Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States
Abstract
1. Introduction
2. Effects of Weeds on Nursery Ornamental Crop Production
2.1. Direct Competition Between Weeds and Ornamentals
2.2. Weeds as Hosts for Pests and Pathogens
2.3. Economic Impact of Weeds in Ornamental Nurseries
3. Chemical Methods
3.1. Preemergence Herbicides for Ornamental Production
Active Ingredients | Trade Name | WSSA * Group and Mechanism of Action | Usage | Notes | |||
---|---|---|---|---|---|---|---|
Greenhouse | Containers | Field | |||||
With Crop | In Soil | ||||||
Trifluralin 2.0%, and Isoxaben 0.5%. | Snapshot TG | 3 (microtubule assembly inhibitors) +29 (Cellulose biosynthesis inhibition) | No | No | Yes | Yes | The Combination of trifluralin and isoxaben improves weed control for both grasses and residual weed control. Limited applicability in (open) greenhouses due to volatility issue. |
Isoxaben | Gallery | 29 | No | No | Yes | Yes | Safest herbicide controls most annual broadleaf weeds and grasses like eclipta, hairy bittercress and spotted spurge. |
Oryzalin | Surflan | 3 | No | no | No | Yes | A pre-emergence surface-applied herbicide used for control of annual grasses and broad-leaved weeds in fruit trees and around ornamentals. Exhibit mammalian toxicity and a potential carcinogen [41]. |
Trifluralin | Treflan | 3 | No | surface application on containers [42] | Yes | Yes | Incorporated into the soil, providing long-lasting suppression of various annual grasses and broadleaf weeds, including large crabgrass, foxtail, pigweed, and carelessweed [40]. |
Pendimethalin | Pendulum | 3 | No | Yes [43] | Yes | Yes | Can be used with oxadiazon and oxyfluorfen (OH2) provides improved pre-emergence control of annual grasses and some broadleaf weeds [44]. Widely used in nursery crops; effective in reducing annual grass populations [45]. Combining pendimethalin with dimethenamid-P (FreeHand) enhances broad-spectrum weed control [46]. |
Prodiamine | Barricade | 3 | Depends on crop tolerance [47] | No | No (landscape ornamental only) | No | Commonly used for preventing weed seed germination; effective for annual grass weeds [44]. Combining oxyfluorfen with prodiamine (RegalStar) improves broadleaf weed suppression [27]. |
Dimethenamid-P | Tower | 15 (very-long-chain fatty acid (VLCFA) synthesis inhibition) | No | No | Yes (woody plants) | Yes | Effective in controlling broadleaf and grass weeds in container production [46]. |
Indazilfam | Marengo | 29 | No | Yes (on gravel/under benches) | Yes | Yes | Provides long residual weed control, particularly for broadleaf species. |
3.2. Postemergence Herbicides for Ornamental Production
Active Ingredient | Trade Name | WSSA * Group and Mechanism of Action | Usage | Notes | |||
---|---|---|---|---|---|---|---|
Greenhouse | Container | Field | |||||
With Crop | In Soil | ||||||
Fluazifop-butyl | Fusilade ll | 1 (inhibit acetyl-CoA carboxylase (ACCase) | Yes | Yes | Yes | Yes | Systemic herbicide which acts on grasses. |
Glufosinate | Finale | 10 (glutamine synthetase inhibitors | Yes | No | No | Yes | Nonselective, minimally translocated and act as contact and systemic herbicide. |
Clethodium | Envoy Plus | 1 | Yes, but can cause injury | Yes | No | Yes | Selective, systemic herbicide commonly used to control grass weeds. |
Paraquat | Gramaxzone | 22 (cell wall synthesis inhibitors | No | Yes | No | Yes | Non-selective contact herbicide and can be safely used in greenhouse. |
Diquat | Reward | 22 | Yes | No | No | Yes | Non-selective and contact herbicide. |
Glyphosate | RoundUp Pro | 9 (EPSPS ** inhibitor) | No | No | No | Yes | Systemic, non-selective and it can be used in empty greenhouse. |
