Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Vineyard, Experimental Design, and Soil Treatments
2.2. Evaluation of Chlorophyll Fluorescence, Water Potential, Stomatal Conductance, and Temperature of the Leaf
2.3. Evaluation of Phenolic Compounds in Leaves
2.4. Evaluation of Proline, Zeaxanthin, Lutein, βcarotene, Chlorophyll a, and Chlorophyll b
2.5. Statistical Analysis
3. Results
3.1. Weather Station Data
3.2. Chlorophyll Fluorescence and Stomatal Conductance Results
3.3. Stem Water Potential and Leaf Temperature Results
3.4. Leaves Phenolic Compounds Results
3.5. Principal Component Analysis
4. Discussion
5. Conclusions
6. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV. Annual Assessment of the World Vine and Wine Sector in 2023. International Organisation of Vine and Wine. 2023. Available online: https://www.oiv.int/what-we-do/statistics (accessed on 15 June 2025).
- Moralejo, E.; Giménez-Romero, À.; Matías, M.A. Linking intercontinental biogeographic events to decipher how European vineyards escaped Pierce’s disease. Proc. B 2024, 291, 20241130. [Google Scholar] [CrossRef] [PubMed]
- Allegro, G.; Filippetti, I.; Pastore, C.; Sangiorgio, D.; Valentini, G.; Bortolotti, G.; Kertész, I.; Nguyen, L.L.P.; Baranyai, L. Prediction of berry sunburn damage with machine learning: Results on grapevine (Vitis vinifera L.). Biosyst. Eng. 2025, 250, 62–67. [Google Scholar] [CrossRef]
- IPCC; Lee, H.; Romero, J. (Eds.) Climate Change 2023: Synthesis Report, Summary for Policymakers; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team]; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Ul Hussan, H.; Li, H.; Liu, Q.; Bashir, B.; Hu, T.; Zhong, S. Investigating Land Cover Changes and Their Impact on Land Surface Temperature in Khyber Pakhtunkhwa, Pakistan. Sustainability 2024, 16, 2775. [Google Scholar] [CrossRef]
- Skirycz, A.; Inzé, D. More from less: Plant growth under limited water. Curr. Opin. Biotechnol. 2010, 21, 197–203. [Google Scholar] [CrossRef]
- Soar, C.J.; Speirs, J.; Maffei, S.M.; Penrose, A.B.; McCarthy, M.G.; Loveys, B.R. Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: Apparent links with ABA physiology and gene expression in leaf tissue. Aust. J. Grape Wine Res. 2006, 12, 2–12. [Google Scholar] [CrossRef]
- Lovisolo, C.; Perrone, I.; Carra, A.; Ferrandino, A.; Flexas, J.; Medrano, H.; Schubert, A. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: A physiological and molecular update. Funct. Plant Biol. 2010, 37, 98–116. [Google Scholar] [CrossRef]
- Vandeleur, R.K.; Mayo, G.; Shelden, M.C.; Gilliham, M.; Kaiser, B.N.; Tyerman, S.D. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol. 2009, 149, 445–460. [Google Scholar] [CrossRef]
- Tombesi, S.; Nardini, A.; Frioni, T.; Soccolini, M.; Zadra, C.; Farinelli, D.; Poni, S.; Palliotti, A. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci. Rep. 2015, 5, 12449. [Google Scholar] [CrossRef]
- Schultz, H.R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
- Gerzon, E.; Biton, I.; Yaniv, Y.; Zemach, H.; Netzer, Y.; Schwartz, A.; Fait, A.; Ben-Ari, G. Grapevine anatomy as a possible determinant of isohydric or anisohydric behavior. Am. J. Enol. Vitic. 2015, 66, 340–347. [Google Scholar] [CrossRef]
- Beis, A.; Patakas, A. Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought. Funct. Plant Biol. 2010, 37, 139–146. [Google Scholar] [CrossRef]
- Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Molecular Responses to Drought Stress; Elsevier: Amsterdam, The Netherlands, 1999; pp. 149–195. [Google Scholar]
- Nanjo, T.; Kobayashi, M.; Yoshiba, Y.; Sanada, Y.; Wada, K.; Tsukaya, H.; Kakubari, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 1999, 18, 185–193. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Varshney, P.; Yusuf, M.; Ali, A.; Ahmad, A. Dissecting the role of glycine betaine in plants under abiotic stress. Plant Stress 2013, 7, 8–18. [Google Scholar]
- Tarczynski, M.C.; Jensen, R.G.; Bohnert, H.J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 1993, 259, 508–510. [Google Scholar] [CrossRef] [PubMed]
- Serraj, R.A.C.H.I.D.; Sinclair, T.R. Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 2002, 25, 333–341. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Yildizli, A.; Çevik, S.; Ünyayar, S. Effects of exogenous myo-inositol on leaf water status and oxidative stress of Capsicum annuum under drought stress. Acta Physiol. Plant. 2018, 40, 122. [Google Scholar] [CrossRef]
- Merchant, A.; Tausz, M.; Arndt, S.K.; Adams, M.A. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell Environ. 2006, 29, 2017–2029. [Google Scholar] [CrossRef] [PubMed]
- Mechri, B.; Tekaya, M.; Cheheb, H.; Hammami, M. Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles. J. Chromatogr. Sci. 2015, 53, 1631–1638. [Google Scholar] [CrossRef]
- Sanders, D.; Pelloux, J.; Brownlee, C.; Harper, J.F. Calcium at the crossroads of signaling. Plant Cell 2002, 14 (Suppl. 1), S401–S417. [Google Scholar] [CrossRef] [PubMed]
- Perera, I.Y.; Hung, C.Y.; Moore, C.; Stevenson-Paulik, J.; Bossa, W.F. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase and altered abscisic acid signalling. Plant Cell 2008, 20, 2876–2893. [Google Scholar] [CrossRef]
- Behera, R.K.; Mishra, P.C.; Choudhury, N.K. High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J. Plant Physiol. 2002, 159, 967–973. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Abdulbaki, A.S.; Alsamadany, H.; Alzahrani, Y.; Olayinka, B.U. Rubisco and abiotic stresses in plants: Current assessment. Turk. J. Bot. 2022, 46, 541–552. [Google Scholar] [CrossRef]
- Saccardy, K.; Pineau, B.; Roche, O.; Cornic, G. Photochemical efficiency of photosystem II and xanthophyll cycle components in Zea mays leaves exposed to water stress and high light. Photosynth. Res. 1998, 56, 57–66. [Google Scholar] [CrossRef]
- Choudhury, S.; Panda, P.; Sahoo, L.; Panda, S.K. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 2013, 8, e23681. [Google Scholar] [CrossRef]
- Lindahl, M.; Spetea, C.; Hundal, T.; Oppenheim, A.B.; Adam, Z.; Andersson, B. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. The Plant Cell 2000, 12, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Bethmann, S.; Melzer, M.; Schwarz, N.; Jahns, P. The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II. Plant Direct 2019, 3, e00185. [Google Scholar] [CrossRef] [PubMed]
- Seufferheld, M.J. Non-photochemical quenching of chlorophyll a fluorescence: Early history and characterization of two xanthophyll-cycle mutants of Chlamydomonas reinhardtii. Funct. Plant Biol. 2002, 29, 1141–1155. [Google Scholar] [CrossRef] [PubMed]
- Badr, A.; Brüggemann, W. Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica 2020, 58, 38–645. [Google Scholar] [CrossRef]
