acceptability. ‘Paradox’ and ‘Pandora’ achieved the highest sensory scores, comparable to or surpassing those of commercial standards like ‘Packham’s Triumph’. Multivariate analyses confirmed trait correlations and distinct phenotypic profiles among cultivars. These findings underscore the utility of multidimensional quality assessment for selecting cultivars suited to modern market demands, both for fresh consumption and processing. Moreover, several genotypes demonstrated potential as parental sources in pear breeding programs targeting improved organoleptic and physicochemical traits. The study suggests that a differentiated sensory scoring approach, rather than a uniform 1–9 hedonic scale, may more effectively identify high-quality pear cultivars for breeding programs. Full article
(This article belongs to the Special Issue Rosaceae Crops: Cultivation, Breeding and Postharvest Physiology)
Show Figures

Figure 1

16 pages, 2452 KB  
Article
Impact of Deficit Irrigation During Pre-Ripening Stages on Jujube (Ziziphus jujube Mill.‘Jing39’) Fruit-Soluble Solids Content and Cracking
by Yang Wu, Zhi Zhao, Yuping Zhang, Dongye Lu and Qinghua Pan
Horticulturae 2025, 11(5), 461; https://doi.org/10.3390/horticulturae11050461 - 25 Apr 2025
Viewed by 521
Abstract
A field experiment was conducted in 2023 and 2024 in Beijing, China, to investigate effects of soil water stress, applied before the fruit ripening stage, on the fruit total soluble solid accumulation and cracking of jujube trees. The experiment consisted of two variation [...] Read more.
A field experiment was conducted in 2023 and 2024 in Beijing, China, to investigate effects of soil water stress, applied before the fruit ripening stage, on the fruit total soluble solid accumulation and cracking of jujube trees. The experiment consisted of two variation factors: (a) irrigation levels (MDI and SDI, applied 80% and 50% of the irrigation volume, respectively) and (b) growth stages (stage 1, before the fruit enlargement stage, and 2, before the fruit ripening stage). The two irrigation levels were applied at each growth stage in a 2 × 2 factorial arrangement, plus a control treatment receiving 100% irrigation volume, resulting in five treatments per replicate. The findings indicated that pre-enlargement stage water stress enhanced the accumulation of total soluble solid content within fruits, which subsequently promoted faster fruit growth in from the early- to mid-August period. However, by late August, both the total soluble solid content and fruit growth rates had declined, thereby mitigating the risk of fruit cracking. During the fruit enlargement stage, the fruit total soluble solid content in SDI-2 increased by approximately 24% by the end of August compared to the control, leading to lower osmotic potential and higher turgor pressure during the following ripening stage. As skin growth ceased, high turgor pressure caused fruit cracking at the following ripening stage. The SDI-2 treatment demonstrated a fruit cracking rate approximately 1.5 times higher than that of the control. Pearson correlation analysis also indicated that fruit cracking was positively correlated with total soluble solids accumulated in August. Meanwhile, the yield of SDI-2 was reduced about 18%. Therefore, the adequate soil moisture during the fruit enlargement stage was crucial to minimize jujube fruit cracking and economic losses. Meanwhile, the deficit irrigation applied during the pre-enlargement stage could effectively conserve water resources and mitigate the occurrence of extensive jujube fruit cracking. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

21 pages, 4729 KB  
Article
Identification and Characterization of Flavonoid Biosynthetic Gene Families in Paeonia Species and Their Roles in Stamen Petalization of Paeonia lactiflora
by Yanyi Zheng, Yongming Fan, Xiang Ji and Xiaopei Wu
Horticulturae 2025, 11(5), 463; https://doi.org/10.3390/horticulturae11050463 - 25 Apr 2025
Viewed by 562
Abstract
Flavonoid biosynthesis is proposed to play a critical role in floral organ development in Paeonia species. However, its specific involvement in stamen petalization remains unclear. This study identified and characterized 13 gene families related to flavonoid biosynthesis across four Paeonia species. Comparative and [...] Read more.
Flavonoid biosynthesis is proposed to play a critical role in floral organ development in Paeonia species. However, its specific involvement in stamen petalization remains unclear. This study identified and characterized 13 gene families related to flavonoid biosynthesis across four Paeonia species. Comparative and phylogenetic analysis revealed that most flavonoid biosynthesis-related genes experience lineage-specific expansion in P. ludlowii. Genes belonging to the same family were commonly clustered on chromosomes and displayed highly conserved domain and motif compositions. The cis-element analysis identified Cis-acting elements associated with light, hormonal, and stress responses, implicating their regulatory roles in flavonoid biosynthesis. To further investigate the role of these genes in stamen petalization of P. lactiflora, expression profiling analyses were performed on ‘Fen Yu Nu’ (normal stamens) and ‘Lian Tai’ (petaloid stamens) cultivars using transcriptomic data released previously. Three quercetin-related genes revealed distinct stage-specific patterns in ‘Fen Yu Nu’ and ‘Lian Tai’. Notably, PlaF3’H03 exhibited significant upregulation during petaloid stamen development in ‘Lian Tai’, suggesting its role in stamen transformation. Molecular docking identified PlaF3’H07 as a key enzyme with strong substrate-binding affinity (ΔG = −4.7 kcal/mol), supporting its catalytic function in quercetin synthesis. The expression pattern of key flavonoid biosynthetic genes was also confirmed across three developmental stages of floral buds by real-time quantitative PCR. This study provides insights into the genetic basis underlying stamen petalization in P. lactiflora and offers potential targets for genetic improvement of floral traits in Paeonia and other ornamental plants. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