Flumioxazin | Sureguard | 14 (PPO *** inhibitor) | No | Yes (on gravel/under benches) as a pre-emergent | Yes | Yes (for woody ornamentals) | It cannot be used on crops and control broadleaf weeds and grasses. It has both pre and post emergence activity. It can be used in empty greenhouses. |
Hydrogen peroxide | - | Not applicable | Yes | Yes | Yes | Yes | Used for sanitation and algae control. |
Bleaching | - | Not applicable | Yes (if Selective) | No | Yes | Yes | Bleach itself is non-selective in nature can cause potential harm to both plants and the environment. Instead, specialized bleaching herbicides are used for targeted weed control. |
Baking soda | - | Not applicable | Yes | Yes (to control molds) | Yes | Yes | Used with acetic acid to control certain weeds [55]. |
Quaternary ammonium compunds | Greenshield | Not applicable | No | Yes (only on hard surfaces) | Yes | Yes | Those derived from 2,2′-thiodiacetic acid have shown selective herbicidal properties against sorrel, gallant-soldier, velvet leaf and barnyard grass [56,57]. Also used as disinfectants in nurseries to control liverwort, algae and moss. |
3.3. Organic Postemergence Herbicides
Active Ingredient | Trade Name | Usage | Notes | |||
---|---|---|---|---|---|---|
Greenhouse | Container | Field | ||||
With Crop | In Soil | |||||
Acetic acid | Weedpharm, other vinegar products | Yes | Yes | Yes | Yes | Repeated applications are needed. Wood vinegar is used for broadleaf weed control [63]. |
Pelargonic acid | Scythe | Yes (with care) | Yes | Yes (only for woody shrubs) | Yes | Effectively control barnyard and johnsongrass [64]. Used in integrated weed management systems. |
Ammonium nonanoate | Axxe | Yes | Yes | Yes | Yes | Broad spectrum herbicide, effectively controls Indian chickweed, pigweed and crabgrass, but repeated applications needed [65]. |
Lemon grass oil | GreenMatch Ex | Yes | Yes | Yes | Yes | Mostly used with pelargonic acid in sustainable weed management. |
D-limonene | Avenger weed killer | Yes | Yes | Yes | Yes | Non-selective. More efficient in younger smaller weeds than larger older leaves. |
Cinnacure aldehyde | Cinnacure | Yes | Yes | Yes | Yes | Works as contact herbicide but may injure ornamental crops by sporadic injury. |
Clove oil | Weed slayer | Yes | Yes | Yes | Yes | Nonselective, used for grassy and broadleaf weeds, offers better control with adjuvants like garlic extracts [65]. |
4. Herbicides for Greenhouses and Enclosed Structures
5. Herbicide Resistance
6. Herbicide Resistance Management Strategies
6.1. Herbicide Mixtures and Rotations
6.2. The Role of Pre and Post Emergence Herbicides in IWM
- Field sanitation and BMP’s (Best Management Strategies);
- Crop rotation to break weed life cycles and other cultural controls;
- Mechanical and physical control to disrupt weed growth;
- Biological control like grazing or use of bioherbicides;
- Targeted herbicide use based on weed population dynamics;
- Using herbicides with different modes of actions and different herbicide mixes.
6.3. Role of Organic Herbicides in Integrated Weed Management (IWM)
7. Conclusions
- Significant research gaps remain in evaluating alternative chemical classes and non-traditional products (e.g., insecticides, miticides, essential oils) for liverwort suppression in container nursery and greenhouse systems, particularly under varying environmental and regional conditions.
- Preemergence herbicides such as indaziflam and dimethenamid-P exhibit potential for greenhouse weed control, but comprehensive studies on their crop selectivity, residual activity, application timing, and long-term efficacy under greenhouse conditions are essential.