- Pizarro, E.; Galleguillos, M.; Barría, P.; Callejas, R. Irrigation management or climate change? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context. Agric. Water Manag. 2022, 263, 107467. [Google Scholar] [CrossRef]
- DeLonge, M.S.; Miles, A.; Carlisle, L. Investing in the transition to sustainable agriculture. Environ. Sci. Policy 2016, 55, 266–273. [Google Scholar] [CrossRef]
- Passaglia, E.; Sheppard, R.A. The crystal chemistry of zeolites. Rev. Mineral. Geochem. 2001, 45, 69–116. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Salem, N.Y. Insecticidal efficacy of nano zeolite against Tribolium confusum (Col., Tenebrionidae) and Callosobruchus maculatus (Col., Bruchidae). Bull. Natl. Res. Cent. 2019, 43, 92. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Alizadeh-Sani, M.; Khezerlou, A.; Mirzanajafi-Zanjani, M.; Zolfaghari, H.; Bagheri, V.; Divband, B.; Ehsani, A. Nanoparticles and zeolites: Antibacterial effects and their mechanism against pathogens. Curr. Pharm. Biotechnol. 2019, 20, 1074–1086. [Google Scholar] [CrossRef]
- Valentini, G.; Pastore, C.; Allegro, G.; Muzzi, E.; Seghetti, L.; Filippetti, I. Application of kaolin and Italian natural chabasite-rich zeolitite to mitigate the effect of global warming in Vitis vinifera L. cv. Sangiovese. Agronomy 2021, 11, 1035. [Google Scholar] [CrossRef]
- Zokaee Khosroshahi, M.; Karimi, R.; Toranjian, A. Influence of soil application of natural zeolite and farmyard manure on physiological indices of Grapevine under drought stress. J. Plant Biol. Sci. 2023, 15, 65–84. [Google Scholar] [CrossRef]
- Allegro, G.; Valentini, G.; Sangiorgio, D.; Pastore, C.; Filippetti, I. Zeolite application and irrigation during ripening reduced berry sunburn damage and yield loss in cv. Sangiovese (Vitis vinifera L.). Front. Plant Sci. 2024, 15, 1427366. [Google Scholar] [CrossRef] [PubMed]
- Calzarano, F.; Seghetti, L.; Pagnani, G.; Metruccio, E.G.; Di Marco, S. Control of Grapevine Downy Mildew by an Italian Copper Chabasite-Rich Zeolitite. Agronomy 2022, 12, 1528. [Google Scholar] [CrossRef]
- Sangiorgio, D.; Valentini, G.; Pastore, C.; Allegro, G.; Gottardi, D.; Patrignani, F.; Spinelli, F.; Filippetti, I. A comprehensive study on the effect of foliar mineral treatments on grapevine epiphytic microorganisms, flavonoid gene expression, and berry composition. OENO One 2024, 58, 1–11. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Manzi, D.; Peruzzi, E.; Mattii, G.B. Effects of Zeowine and compost on leaf functionality and berry composition in Sangiovese grapevines. J. Agric. Sci. 2023, 161, 412–427. [Google Scholar] [CrossRef]
- The Commission of the European Communities. Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control; OJ L 250, 18.9.2008; The Commission of the European Communities: Brussels, Belgium, 2008; pp. 1–84. [Google Scholar]
- Doni, S.; Masciandaro, G.; Macci, C.; Manzi, D.; Mattii, G.B.; Cataldo, E.; Gispert, M.; Vannucchi, F.; Peruzzi, E. Zeolite and winery waste as innovative by-product for vineyard soil management. Environments 2024, 11, 29. [Google Scholar] [CrossRef]
- Girona, J.; Mata, M.; Del Campo, J.; Arbonés, A.; Bartra, E.; Marsal, J. The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrig. Sci. 2006, 24, 115–127. [Google Scholar] [CrossRef]
- McIntyre, G.N.; Lider, L.A.; Ferrari, N.L. The chronological classification of grapevine phenology. Am. J. Enol. Vitic. 1982, 33, 80–85. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