17 pages, 5755 KB  
Article
Impact of Two Hexaploidizations on Distribution, Codon Bias, and Expression of Transcription Factors in Tomato Fruit Ripeness
by Yating Han, Wanjie Hu, Xiuling Wu, Xinyu Li, Junxi Luo, Ziying Zhu, Zhenyi Wang and Ying Liu
Horticulturae 2025, 11(5), 447; https://doi.org/10.3390/horticulturae11050447 - 22 Apr 2025
Viewed by 428
Abstract
Transcription factors play an important regulatory role in tomato fruit ripening. We identified and analyzed eight transcription factor families (TF families) associated with fruit ripening in the genomes of seven tomato species and two outgroup species, revealing the impact of whole-genome duplication (WGD) [...] Read more.
Transcription factors play an important regulatory role in tomato fruit ripening. We identified and analyzed eight transcription factor families (TF families) associated with fruit ripening in the genomes of seven tomato species and two outgroup species, revealing the impact of whole-genome duplication (WGD) events on the structure and functional characteristics of these TF families. The results indicate that the Solanaceae Common Hexaploidization (SCH) event is the primary driver for the increase in the number of members within these TF families, leading to a more concentrated chromosomal distribution of family members. Compared with the two outgroup species, the tomato fruit-ripening-related TF families exhibit stronger codon usage bias, which may have been enhanced by WGD. Phylogenetic analysis found that family members generated by SCH show faster evolutionary rates, suggesting that SCH events significantly contribute to the evolution of these families. Additionally, our research uncovered that WGD events might maintain expression activity during fruit ripening by generating duplicate TF family members. Our study not only deepens our understanding of the mechanisms underlying tomato fruit ripening but also provides a theoretical foundation for future breeding improvements. Full article
(This article belongs to the Special Issue A Decade of Research on Vegetable Crops: From Omics to Biotechnology)
Show Figures

Figure 1

20 pages, 1590 KB  
Article
Impact of Temperature on Growth, Photosynthetic Efficiency, Yield, and Functional Components of Bud-Leaves and Flowers in Edible Chrysanthemum (Chrysanthemum morifolium Ramat)
by Chiou-Fang Liu, Yu-Jen Chen, Po-An Chen, Chih-Chun Kuo, Kai-Hsien Chen, Cheng-Hsuan Chen, Tsung-Chen Su, Iou-Zen Chen and Yu-Sen Chang
Horticulturae 2025, 11(5), 448; https://doi.org/10.3390/horticulturae11050448 - 22 Apr 2025
Cited by 1 | Viewed by 1009
Abstract
Edible chrysanthemum (Chrysanthemum morifolium Ramat.), widely consumed in Asia, is rich in bioactive compounds such as polyphenols, flavonoids, and amino acids. Optimizing cultivation temperature is critical for maximizing both yield and quality, especially under the challenges posed by climate change. This study [...] Read more.
Edible chrysanthemum (Chrysanthemum morifolium Ramat.), widely consumed in Asia, is rich in bioactive compounds such as polyphenols, flavonoids, and amino acids. Optimizing cultivation temperature is critical for maximizing both yield and quality, especially under the challenges posed by climate change. This study evaluated the growth performance, photosynthetic characteristics, and metabolite accumulation of the ‘Taiwan Hangju No. 1’ variety under five day/night temperature regimes (15/13 °C, 20/15 °C, 25/20 °C, 30/25 °C, and 35/30 °C) over a 220-day period in an artificial climate greenhouse. The 25/20 °C regime promoted the best overall growth, with the highest yields of bud-leaves and flowers, and supported the highest net photosynthetic rate, indicating optimal carbon assimilation under moderate temperatures. In contrast, stomatal conductance, respiration rate, and transpiration rate increased with temperature, peaking at 35/30 °C. Water use efficiency was greatest at 15/13 °C. Bioactive compound accumulation exhibited complex and organ-specific responses to temperature. The concentration of polyphenols, luteolin, and caffeoylquinic acid derivatives (CQAs) increased with temperature in both bud-leaves and flowers, free amino acids decreased in bud-leaves with rising temperature, reaching a peak at 15/13 °C, and flavonoid concentration peaked at 35/30 °C. In flowers, free amino acids accumulated most at 20/15 °C, and flavonoids peaked at 25/20 °C. The differing yields of bud-leaves and flowers under various temperature conditions contributed to variation in the total content of functional compounds. Except for free amino acids, the total of other functional compounds in bud-leaves was highest at 30/25 °C. The total content of all functional compounds in flowers was highest at 25/20 °C. This study demonstrated that 25/20 °C provides the best balance between growth, photosynthetic efficiency, and accumulation of key bioactive compounds and is therefore recommended as the optimal cultivation temperature for ‘Taiwan Hangju No. 1’. These findings reveal temperature-dependent and organ-specific metabolic adjustments, suggesting that moderate warming may enhance crop quality if managed carefully. The results provide a scientific basis for climate-adaptive cultivation strategies of edible chrysanthemums in subtropical regions. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

15 pages, 3242 KB  
Article
Transcriptome and Proteome Analysis Identified Genes/Proteins Involved in the Regulation of Leaf Color in Paulownia fortunei
by Hu Li, Weili Tian and Yongming Fan
Horticulturae 2025, 11(4), 441; https://doi.org/10.3390/horticulturae11040441 - 21 Apr 2025
Viewed by 524
Abstract
Paulownia fortunei are economically important trees in China. A greening mutant was used to study greening by comparative transcriptomics and proteomics using leaf tissues from wild-type and greening mutant growing under normal conditions. Chlorophyll content analysis showed a decrease in the chlorophyll b [...] Read more.
Paulownia fortunei are economically important trees in China. A greening mutant was used to study greening by comparative transcriptomics and proteomics using leaf tissues from wild-type and greening mutant growing under normal conditions. Chlorophyll content analysis showed a decrease in the chlorophyll b content in the mutant line. Non-parametric transcriptome and proteome analyses were performed to screen for genes and proteins active in the regulation of P. fortunei greening. qRT-PCR was carried out to confirm 10 genes identified in the transcriptome. In the transcriptome analysis, the pathways associated with the yellow phenotype included tRNA amino acid biosynthesis, nitrogen metabolism and circadian rhythm as represented by the genes encoding Vals, gltx, aspS, NR, GluL, gdhA, phyB, CSNK2A and CSNK2B. The iTRAQ-based proteomics analysis indicated that photosynthesis and carotenoid biosynthesis were altered in the chlorophyll-deficient P. fortunei and petH, petF, atpF and Z-ISO were the key proteins dysregulated in the greening mutants compared to the wild-type. Together, the transcriptomic and iTRAQ analyses identified 10 DEGs that were perturbed in the greening mutants in the main pathways of photosynthesis, starch and sucrose metabolism, glutathione metabolism and peroxisome functions. PetJ, E3.2.1.21, GST and CAT were differentially regulated in the chlorophyll-deficient mutant. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