- Current herbicide portfolios for enclosed production environments are limited, underscoring the urgency for screening novel active ingredients, assessing phytotoxicity on diverse ornamental species, and optimizing formulations and delivery systems.
- Integrated Weed Management (IWM) frameworks must be advanced, emphasizing herbicide rotation, sanitation protocols, substrate management, and the integration of organic and cultural tactics to delay resistance evolution and enhance overall system resilience.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merriam-Webster. Ornamental Plant Definition. 2016. Available online: https://www.merriam-webster.com/dictionary/ornamentals (accessed on 3 August 2025).
- United States Department of Agriculture; National Agricultural Statistics Service. Floriculture Crops 2023 Highlights (OMB No. 0535-0093). 2024, May. Available online: https://www.nass.usda.gov/Publications/Highlights/2024/2023-floriculture-highlights.pdf (accessed on 3 August 2025).
- Hall, C.R.; Dickson, M.W. Economic, environmental, and well-being benefits of the green industry. J. Environ. Hortic. 2011, 29, 96–103. [Google Scholar] [CrossRef]
- Case, L.; Mathers, H.; Senesac, A. A review of weed control practices in container nurseries. HortTechnology 2005, 15, 535–545. [Google Scholar] [CrossRef]
- Mathers, H.M. Novel methods of weed control in containers. HortTechnology 2003, 13, 28–34. [Google Scholar] [CrossRef]
- Alluri, G.; Saha, D. Emerging perspectives on non-chemical weed management tactics in container ornamental production in the United States. Horticulturae 2024, 10, 281. [Google Scholar] [CrossRef]
- Khamare, Y.; Marble, S.C.; Pearson, B.J.; Chen, J.; Devkota, P. Effect of weed competition on growth of container grown ornamentals plants in four different container sizes. Horticulturae 2023, 9, 317. [Google Scholar] [CrossRef]
- Berchielli-Robertson, D.L.; Gilliam, C.H.; Fare, D.C. Competitive effects of weeds on the growth of container-grown plants. HortScience 1990, 25, 77–79. [Google Scholar] [CrossRef]
- Wilbourn, T.A.; Rauch, F.D. Weed competition in container-grown nursery stock. HortScience 1972, 7, 341. [Google Scholar]
- Walker, K.L.; Williams, D.J. Annual grass interference in container-grown bush cinquefoil (Potentilla fruticosa). Weed Sci. 1989, 37, 73–75. [Google Scholar] [CrossRef]
- Fretz, T.A. Weed competition in container-grown Japanese holly. HortScience 1972, 7, 485–486. [Google Scholar] [CrossRef]
- Smith, E. Identifying weed Species Hosts for Onion Thrips (Thrips tabaci Lindeman) and Their Potential as Sources of Iris Yellow Spot Virus (Bunyaviridae: Tospovirus) in New York Onion Fields. Master’s Thesis, Faculty of the Graduate School of Cornell University, New York, NY, USA, 2010. [Google Scholar]
- Singh, B. Survey and Indexing of Weeds Growing around Potato Fields for Their Role as an Inoculum Source for Potato leafroll virus (PLRV). Biotechnol. J. Int. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Hanafi, A.; Radcliffe, E.B.; Ragsdale, D.W. Spread and control of potato leafroll virus in the Souss Valley of Morocco. Crop Prot. 1995, 14, 145–153. [Google Scholar] [CrossRef]
- Dikova, B. Establishment of Tobacco Rattle Virus (TRV) in Weeds and Cuscuta. Biotechnol. Biotechnol. Equip. 2006, 20, 42–48. [Google Scholar] [CrossRef]
- Allen, T.; Hollier, C.; Sikora, E. A continuing saga: Soybean rust in the continental United States, 2004 to 2013. Outlooks Pest Manag. 2014, 25, 167–174. [Google Scholar] [CrossRef]
- Inserra, R.N.; Dunn, R.A.; McSorley, R.; Langdon, K.R.; Richmer, A.Y. Weed hosts of Rotylenchulus reniformis in ornamental nurseries of southern Florida. Nematol. Circ. 1989. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19901145012 (accessed on 3 August 2025).