- Carillo, P.; Gibon, Y. Protocol: Extraction and determination of proline. Prometh. Wiki 2011, 2011, 1–5. [Google Scholar]
- Beckett, M.; Loreto, F.; Velikova, V.; Brunetti, C.; Di Ferdinando, M.; Tattini, M.; Calfapietra, C.; Farrant, J.M. Photosynthetic limitations and volatile and non-volatile isoprenoids in the poikilochlorophyllous resurrection plant Xerophyta humilis during dehydration and rehydration. Plant Cell Environ. 2012, 35, 2061–2074. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Griesser, M.; Weingart, G.; Schoedl-Hummel, K.; Neumann, N.; Becker, M.; Varmuza, K.; Liebner, F.; Schuhmacher, R.; Forneck, A. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiol. Biochem. 2015, 88, 17–26. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Balfagón, D.; Zandalinas, S.I.; Mittler, R.; Gómez-Cadenas, A. High temperatures modify plant responses to abiotic stress conditions. Physiol. Plant. 2020, 170, 335–344. [Google Scholar] [CrossRef]
- Balfagón, D.; Sengupta, S.; Gómez-Cadenas, A.; Fritschi, F.B.; Azad, R.K.; Mittler, R.; Zandalinas, S.I. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol. 2019, 181, 1668–1682. [Google Scholar] [CrossRef]
- Zhou, R.; Kong, L.; Wu, Z.; Rosenqvist, E.; Wang, Y.; Zhao, L.; Zhao, T.; Ottosen, C.O. Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiol. Plant. 2019, 165, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Valadabadi, S.A.; Shiranirad, A.H.; Farahani, H.A. Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars. J. Ecol. Nat. Environ. 2010, 2, 154–159. [Google Scholar]
- Resasco, D.E.; Crossley, S.P.; Wang, B.; White, J.L. Interaction of water with zeolites: A review. Catal. Rev. 2021, 63, 302–362. [Google Scholar] [CrossRef]
- Nakachew, K.; Gelaye, Y.; Ali, S.; Gebeyehu, T.; Eskezia, A. Exploring the Application of Zeolite Technology in Ethiopia: A Path to Sustainable Agriculture Development. J. Plant Nutr. Soil Sci. 2025, 188, 17–30. [Google Scholar] [CrossRef]
- Bybordi, A. Influence of zeolite, selenium and silicon upon some agronomic and physiologic characteristics of canola grown under salinity. Commun. Soil Sci. Plant Anal. 2016, 47, 832–850. [Google Scholar] [CrossRef]
- Chaitanya, K.V.; Sundar, D.; Reddy, A.R. Mulberry leaf metabolism under high temperature stress. Biol. Plant. 2001, 44, 379–384. [Google Scholar] [CrossRef]
- Niu, G.H.; Rodriguez, D.S.; Wang, Y.T. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 2006, 41, 1408–1411. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, B.; Garai, S.; Sarkar, S.; Banerjee, H.; Brahmachari, K.; Bandyopadhyay, P.K.; Maitra, S.; Brestic, M.; Skalicky, M. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 2021, 11, 448. [Google Scholar] [CrossRef]
- Sangeetha, C.; Baskar, P. Zeolite and its potential uses in agriculture: A critical review. Agric. Rev. 2016, 37, 101–108. [Google Scholar] [CrossRef]
- Ravali, C.; Rao, K.J.; Anjaiah, T.; Suresh, K. Effect of zeolite on soil physical and physico-chemical properties. Multilogic Sci. 2020, 10, 776–781. [Google Scholar]
- Chone, X.; Van Leeuwen, C.; Dubourdieu, D.; Gaudillère, J.P. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 2001, 87, 477–483. [Google Scholar] [CrossRef]
- El-Hady, A.; Asmaa, S.; Baddour, A.; Elsherpiny, M.A.; El-Kafrawy, M. Response of Maize Grown Under Water Deficit Conditions to Zeolite as a Soil Conditioner and Foliar Application of Abscisic Acid. Egypt. J. Soil Sci. 2025, 65, 75–90. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, T.; Wu, Q.; Yu, J.; Chen, W.; Chen, Y.; Siddique, K.H.; Meng, W.; Chi, D.; Xia, G. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress. Agric. Water Manag. 2018, 206, 241–251. [Google Scholar] [CrossRef]