14 pages, 6163 KB  
Article
Analysis of Bruising Characteristics of Large-Stone Fruits upon Impact Using Finite Element Method—A Case Study of Postharvest Loquats
by Chunxiang Liu, Baiqiu Li and Changsu Xu
Horticulturae 2025, 11(4), 440; https://doi.org/10.3390/horticulturae11040440 - 20 Apr 2025
Cited by 1 | Viewed by 667
Abstract
The bruising of fruits occurs at various stages, including picking, transportation, and sale. For fruits with large kernels that occupy a significant portion of their overall volume, considering the impact of the kernel is crucial in elucidating the mechanisms of bruising and controlling [...] Read more.
The bruising of fruits occurs at various stages, including picking, transportation, and sale. For fruits with large kernels that occupy a significant portion of their overall volume, considering the impact of the kernel is crucial in elucidating the mechanisms of bruising and controlling bruise formation. This study employs reverse engineering to develop a composite finite element model of loquat peel, flesh, and kernels. Bruise formation during collisions is analyzed from the perspectives of contact force, equivalent stress, energy, bruise volume, and bruise susceptibility, aiming to reveal the significant role of the fruit core in the bruise formation process. In this paper, we propose the use of 3D printing technology to accurately quantify bruise measurement for fruits with large kernels. The results showed that the maximum contact force, equivalent stress, and internal energy between loquat and steel/wood were essentially consistent, but all exceeded those observed when using rubber. Due to the blocking of stress transmission by the kernel, the susceptibility of loquats to bruising increases with height before decreasing. This study elucidates the mechanism of bruise formation in fruits with large kernels and provides methods and ideas for the research and precise measurement of complex fruit bruising characteristics. Full article
Show Figures

Figure 1

16 pages, 1292 KB  
Article
The Variability and Trend of Harvest Dates of Table and Pisco Grapes in Northern Chile Are Independently Influenced by Bioclimatic Indices
by Nicolás Verdugo-Vásquez, Antonio Ibacache-González and Gastón Gutiérrez-Gamboa
Horticulturae 2025, 11(4), 425; https://doi.org/10.3390/horticulturae11040425 - 16 Apr 2025
Viewed by 676
Abstract
(1) Background: The variability and trend in harvest dates of table and Pisco grapes have been scarcely studied. This can be closely influenced by bioclimatic indices since they account for the interactions between climatic factors and vine phenology. Understanding the environmental factors influencing [...] Read more.
(1) Background: The variability and trend in harvest dates of table and Pisco grapes have been scarcely studied. This can be closely influenced by bioclimatic indices since they account for the interactions between climatic factors and vine phenology. Understanding the environmental factors influencing harvest timing has become increasingly critical to perform specific viticultural practices. (2) Methods: The aim of this research was to evaluate the influence of bioclimatic indices on variability and trend of harvest date from the 2002–2003 to 2017–2018 seasons in Flame Seedless, Thompson Seedless, Muscat of Alexandria, and Moscatel Rosada growing in Northern Chile. (3) Results: The harvest date of Flame Seedless advanced significantly with an increasing Growing Season Temperature (GST) (from 1 October to 31 December), while Thompson Seedless showed a significant advancement in harvest date with rising the Maximum Springtime Temperature Summation SONmax (from 1 September to 30 November) values. Similarly, the harvest date of Muscat of Alexandria was significantly earlier with higher Heliothermal Index (HI) (from 1 July to 31 January and from 1 August to 30 April) values, whereas Moscatel Rosada exhibited a significant advancement in harvest date as the GST (from 1 July to 31 December and from 1 July to 31 January) increased. The trend in the harvest date of Thompson Seedless was statistically significant, reaching a coefficient of determination of 0.42. (4) Conclusions: Understanding the influence of bioclimatic indices on harvest date in long-term periods is critical in the context of climatic variability since producers can make more informed decisions to optimize grape quality and maintain sustainability in production systems. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

13 pages, 532 KB  
Article
Biofortification of Arugula Microgreens Through Supplemental Blue Light
by Franciele Quintino Mendes, Rogério Falleiros Carvalho, Manuela Oliveira de Souza and Arthur Bernardes Cecílio Filho
Horticulturae 2025, 11(4), 412; https://doi.org/10.3390/horticulturae11040412 - 12 Apr 2025
Viewed by 621
Abstract
Eruca sativa has been widely chosen among species to be cultivated in plant factories as microgreens, especially due to its nutraceutical and sensory qualities. Thus, the objective of this study was to evaluate the impact of blue light intensity (5 and 20 μmol [...] Read more.
Eruca sativa has been widely chosen among species to be cultivated in plant factories as microgreens, especially due to its nutraceutical and sensory qualities. Thus, the objective of this study was to evaluate the impact of blue light intensity (5 and 20 μmol m−2 s−1) and exposure time (1 and 2 h per day) on the yield and quality of arugula microgreens in plant factories. Blue light supplemental to white light for 1 h did not impair the hypocotyl lengths (HLs) or cotyledon area (CA) and yield of arugula microgreens compared with those grown only with white light. However, when the blue light time increased from 1 to 2 h, there were reductions in HL, CA and yield, with greater reductions under 20 μmol m−2 s−1. The concentrations of chlorophylls, carotenoids, vitamin C and antioxidant power responded similarly to the supply of blue light and were maximized with 20 μmol m−2 s−1. In view of these results, the supplementation of blue light with 20 μmol m−2 s−1 for 1 h is proposed, since it did not cause a reduction in growth and yield parameters and promoted the agronomic biofortification of arugula microgreens, bringing nutraceutical and, therefore, commercial benefits to the producer and consumer. Full article
Show Figures