- Doklega, S.M.; Saudy, H.S.; El-Sherpiny, M.A.; El-Yazied, A.A.; Abd El-Gawad, H.G.; Ibrahim, M.F.; El-Hady, M.A.M.A.; Omar, M.M.A.; Metwally, A.A. Rhizospheric addition of hydrogel polymer and zeolite plus glutathione mitigate the hazard effects of water deficiency on common bean plants through enhancing the defensive antioxidants. J. Crop Health 2024, 76, 235–249. [Google Scholar] [CrossRef]
- Rezvani, R.; Kafi, M. The Effect of Irrigation Interval and Different Doses of Zeolite on the Growth and Yield Indices on White Bean (Phaseolus lanatus L.). Iran. J. Pulses Res. 2024, 15, 75–91. [Google Scholar] [CrossRef]
- Valadabadi, S.A.; Yousefi, M. Effect of Zeolite and Biofertilizers on the essential oil yield and some physiological characteristics of Satureja hortensis L. under Water Deficit stress. J. Med. Plants By Prod. 2023, 12, 349–356. [Google Scholar] [CrossRef]
- Hazrati, S.; Khurizadeh, S.; Sadeghi, A.R. Application of zeolite improves water and nitrogen use efficiency while increasing essential oil yield and quality of Salvia officinalis under water-deficit stress. Saudi J. Biol. Sci. 2022, 29, 1707–1716. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Zachs, I.; Hagag, N.; Shemesh, L.; Netzer, Y. Grapevine stem water potential estimation based on sensor fusion. Comput. Electron. Agric. 2022, 198, 107016. [Google Scholar] [CrossRef]
- Polat, E.; Karaca, M.; Demir, H.; Onus, A.N. Use of natural zeolite (clinoptilolite) in agriculture. J. Fruit Ornam. Plant Res. 2004, 12, 183–189. [Google Scholar]
- Hodaei, M.; Rahimmalek, M.; Arzani, A.; Talebi, M. The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind. Crops Prod. 2018, 120, 295–304. [Google Scholar] [CrossRef]
- Havaux, M.; Kloppstech, K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 2001, 213, 953–966. [Google Scholar] [CrossRef]
- Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014, 80, 60–66. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Arikan, B.; Yildiztugay, E.; Ozfidan-Konakci, C. Protective role of quercetin and kaempferol against oxidative damage and photosynthesis inhibition in wheat chloroplasts under arsenic stress. Physiol. Plant. 2023, 175, e13964. [Google Scholar] [CrossRef]
- Ghaemi, M.; Zare, Z.; Samiee Paghaleh, S. Effects of drought stress on some morphological characteristics and quercetin production levels of pot marigold at different stages of growth. Flower Ornam. Plants 2020, 5, 37–50. [Google Scholar] [CrossRef]
- de Abreu, I.N.; Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 2005, 43, 241–248. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, J.; Ren, T.; Du, H.; Liu, H.; Li, Y.; Zhang, C. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum. Plant Biol. 2020, 22, 813–821. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, J.J.; Lim, J.D.; Yu, C.Y.; Kim, S.H.; Hahn, S.J. Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ. Exp. Bot. 2006, 56, 44–53. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Frioni, T.; Silvestroni, O.; Lanari, V.; D’Onofrio, C.; Matarese, F.; Bellincontro, A.; Poni, S. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses. J. Plant Physiol. 2015, 185, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Morishita, H.; Urano, K.; Shiozaki, N.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Yoshiba, Y. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 2005, 56, 1975–1981. [Google Scholar] [CrossRef]