Figure 1

17 pages, 10450 KB  
Article
Development of a High-Efficiency, Tissue Culture-Independent Genetic Transformation System for Loropetalum chinense
by Tingting Li, Yi Yang, Yang Liu, Wei Tang, Yang Liu, Damao Zhang, Chengcheng Xu, Xingyao Xiong, Xiaoying Yu and Yanlin Li
Horticulturae 2025, 11(4), 404; https://doi.org/10.3390/horticulturae11040404 - 10 Apr 2025
Viewed by 615
Abstract
Loropetalum chinense is a significant small tree and ornamental shrub known for its colorful foliage and is widely used in landscaping in tropical and subtropical regions. This study aimed to establish an efficient, tissue culture-independent genetic transformation system for L. chinense. Cuttings [...] Read more.
Loropetalum chinense is a significant small tree and ornamental shrub known for its colorful foliage and is widely used in landscaping in tropical and subtropical regions. This study aimed to establish an efficient, tissue culture-independent genetic transformation system for L. chinense. Cuttings from two varieties, ‘Xiangnong Xiangyun’ and ‘Hei Zhenzhu’, were infected with different strains of Agrobacterium rhizogenes. The results showed that the K599 strain significantly induced hairy roots in both varieties, with ‘Xiangnong Xiangyun’ demonstrating a higher survival rate (60%), rooting rate (51.66%), and hairy root induction efficiency (45%) compared to ‘Hei Zhenzhu’. Based on these findings, ‘Xiangnong Xiangyun’ and the K599 strain were selected for further optimization through an orthogonal L9 (33) experiment, which focused on optimizing the infection solution composition, bacterial concentration, and infection duration, Finally, the genetic transformation system established at the beginning of the experiment was validated on ‘Xiangnong Xiangyun’ plants using the pre-screening LcDREB-43 gene of our group. Among these factors, infection duration was identified as the most influential for improving transformation efficiency. The optimal conditions were determined as an infection solution containing MES solution, a bacterial concentration of OD600 = 0.8, and a 15 min infection duration. Under these optimized conditions, the survival rate, rooting rate, induction efficiency, and transformation efficiency reached 86.67%, 70%, 61.67%, and 43.33%, respectively. Furthermore, the transgenic plants with LcDREB-43 overexpression and pCAMBIA1305-GFP were obtained through the established transformation system, the authenticity of the system was proved, and the production application was carried out through phenotypic observation, molecular identification, and auxiliary verification of physiological indicators. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

17 pages, 3064 KB  
Article
Biostimulants Applied in Seedling Stage Can Improve Onion Early Bulb Growth: Cultivar- and Fertilizer-Type-Specific Positive Effects
by Qianwen Zhang, Jun Liu, Sang Jun Jeong, Joseph Masabni and Genhua Niu
Horticulturae 2025, 11(4), 402; https://doi.org/10.3390/horticulturae11040402 - 10 Apr 2025
Cited by 4 | Viewed by 1020
Abstract
Biostimulants play an active role in sustainable crop production. While biostimulants are thought to have long-term effects on plant growth, little research has been conducted to confirm this hypothesis. In this study, we investigated the long-term residual effects of biostimulants applied exclusively during [...] Read more.
Biostimulants play an active role in sustainable crop production. While biostimulants are thought to have long-term effects on plant growth, little research has been conducted to confirm this hypothesis. In this study, we investigated the long-term residual effects of biostimulants applied exclusively during the onion seedling stage on subsequent plant growth. Three onion cultivars (‘Carta Blanca’, ‘Don Victoro’, and ‘Sofire’) were evaluated with the application of nine microbial biostimulants (LALRISE Mycorrhizae, LALRISE Bacillus velezensis, Mighty Mycorrhizae, MycoApply, Spectrum, Spectrum DS, Spectrum Myco, Tribus Original, and Tribus Continuum), one seaweed extract (Kelpak), and two fertilizer types (conventional and organic fertilizer). Plant morphology and biomass were investigated during the early bulb stage of onion growth. Parameters such as plant height, neck diameter, bulb diameter, and the fresh and dry weights of the shoot, bulb, and root were measured. The results indicated significant cultivar-specific effects of microbial biostimulant and fertilizer type, as well as their interactions, on onion early bulb growth. While seaweed extract exhibited minimal residual impact, specific microbial biostimulants, such as Mighty Mycorrhizae and MycoApply, significantly enhanced bulb growth in the red onion ‘Sofire’. Tribus Continuum was found to increase bulb growth of the yellow onion ‘Don Victoro’. Positive effects of microbial biostimulants on onion growth were also observed with LALRISE Bacillus velezensis, Spectrum Myco, Spectrum, and LALRISE Mycorrizae. Furthermore, microbial biostimulants demonstrated more significant positive effects on onion growth when applied in conjunction with organic fertilizer. In conclusion, microbial biostimulants exhibited long-term positive effects on onion plant growth even when applied solely during the seedling stage prior to transplanting. However, these effects were significantly influenced by onion cultivar and fertilizer type, with the greatest benefits observed when combined with organic fertilizer. We recommend MycoApply and Mighty Mycorrhizae for growers seeking to enhance onion productivity, particularly in organic cultivation, as the two products enhanced bulb and leaf growth in ‘Sofire’ and ‘Don Victoro’. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Figure 1

12 pages, 3026 KB  
Article
Salt Stress-Induced Ascorbic Acid Accumulation and Its Trade-Off with Mannan Content in Tomato
by Chiaki Hasegawa, Kaori Yamada, Natsuki Hoyano, Mao Sano, Kiei Soyama and Hiroaki Iwai
Horticulturae 2025, 11(4), 400; https://doi.org/10.3390/horticulturae11040400 - 9 Apr 2025
Viewed by 747
Abstract
Salt stress causes osmotic stress and ion toxicity, often inhibiting plant growth and metabolism. However, salt-stressed tomato plants accumulate ascorbic acid, resulting in fruits with high commercial value. However, it was not well understood how mannose, the material for the synthesis of ascorbic [...] Read more.
Salt stress causes osmotic stress and ion toxicity, often inhibiting plant growth and metabolism. However, salt-stressed tomato plants accumulate ascorbic acid, resulting in fruits with high commercial value. However, it was not well understood how mannose, the material for the synthesis of ascorbic acid, and its metabolism are affected under salt stress conditions. In this study, we found that tomatoes grown under salinity stress had increased levels of ascorbic acid, which correlated with decreased levels of mannan in the skin and seeds. Expression analysis of the ascorbic acid synthase gene showed increased expression in early ripening stages under salt stress. In addition, the expression of cellulose synthase-like A (CSLA), genes involved in mannan metabolism, increased significantly during mid-ripening in the control condition. Since ascorbic acid and mannan share mannose as a precursor, they are likely to compete for it. This suggests that salt-stressed tomatoes may be deficient in both ascorbic acid and mannose, thereby affecting mannan synthesis. To investigate this trade-off, we developed a culture system with added mannose. The results showed that in salt-stressed tomatoes supplemented with mannose, ascorbic acid levels in unripe green peels reached those of fully ripe fruit, highlighting the influence of mannose availability on ascorbic acid accumulation. Full article
Show Figures

Graphical abstract

33 pages, 59140 KB  
Review
Assessing Crucial Shaking Parameters in the Mechanical Harvesting of Nut Trees: A Review
by Mohsen Farajijalal, Ali Abedi, Cristian Manzo, Amir Kouravand, Mohammadmehdi Maharlooei, Arash Toudeshki and Reza Ehsani
Horticulturae 2025, 11(4), 392; https://doi.org/10.3390/horticulturae11040392 - 7 Apr 2025
Viewed by 1488
Abstract
Finding appropriate shaking parameters is crucial in designing effective mechanical harvesters. The maximum fruit removal can be achieved when the machine operator properly adjusts the amplitude and frequency for shaking each tree. This review covers the progress in research and development over the [...] Read more.
Finding appropriate shaking parameters is crucial in designing effective mechanical harvesters. The maximum fruit removal can be achieved when the machine operator properly adjusts the amplitude and frequency for shaking each tree. This review covers the progress in research and development over the past decades on using mechanical harvesters for nut trees, such as almonds, pistachios, walnuts, and hickories, with a specific focus on the natural frequency of individual trees. Furthermore, the reported values of shaking frequency and amplitude from previous studies were discussed and compared, along with frequency calculation approaches based on various shaking mechanisms. Additionally, other parameters, such as clamping force, height, and shaking amplitude, were investigated to determine optimal values for minimizing tree damage. This review emphasizes that the tree’s diameter, height, and canopy morphology should be the primary factors considered when estimating the optimal shaking frequency for nut trees. It also highlights that, to date, the shaking amplitude, frequency, and duration set by field managers or machine operators tend to remain consistent for all trees, which can limit harvesting efficiency. The findings suggest that selecting these parameters uniformly across all trees may not result in efficient fruit removal for individual trees. However, with the assistance of modern computing technology and its adaptation for in-field applications, it is feasible to determine the optimal shaking frequency for each tree mathematically. This approach can maximize fruit removal rates while minimizing tree damage. Finally, the review suggests that improving existing harvesting machines by incorporating better vibratory patterns could offer benefits such as enhanced productivity, reduced labor costs, and decreased permanent tree damage. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

20 pages, 8981 KB  
Article
Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential
by Georgia Vlachou and Maria Papafotiou
Horticulturae 2025, 11(4), 390; https://doi.org/10.3390/horticulturae11040390 - 6 Apr 2025
Viewed by 694
Abstract
Ballota acetabulosa (L.) Benth. (syn. Pseudodictamnus acetabulosus (L.) Salmaki and Siadati), f. Lamiaceae, the Greek horehound, is a compact evergreen small shrub native to Greece, with hairy grey-green leaves, that bears small pink-purple flowers with green conical calyxes along its erect stems in [...] Read more.
Ballota acetabulosa (L.) Benth. (syn. Pseudodictamnus acetabulosus (L.) Salmaki and Siadati), f. Lamiaceae, the Greek horehound, is a compact evergreen small shrub native to Greece, with hairy grey-green leaves, that bears small pink-purple flowers with green conical calyxes along its erect stems in late spring. The species stands out for its high resistance in xerothermic conditions and therefore it is advisable to promote its use in xeriscaping. The aim of this study was to develop an efficient protocol for in vitro propagation of B. acetabulosa for introduction into the horticultural and pharmaceutical industries. Shoot tip and single node explants derived from in vitro seedlings were cultured on MS medium with various cytokinin types and concentrations. Explants responded at almost 100% to produce high number of shoots on a medium with 1.0 mg L−1 zeatin or 6-benzyladenine. However, there was intense hyperhydricity in the cultures, which was addressed in further experiments by increasing agar concentration from 8 to 12 g L−1, preserving high multiplication indices (92% response, 10.2 shoots per explant). Microcuttings with 2–3 visible nodes, either from the apical part, including the apical meristem, or from the basal part of microshoots, as well as microshoot clusters, rooted 100% on full- or half-strength MS medium, respectively, regardless of the addition of indole-3-butyric acid (ΙΒA, 0.5–4.0 mg L−1) in the rooting medium. However, middle level concentrations of IBA increased the number and length of roots produced, while the higher its concentration, the more and longer axillary shoots developed in the microcuttings during the rooting period. The acclimatization of all plantlets was completely successful (100%) in ex vitro conditions on peat/perlite substrate (1:1, v/v). Thus, efficient methods of producing propagation material to promote Ballota acetabulosa as a horticultural and medicinal plant were developed. In particular, rooting of microshoot clusters or microcuttings without the shoot tip, in the presence of 1.0 mg L−1 IBA, leads to a plant of suitable shape for the floricultural market, without the need for further manipulation (pruning) in the nursery. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