- Manivannan, P.; Jaleel, C.A.; Sankar, B.; Kishorekumar, A.; Somasundaram, R.; Lakshmanan, G.A.; Panneerselvam, R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf. B Biointerfaces 2007, 59, 141–149. [Google Scholar] [CrossRef] [PubMed]
3 July 2022 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1 | Epigc | Caft | cCout | tCout | Fert | Resv | Myr | Kaem | Isorh | Qga+r | Qgl+glc | |
mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | |
Zeolite Treatment (T) | ||||||||||||
WWZeo | 1.22 ± 0.23 a | 0.65 ± 0.10 ab | 1.13 ± 0.17 ab | 0.39 ± 0.05 a | 0.25 ± 0.06 a | 0.87 ± 0.20 ab | 0.23 ± 0.05 a | 1.83 ± 0.27 a | 2.24 ± 0.24 b | 0.41 ± 0.21 b | 0.43 ± 0.03 b | 6.43 ± 0.32 b |
Zeo | 0.81 ± 0.08 b | 0.46 ± 0.08 c | 1.04 ± 0.04 ab | 0.22 ± 0.02 c | 0.21 ± 0.01 a | 0.68 ± 0.03 b | 0.21 ± 0.01 ab | 1.43 ± 0.05 b | 1.74 ± 0.45 b | 0.27 ± 0.02 b | 0.38 ± 0.03 b | 5.92 ± 0.30 b |
Irrigation Regime (IR) | ||||||||||||
WW | 0.86 ± 0.03 b | 0.53 ± 0.05 bc | 0.95 ± 0.06 b | 0.35 ± 0.07 a | 0.23 ± 0.03 a | 0.74 ± 0.07 ab | 0.14 ± 0.01 b | 1.32 ± 0.14 b | 1.62 ± 0.22 b | 0.26 ± 0.03 b | 0.37 ± 0.03 b | 5.77 ± 0.42 b |
WS | 1.13 ± 0.12 a | 0.79 ± 0.11 a | 1.26 ± 0.12 a | 0.28 ± 0.03 bc | 0.26 ± 0.02 a | 0.91 ± 0.05 a | 0.21 ± 0.01 b | 1.95 ± 0.05 a | 2.86 ± 0.35 a | 0.60 ± 0.07 a | 0.57 ± 0.03 a | 7.21 ± 0.44 a |
Significance Pr(>F) | ||||||||||||
T | 0.843 | 0.032 * | 0.722 | 0.743 | 0.608 | 0.334 | 0.011 * | 0.971 | 0.152 | 0.028 * | 0.002 ** | 0.127 |
IR | 0.343 | 0.448 | 0.075 | 0.000 *** | 0.613 | 0.857 | 0.179 | 0.182 | 0.041 * | 0.016 * | 0.000 *** | 0.025 * |
T × IR | 0.000 *** | 0.000 *** | 0.004 ** | 0.062 | 0.092 | 0.006 ** | 0.016 * | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
28 July 2022 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1 | Epigc | Caft | cCout | tCout | Fert | Resv | Myr | Kaem | Isorh | Qga+r | Qgl+glc | |
mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | |
Zeolite Treatment (T) | ||||||||||||
WWZeo | 0.63 ± 0.07 b | 0.65 ± 0.04 b | 1.81 ± 0.12 b | 0.11 ± 0.03 a | 0.32 ± 0.02 ab | 0.93 ± 0.07 b | 0.16 ± 0.03 b | 1.49 ± 0.25 b | 1.43 ± 0.44 b | 0.80 ± 0.03 b | 0.39 ± 0.06 b | 7.10 ± 0.58 b |
Zeo | 1.62 ± 0.86 a | 0.79 ± 0.10 b | 1.83 ± 0.07 b | 0.14 ± 0.2 a | 0.30 ± 0.01 b | 0.89 ± 0.02 b | 0.17 ± 0.01 b | 1.60 ± 0.13 b | 1.35 ± 0.27 b | 0.70 ± 0.05 b | 0.46 ± 0.04 b | 7.81 ± 0.10 b |
Irrigation Regime (IR) | ||||||||||||
WW | 0.71 ± 0.07 b | 0.61 ± 0.19 b | 1.84 ± 0.10 b | 0.14 ± 0.01 a | 0.29 ± 0.03 b | 0.83 ± 0.07 b | 0.11 ± 0.03 c | 1.34 ± 0.19 b | 1.02 ± 0.24 b | 0.80 ± 0.05 b | 0.43 ± 0.05 b | 7.35 ± 0.35 b |
WS | 1.49 ± 0.08 a | 1.25 ± 0.01 a | 2.07 ± 0.12 a | 0.11 ± 0.01 a | 0.37 ± 0.04 a | 1.26 ± 0.18 a | 0.23 ± 0.01 a | 2.14 ± 0.10 a | 2.82 ± 0.10 a | 1.13 ± 0.13 a | 0.67 ± 0.04 a | 10.06 ± 0.55 a |
Significance Pr(>F) | ||||||||||||
T | 0.933 | 0.002 ** | 0.029 * | 0.759 | 0.249 | 0.022 * | 0.824 | 0.049 * | 0.002 ** | 0.000 *** | 0.000 *** | 0.000 *** |
IR | 0.000 *** | 0.000 *** | 0.032 * | 0.537 | 0.038 * | 0.001 ** | 0.000 *** | 0.000 *** | 0.000 *** | 0.009 ** | 0.000 *** | 0.000 *** |
T × IR | 0.654 | 0.000 *** | 0.074 | 0.049 * | 0.001 ** | 0.000 *** | 0.000 *** | 0.005 ** | 0.000 *** | 0.000 *** | 0.002 ** | 0.000 *** |