21 pages, 21642 KB  
Article
Preparation of Tea Tree Oil Microcapsules and Their Effects on Strawberry Preservation During Storage
by Yan-Li Han, Cen Chen, Yuan-Yue Wu, Yu-Meng Yan, Meng-Ying Wang, Yang Xiang, Dao-Yu Wei, Zhi-Hang Hu, Jing Zhuang, Ai-Sheng Xiong and Yuan-Hua Wang
Horticulturae 2025, 11(4), 389; https://doi.org/10.3390/horticulturae11040389 - 6 Apr 2025
Viewed by 660
Abstract
This study used an embedding technique to prepare microcapsules with tea tree oil as the core material and a composite of β-cyclodextrin and nano-montmorillonite as the wall material. The prepared microcapsules were analyzed for their morphological characteristics, thermal stability, and major components. Additionally, [...] Read more.
This study used an embedding technique to prepare microcapsules with tea tree oil as the core material and a composite of β-cyclodextrin and nano-montmorillonite as the wall material. The prepared microcapsules were analyzed for their morphological characteristics, thermal stability, and major components. Additionally, the microcapsules’ effect on the quality of and active substances contained in refrigerated strawberries was investigated. The results revealed that the optimal preparation conditions for the microcapsules were a montmorillonite addition of 2% (m/v), a core-to-wall ratio of 1:12 (m/m), an encapsulation temperature of 70 °C, and an encapsulation time of 90 min. Under these conditions, the microcapsules achieved an encapsulation efficiency of 77.67%. The capsules emitted a noticeable aroma of tea tree oil, and their primary components, specifically terpinen-4-ol, 1,8-cineole, p-cymene, and terpinolene, were consistent with those of tea tree oil. The release rate of the microcapsules at 60 °C and 90 °C was significantly lower than that of liquid tea tree oil (p < 0.05). A suitable treatment with tea tree oil microcapsules preserved the appearance and quality of the strawberries, inhibited spoilage during refrigeration, reduced weight loss, maintained firmness, delayed declines in soluble solid contents and acidity in later storage stages, and enhanced the activity of the superoxide dismutase, catalase, and ascorbate peroxidase. The prepared microcapsules also suppressed increases in anthocyanins and inhibited the further maturation of the stored strawberries. The optimal preservative effect was achieved with the placement of 5.0 g of tea tree oil microcapsules per 1.2 L of storage space. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

13 pages, 1051 KB  
Article
Tomato Production with Organic Fertilizer from Soluble Bonito Fish Waste in Hydroponic Cultivation Systems
by Dannisa Fathiya Rachma, Kazuya Maeda, Yuta Yamanouchi, Hiroshi Ueda, Makoto Shinohara and Dong-Hyuk Ahn
Horticulturae 2025, 11(4), 381; https://doi.org/10.3390/horticulturae11040381 - 2 Apr 2025
Cited by 1 | Viewed by 1119
Abstract
Using organic fertilizer made from waste materials is beneficial for both the economy and the environment, promoting sustainability and reducing pollution. In hydroponics, decomposition converts these materials into fertilizer, with multiple parallel mineralization (MPM) enabling efficient nutrient conversion by microorganisms. The tomato cultivar [...] Read more.
Using organic fertilizer made from waste materials is beneficial for both the economy and the environment, promoting sustainability and reducing pollution. In hydroponics, decomposition converts these materials into fertilizer, with multiple parallel mineralization (MPM) enabling efficient nutrient conversion by microorganisms. The tomato cultivar “Momotaro Next” was cultivated hydroponically in order to determine whether organic fertilizer derived from soluble bonito fish waste (OF) through MPM could be used in tomato hydroponic cultivation compared with a chemical nutrient solution treatment (CF). In this study, ammonium (NH4+) was generated through the OF decomposition process. During cultivation, the ammonium concentration tended to increase, while the nitrate (NO3) concentration tended to decrease. The total yield (TY), total dry matter (TDM), and leaf area index (LAI) were lower after OF treatment than after CF treatment. Notably, the TY, TDM, and LAI were 5.4 kg m−2, 594 g plant−1, and 1.7 for OF and 6.8 kg m−2, 895 g plant−1, and 3.8 for CF, respectively. The results of the tomato fruit qualities show no significant differences for total soluble solids (TSS) (%Brix), lycopene, glucose, fructose, or sucrose. However, significant differences were observed for gamma-aminobutyric acid (GABA), glutamate, aspartate, and citric acid. The lower yield and quality of the tomato crop with the OF treatment were caused by the high concentration of NH4+ that occurred during cultivation due to a nonoptimal mineralization process. Therefore, a well-managed MPM process could improve crop quality by reducing the risk of high NH4+. Full article
Show Figures

Figure 1

18 pages, 2427 KB  
Article
The Status of Esca Disease and the Disinfection of the Scion Prior to Grafting Affect the Phenolic Composition and Phenylpropanoid-Related Enzymes in the Callus of Vine Hetero-Grafts
by Saša Krošelj, Maja Mikulic-Petkovsek, Matevž Likar, Andreja Škvarč, Heidi Halbwirth, Katerina Biniari and Denis Rusjan
Horticulturae 2025, 11(4), 371; https://doi.org/10.3390/horticulturae11040371 - 30 Mar 2025
Viewed by 516
Abstract
Vegetative propagation of European grapevine (Vitis vinifera L.) requires grafting onto American rootstocks due to susceptibility to phylloxera. However, the grafting yield is compromised by the presence of grapevine trunk diseases (GTDs) such as Esca. This study investigates the phenolic response and [...] Read more.
Vegetative propagation of European grapevine (Vitis vinifera L.) requires grafting onto American rootstocks due to susceptibility to phylloxera. However, the grafting yield is compromised by the presence of grapevine trunk diseases (GTDs) such as Esca. This study investigates the phenolic response and enzyme activity in grapevine callus from grafts obtained by scions with different GTD status (healthy, asymptomatic, and symptomatic) treated with different disinfection methods (Beltanol, Beltanol in combination with thermotherapy, Serenade® ASO, Remedier, BioAction ES, and sodium bicarbonate). Twenty-three phenolic compounds were identified in the graft callus, with flavanols, stilbenes, and condensed tannins predominating. Scion disinfection with BioAction ES led to a significant increase in total phenolic content in the callus, especially in symptomatic scions, for on average 510.3 µg/g fresh weight (FW) higher total phenolic content, compared to grafts where scions were treated with Beltanol. Phenolics such as epicatechin gallate, procyanidin derivatives, and resveratrol hexoside were significantly increased, indicating a strong elicitor effect of BioAction ES. Enzymatic activity analysis showed that the disinfection methods affected the activity of key enzymes involved in the phenylpropanoid metabolic pathway. In particular, BioAction ES significantly increased phenylalanine ammonia lyase (PAL) activity in callus from grafts with healthy scions by 3.4-fold and flavanone 3β-hydroxylase (FHT) activity in callus from grafts with infected scions by 4.9-fold (asymptomatic) and 6.9-fold (symptomatic) compared to callus from grafts with Beltanol-treated scions. The results highlight the potential of environmentally friendly disinfection methods, particularly BioAction ES, in influencing phenolic content and enzymatic activity in graft callus, potentially affecting the success of grapevine grafting. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Graphical abstract

14 pages, 1428 KB  
Article
Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results
by Filippo Del Zozzo, Harsh Tiwari, Ginevra Canavera, Tommaso Frioni and Stefano Poni
Horticulturae 2025, 11(4), 346; https://doi.org/10.3390/horticulturae11040346 - 23 Mar 2025
Viewed by 621
Abstract
The success of double cropping in Vitis vinifera L. cultivated in temperate climates relies on bud forcing efficiency, which requires the prompt unlocking of apical dormant buds with sufficient fruitfulness. Chemical dormancy-breaking strategies need to be tested to enhance dormant bud forcing in [...] Read more.
The success of double cropping in Vitis vinifera L. cultivated in temperate climates relies on bud forcing efficiency, which requires the prompt unlocking of apical dormant buds with sufficient fruitfulness. Chemical dormancy-breaking strategies need to be tested to enhance dormant bud forcing in summer pruning, as hydrogen cyanamide, the most used agent, could damage green organs. This study tested whether foliar applications of cytokinins and auxins could modulate dormancy release, potentially affecting bud forcing dynamics and shoot fruitfulness. The forcing treatments involved trimming primary shoots at the eighth node, removing lateral shoots, and retaining the main leaves and inflorescences. Five treatments were investigated: unforced control, control + 6-Benzyladenine application, forcing (FR), forcing + 6-Benzyladenine application (FBA), and forcing + Naphthaleneacetic acid application (FNAA). Phenological evolution, vegetative and productive parameters, and physiological characteristics have been assessed. Results showed that among the forcing treatments, FBA showed the highest forced/primary shoots ratio (106%), followed by FR (94%) and FNAA (21%). Primary yields were similar across treatments (2.74 kg), but total yield was highest in FBA (4.78 kg, including 2.02 kg from forced grapes), followed by FR (3.62 kg, with 1.09 kg forced). FNAA yielded no forced crop. During forced grapes maturation, photosynthesis rates were higher in forced leaves (11.1 μmol m−2 s−1, as FR and FBA average) than primary leaves (−32%). Forced grapes ripened 47 days later and achieved higher sugar content (21.7 °Brix) and titratable acidity (10.6 g/L) than primary grapes. The findings suggest cytokinins application enhances bud forcing, supporting the feasibility of double cropping, while auxins limited it. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Graphical abstract

17 pages, 2530 KB  
Article
Physiological Response of Macadamia (Macadamia integrifolia) Seedlings to Drought Stress
by Zhuanmiao Kang, Hu Cai, Guangzheng Guo, Hui Zeng, Wenlin Wang and Xinghao Tu
Horticulturae 2025, 11(4), 347; https://doi.org/10.3390/horticulturae11040347 - 23 Mar 2025
Cited by 1 | Viewed by 787
Abstract
Guizhou Province is one of the regions in China where macadamia is cultivated. The area is characterized by prominent karst landforms, with uneven distribution of precipitation and utilizable water resources, which poses significant challenges to macadamia production. To explore the effects of different [...] Read more.
Guizhou Province is one of the regions in China where macadamia is cultivated. The area is characterized by prominent karst landforms, with uneven distribution of precipitation and utilizable water resources, which poses significant challenges to macadamia production. To explore the effects of different drought levels on the anatomical structure and physiological characteristics of macadamia seedlings, and to reveal their adaptation mechanisms and regulatory responses to drought stress, this study established a drought stress experiment on O.C (Own Choice) macadamia seedlings. The seedlings were subjected to stress in a 25% PEG-6000 solution for 0 h (CK), 24 h, 36 h, 48 h, and 72 h, and cellular structural features of stems and leaves were measured, as well as physiological and biochemical indices. The results indicated that macadamia seedlings gradually exhibited dehydration and chlorosis with prolonged drought stress. At 72 h of drought stress, root water potential, leaf water potential, chlorophyll content, relative water content, and root activity decreased by 353%, 98%, 44%, 72%, and 79%, respectively. Leaf thickness, palisade tissue thickness, and spongy tissue thickness were reduced by 19%, 33%, and 29%, respectively. Stomatal density increased by 50%, while stomatal aperture, vessel diameter, and cell wall thickness significantly decreased. Photosynthesis was markedly impaired: Pn, Tr, Gs, WUE, Fv/Fm, qP, and ΦPSII declined by 73%, 25%, 67%, 64%, 0.23, 60%, and 84%, respectively, whereas Ci and qN increased by 107% and 11%, respectively. Cell membranes began to sustain damage after 24 h of drought stress, with electrolyte leakage and MDA content rising by 266% and 672%, respectively, at 72 h. Prolonged drought stress reduced IAA, CTK, and GA levels by 37%, 33%, and 16%, respectively, while ABA content increased by 48%. To counteract drought stress, seedlings activated osmotic adjustment and reactive oxygen species (ROS) scavenging mechanisms. Osmolyte content significantly increased with stress duration, reaching 61%, 73%, 697%, and 107% increments in SS, SP, Pro, and betaine at 72 h. Antioxidant enzyme activities initially rose, peaking at 24 h (SOD, POD, CAT, and APX increased by 132%, 288%, 110%, and 46%, respectively), then gradually declined. By 72 h, SOD and APX activities fell below control levels, while POD and CAT remained elevated. These findings demonstrate that under PEG-6000-simulated drought stress, macadamia seedlings alleviate damage by modifying leaf and stem cellular structures and activating antioxidant and osmotic adjustment mechanisms. This study provides a theoretical basis for understanding the physiological mechanisms of macadamia drought stress response. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