16 August 2022 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1 | Epigc | Caft | cCout | tCout | Fert | Resv | Myr | Kaem | Isorh | Qga+r | Qgl+glc | |
mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | |
Zeolite Treatment (T) | ||||||||||||
WWZeo | 0.88 ± 0.24 b | 0.62 ± 0.20 ab | 1.17 ± 0.04 b | 0.28 ± 0.06 ab | 0.30 ± 0.03 a | 0.95 ± 0.06 a | 0.19 ± 0.03 b | 1.94 ± 0.28 ab | 1.86 ± 0.27 b | 0.37 ± 0.03 a | 0.39 ± 0.03 b | 6.99 ± 0.22 b |
Zeo | 0.63 ± 0.03 b | 0.42 ± 0.09 b | 1.34 ± 0.09 a | 0.31 ± 0.04 a | 0.28 ± 0.03 a | 0.81 ± 0.05 b | 0.18 ± 0.03 b | 1.64 ± 0.21 b | 1.67 ± 0.29 b | 0.34 ± 0.02 a | 0.38 ± 0.03 b | 6.47 ± 0.17 c |
Irrigation Regime (IR) | ||||||||||||
WW | 0.81 ± 0.05 b | 0.65 ± 0.23 ab | 1.27 ± 0.12 ab | 0.32 ± 0.01 a | 0.29 ± 0.02 a | 0.89 ± 0.04 ab | 0.26 ± 0.03 b | 1.77 ± 0.22 ab | 1.79 ± 0.23 b | 0.33 ± 0.03 a | 0.42 ± 0.05 b | 6.61 ± 0.32 bc |
WS | 1.42 ± 0.09 a | 0.95 ± 0.25 a | 1.40 ± 0.03 a | 0.21 ± 0.03 b | 0.31 ± 0.02 a | 1.00 ± 0.08 a | 0.37 ± 0.09 a | 2.22 ± 0.28 a | 3.28 ± 0.25 a | 0.36 ± 0.06 a | 0.59 ± 0.05 a | 8.50 ± 0.24 a |
Significance Pr(>F) | ||||||||||||
T | 0.000 *** | 0.014 * | 0.065 | 0.199 | 0.673 | 0.043 * | 0.000 *** | 0.125 | 0.000 *** | 0.681 | 0.000 *** | 0.000 *** |
IR | 0.013 * | 0.612 | 0.002 ** | 0.093 | 0.832 | 0.490 | 0.089 | 0.589 | 0.000 *** | 0.863 | 0.004 ** | 0.000 *** |
T × IR | 0.000 *** | 0.028 * | 0.606 | 0.003 ** | 0.221 | 0.000 *** | 0.050 | 0.009 ** | 0.000 *** | 0.223 | 0.001 ** | 0.000 *** |
3 July 2023 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1 | Epigc | Caft | cCout | tCout | Fert | Resv | Myr | Kaem | Isorh | Qga+r | Qgl+glc | |
mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | |
Zeolite Treatment (T) | ||||||||||||
WWZeo | 0.06 ± 0.02 a | 0.13 ± 0.02 a | 1.71 ± 0.37 a | 0.02 ± 0.00 a | 0.04 ± 0.01 a | 0.13 ± 0.03 a | 0.01 ± 0.00 a | 0.22 ± 0.01 ab | 0.17 ± 0.04 ab | 0.02 ± 0.01 a | 0.43 ± 0.04 b | 6.75 ± 0.35 a |
Zeo | 0.06 ± 0.01 a | 0.11 ± 0.03 a | 1.89 ± 0.46 a | 0.02 ± 0.00 a | 0.04 ± 0.01 a | 0.13 ± 0.02 a | 0.01 ± 0.00 a | 0.20 ± 0.03 b | 0.25 ± 0.06 b | 0.02 ± 0.00 a | 0.42 ± 0.15 b | 7.14 ± 0.39 a |
Irrigation Regime (IR) | ||||||||||||
WW | 0.04 ± 0.00 a | 0.11 ± 0.02 a | 1.51 ± 0.28 a | 0.02 ± 0.00 a | 0.04 ± 0.01 a | 0.12 ± 0.02 a | 0.01 ± 0.00 a | 0.16 ± 0.02 b | 0.21 ± 0.02 b | 0.02 ± 0.00 a | 0.31 ± 0.01 b | 6.98 ± 1.39 a |
WS | 0.08 ± 0.04 a | 0.11 ± 0.03 a | 2.27 ± 0.54 a | 0.03 ± 0.01 a | 0.05 ± 0.02 a | 0.17 ± 0.05 a | 0.02 ± 0.01 a | 0.29 ± 0.05 a | 0.44 ± 0.20 a | 0.04 ± 0.01 a | 0.62 ± 0.06 a | 10.06 ± 2.91 a |
Significance Pr(>F) | ||||||||||||
T | 0.957 | 0.496 | 0.668 | 0.985 | 0.451 | 0.466 | 0.194 | 0.449 | 0.055 | 0.199 | 0.391 | 0.072 |
IR | 0.122 | 0.580 | 0.045 * | 0.044 * | 0.495 | 0.192 | 0.983 | 0.010 * | 0.012 * | 0.324 | 0.003 ** | 0.050 |
T × IR | 0.110 | 0.581 | 0.192 | 0.299 | 0.243 | 0.241 | 0.305 | 0.000 *** | 0.186 | 0.038 * | 0.002 ** | 0.119 |
1 August 2023 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1 | Epigc | Caft | cCout | tCout | Fert | Resv | Myr | Kaem | Isorh | Qga+r | Qgl+glc | |
mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | |
Zeolite Treatment (T) | ||||||||||||
WWZeo | 1.07 ± 0.11 b | 0.99 ± 0.13 a | 1.81 ± 0.05 b | 0.13 ± 0.02 a | 0.31 ± 0.03 c | 1.03 ± 0.09 c | 0.07 ± 0.01 c | 1.81 ± 0.11 a | 1.72 ± 0.43 b | 0.58 ± 0.08 a | 0.28 ± 0.02 b | 9.58 ± 0.78 b |
Zeo | 1.37 ± 0.06 a | 0.64 ± 0.15 b | 2.05 ± 0.16 ab | 0.14 ± 0.02 a | 0.39 ± 0.01 b | 1.36 ± 0.03 b | 0.10 ± 0.01 b | 1.65 ± 0.13 a | 2.36 ± 0. 25 ab | 0.48 ± 0.01 a | 0.35 ± 0.03 ab | 9.70 ± 0.21 b |
Irrigation Regime (IR) | ||||||||||||
WW | 1.35 ± 0.11 a | 0.71 ± 0.26 ab | 2.25 ± 0.22 a | 0.12 ± 0.01 ab | 0.46 ± 0.01 a | 1.53 ± 0.07 a | 0.08 ± 0.01 bc | 1.96 ± 0.27 a | 1.53 ± 0.16 b | 0.57 ± 0.05 a | 0.30 ± 0.02 b | 9.58 ± 0.78 b |
WS | 1.42 ± 0.12 a | 0.51 ± 0.05 b | 2.11 ± 0.09 a | 0.08 ± 0.01 b | 0.40 ± 0.02 b | 1.43 ± 0.06 ab | 0.12 ± 0.01 a | 1.65 ± 0.04 a | 3.11 ± 1.32 a | 0.55 ± 0.04 a | 0.42 ± 0.08 a | 11.20 ± 0.19 a |
Significance Pr(>F) | ||||||||||||
T | 0.006 ** | 0.027 * | 0.003 ** | 0.006 ** | 0.000 *** | 0.000 *** | 0.026 * | 0.401 | 0.462 | 0.244 | 0.171 | 0.021 * |
IR | 0.003 ** | 0.005 ** | 0.458 | 0.252 | 0.963 | 0.003 ** | 0.000 *** | 0.011 * | 0.008 ** | 0.036 | 0.001 * | 0.006 ** |
T × IR | 0.044 * | 0.381 | 0.020 * | 0.012 * | 0.000 *** | 0.000 *** | 0.562 | 0.344 | 0.224 | 0.153 | 0.392 | 0.021 * |
16 August 2023 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB1 | Epigc | Caft | cCout | tCout | Fert | Resv | Myr | Kaem | Isorh | Qga+r | Qgl+glc | |
mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | mg/g | |
Zeolite Treatment (T) | ||||||||||||
WWZeo | 1.51 ± 0.25 a | 0.41 ± 0.08 a | 1.23 ± 0.17 b | 0.11 ± 0.01 b | 0.26 ± 0.02 b | 0.68 ± 0.09 c | 0.06 ± 0.01 a | 0.96 ± 0.14 c | 1.27 ± 0.33 b | 0.36 ± 0.02 b | 0.24 ± 0.05 b | 6.88 ± 1.19 a |
Zeo | 1.70 ± 0.71 a | 0.53 ± 0.15 a | 1.29 ± 0.06 b | 0.17 ± 0.06 ab | 0.27 ± 0.02 b | 0.93 ± 0.10 bc | 0.09 ± 0.04 a | 1.28 ± 0.11 b | 1.84 ± 0.09 a | 0.69 ± 0.22 ab | 0.28 ± 0.03 ab | 7.43 ± 0.16 ab |
Irrigation Regime (IR) | ||||||||||||
WW | 1.48 ± 0.16 a | 0.46 ± 0.09 a | 1.34 ± 0.09 ab | 0.12 ± 0.02 b | 0.40 ± 0.06 a | 1.25 ± 0.12 a | 0.06 ± 0.02 a | 1.44 ± 0.17 ab | 1.66 ± 0.18 ab | 0.94 ± 0.16 a | 0.27 ± 0.04 ab | 7.89 ± 0.13 ab |
WS | 1.86 ± 0.12 a | 0.52 ± 0.07 a | 1.58 ± 0.13 a | 0.20 ± 0.01 a | 0.34 ± 0.07 ab | 1.07 ± 0.24 ab | 0.10 ± 0.03 a | 1.68 ± 0.15 a | 2.01 ± 0.29 a | 0.95 ± 0.26 a | 0.34 ± 0.01 a | 8.60 ± 0.41 a |
Significance Pr(>F) | ||||||||||||
T | 0.750 | 0.781 | 0.007 ** | 0.348 | 0.000 *** | 0.000 *** | 0.764 | 0.000 *** | 0.039 * | 0.000 *** | 0.038 * | 0.003 ** |
IR | 0.162 | 0.118 | 0.030 * | 0.000 *** | 0.408 | 0.631 | 0.043 * | 0.001 ** | 0.001 ** | 0.098 | 0.027 * | 0.065 |
T × IR | 0.641 | 0.574 | 0.199 | 0.585 | 0.194 | 0.012 * | 0.769 | 0.576 | 0.377 | 0.111 | 0.543 | 0.804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cataldo, E.; Puccioni, S.; Eichmeier, A.; Mattii, G.B. Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress. Horticulturae 2025, 11, 897. https://doi.org/10.3390/horticulturae11080897
Cataldo E, Puccioni S, Eichmeier A, Mattii GB. Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress. Horticulturae. 2025; 11(8):897. https://doi.org/10.3390/horticulturae11080897
Chicago/Turabian StyleCataldo, Eleonora, Sergio Puccioni, Aleš Eichmeier, and Giovan Battista Mattii. 2025. "Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress" Horticulturae 11, no. 8: 897. https://doi.org/10.3390/horticulturae11080897
APA StyleCataldo, E., Puccioni, S., Eichmeier, A., & Mattii, G. B. (2025). Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress. Horticulturae, 11(8), 897. https://doi.org/10.3390/horticulturae11080897