27 pages, 9691 KB  
Article
Establishment of a Protocol for the Characterization of Secreted Biomolecules in Somatic Embryogenic Cultures of Olea europaea L.
by Rita Pires, Lénia Rodrigues, Fátima Milhano Santos, Iola F. Duarte, Sergio Ciordia, Augusto Peixe and Hélia Cardoso
Horticulturae 2025, 11(3), 331; https://doi.org/10.3390/horticulturae11030331 - 19 Mar 2025
Viewed by 811
Abstract
Somatic embryogenesis (SE) involves the formation of embryo-like structures from somatic cells without fertilization and is widely used for clonal propagation and genetic transformation. However, in olive (Olea europaea sp. europaea), SE remains challenging due to the recalcitrant behavior of adult [...] Read more.
Somatic embryogenesis (SE) involves the formation of embryo-like structures from somatic cells without fertilization and is widely used for clonal propagation and genetic transformation. However, in olive (Olea europaea sp. europaea), SE remains challenging due to the recalcitrant behavior of adult tissues when used as initial explants. Bioactive molecules released into the culture medium (conditioned medium, CM) by embryogenic cultures have been identified as modulators of the SE response. However, their potential role in enhancing SE efficiency in olive and overcoming tissue recalcitrance remains largely unexplored. To investigate the role of these biomolecules in olive SE, a protocol was established using SE cultures of cv. ‘Galega Vulgar’. Proteins and metabolites were separated by filtration, concentrated through lyophilization, and precipitated using three methods: Acetone, TCA/Acetone, and Methanol/Chloroform. The efficiency of these methods was evaluated through total protein quantification and via SDS-PAGE electrophoresis. LC-MS/MS was employed to analyze secretome composition using the TCA/Acetone precipitation method. Additionally, metabolite profiles were analyzed using 1H NMR spectroscopy. The results led to the identification of 1096 (526 protein groups) Olea europaea proteins, including well-known SE biomarkers such as kinases and peroxidases. NMR spectroscopy identified several metabolites secreted into the medium or resulting from the metabolic activity of secreted enzymes, confirming the applicability of the procedure. Although extracting secreted biomolecules from the culture medium presents significant challenges, the protocol established in this study successfully enabled the isolation and identification of both proteins and metabolites, revealing a valuable workflow for future in-depth analyses of secreted biomolecules in olive SE. Full article
Show Figures

Figure 1

23 pages, 2874 KB  
Article
Phenotypic, Biochemical, and Molecular Diversity Within a Local Emblematic Greek Allium sativum L. Variety
by Anastasia Papadopoulou, Anastasia Boutsika, Francesco Reale, Silvia Carlin, Urska Vrhovsek, Eleftheria Deligiannidou, Aliki Xanthopoulou, Eirini Sarrou, Ioannis Ganopoulos and Ifigeneia Mellidou
Horticulturae 2025, 11(3), 304; https://doi.org/10.3390/horticulturae11030304 - 11 Mar 2025
Viewed by 819
Abstract
Garlic, an asexually propagated crop, exhibits significant variation in its commercial traits and bioactive compounds. Despite its horticultural significance, the genetic pool available for breeding strategies is limited. This study aimed to assess the existing diversity within a popular garlic landrace from the [...] Read more.
Garlic, an asexually propagated crop, exhibits significant variation in its commercial traits and bioactive compounds. Despite its horticultural significance, the genetic pool available for breeding strategies is limited. This study aimed to assess the existing diversity within a popular garlic landrace from the region of “Nea Vissa”, Evros, Greece, focusing on phenotypic, biochemical, and molecular variation. In particular, bulb morphology, nutritional content, and organosulfur profiles were evaluated, along with genetic characterization using simple sequence repeat (SSR) markers to analyze intra-specific genetic variation. Our results revealed three distinct genetic clusters with moderate to low intra-varietal diversity. Morphological and biochemical characterization showed significant intra-specific diversity in both bulb morphology and nutritional content. Solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS) analysis identified key volatile compounds, including allyl methyl disulfide and trisulfide, 1,2-dithiacyclopentene, cis-1-propenyl propyl disulfide, and cis-1-propenyl methyl disulfide in high abundances, suggesting that these were the predominant compounds characterizing the population. Our findings could be implemented to further enhance key phytonutrients in the local garlic population through breeding programs, targeting clones with high nutritional value and improved flavor and supporting germplasm conservation and utilization. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

16 pages, 772 KB  
Article
Influence of Supplementary Blue and Far-Red Light on the Morphology and Texture of Ocimum basilicum L. Grown in Controlled Environments
by Madison A. Oehler, Nathan Kelly, Jorge M. Fonseca, Ella Evensen, Eunhee Park, Ganyu Gu, Zi Teng and Yaguang Luo
Horticulturae 2025, 11(3), 287; https://doi.org/10.3390/horticulturae11030287 - 6 Mar 2025
Cited by 2 | Viewed by 1154
Abstract
Basil (Ocimum basilicum L.) is highly sensitive to environmental conditions and is an ideal candidate for cultivation in controlled environment agriculture (CEA). Light-emitting diode technology has become essential in CEA, offering precise control over light intensity, spectrum, and duration. This study investigated [...] Read more.
Basil (Ocimum basilicum L.) is highly sensitive to environmental conditions and is an ideal candidate for cultivation in controlled environment agriculture (CEA). Light-emitting diode technology has become essential in CEA, offering precise control over light intensity, spectrum, and duration. This study investigated how supplemental blue light, far-red light, or their combination influences basil biomass, morphology, texture, and color when added to a white + red light spectrum. Basil ’Prospera’ and ’Amethyst’ were exposed to five light treatments for 14–28 days: white + red at 180 µmol∙m−2∙s−1 (W) as the control, and four treatments with an additional 60 µmol∙m−2∙s−1 of either white + red (+W60), blue (+B60), far-red (+FR60), or a combination of B and FR (+B30+FR30), for a total photon flux density of 240 µmol∙m−2∙s−1. The results demonstrated that +B60 and +W60 light treatments increased leaf thickness by 17–20% compared to the +FR60 treatment. Conversely, texture analysis revealed that +FR60-treated leaves had higher puncture resistance, with ’Amethyst’ and ’Prospera’ requiring 1.57 ± 0.43 N and 1.45 ± 0.35 N of force, respectively, compared to 1.19 ± 0.32 N and 1.1 ± 0.21 N under +B60. These findings suggest that tailored light recipes in CEA can optimize basil quality, allowing growers to modify traits like leaf color, thickness, and toughness. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

Back to TopTop