- Ingram, D.L.; Hall, C.R.; Knight, J. Comparison of three production scenarios for Buxus microphylla var. japonica ‘Green Beauty’ marketed in a No. 3 container on the west coast using life cycle assessment. HortScience 2017, 52, 357–365. [Google Scholar] [CrossRef]
- Michigan Department of Agriculture and Rural Development. Pesticide and Plant Pest Management Division: 2019 Annual Report. 2019. Available online: https://www.michigan.gov/mdard/-/media/Project/Websites/mdard/documents/annual-reports/pppm/2019_pppm_annual_report.pdf?rev=891ed0a0b2984017953e45f63aa5cf1d&hash=1BB8F294151DCF64774F9071573C0BC8 (accessed on 10 June 2025).
- Saha, D.; Hill, E. Weed Management Strategies in Greenhouses—Part 2: Chemical Weed Control Strategies. Michigan State University Extension. 22 April 2020. Available online: https://www.canr.msu.edu/news/weed-management-strategies-in-greenhouses-part-2 (accessed on 10 June 2025).
- Fain, G.B.; Gilliam, C.H.; Keever, G.J. Tolerance of hardy ferns to selected preemergence herbicides. HortTechnology 2006, 16, 605–609. [Google Scholar] [CrossRef]
- Mervosh, T.L.; Ahrens, J.F. Preemergence herbicides for containergrown perennials. In Proceedings of the Annual Meeting-Northeastern Weed Science Society, Washington, DC, USA, 5–8 January 1998; Volume 52, p. 131. [Google Scholar]
- Porter, W.C. Isoxaben and isoxaben combinations for weed control in container-grown herbaceous flowering perennials. J. Environ. Hortic. 1996, 14, 27–30. [Google Scholar] [CrossRef]
- Neal, J. Snapshot TG (Isoxaben + Trifluralin) Herbicide Information Factsheets. North Carolina State University Extension. 21 June 2023. Available online: https://content.ces.ncsu.edu/snapshot-tg-isoxaben-trifluralin (accessed on 13 June 2025).
- Schneegurt, M.A.; Roberts, J.L.; Bjelk, L.A.; Gerwick, B.C. Postemergence activity of isoxaben. Weed Technol. 1994, 8, 183–189. [Google Scholar] [CrossRef]
- Neal, J.C.; Senesac, A.F. Preemer-gent weed control in container and field-grown woody nursery crops with Gallery. J. Environ. Hort. 1990, 8, 103–107. [Google Scholar]
- Altland, J.E.; Gilliam, C.H.; Wehtje, G. Weed Control in Field Nurseries. HortTechnology 2003, 13, 9–14. [Google Scholar] [CrossRef]
- Gilliam, C.H.; Wehtje, G.; Eason, J.E.; Hicks, T.V.; Fare, D.C. Weed control with Gallery and other herbicides in fieldgrown nursery crops. J. Environ. Hort. 1989, 7, 69–72. [Google Scholar]
- Wehtje, G.; Gilliam, C.; Whitwell, T.; Pounders, C.; Webster, W. Weed control in field-grown boxwood and photinia. HortScience 1986, 21, 445–448. [Google Scholar] [CrossRef]
- Young, R.S. Oryzalin-simazineparaquat for peach trees. In Proceedings of the Northeastern Weed Science Society, 1980; Volume 34, p. 299.
- Akers, M.S.; Carpenter, P.L.; Weller, S.C. Herbicide systems for nursery plantings. HortScience 1984, 19, 502–504. [Google Scholar] [CrossRef]
- Reeder, J.A.; Gilliam, C.H.; Wehtje, G.R.; South, D.B.; Keever, G.J. Evaluation of selected herbicides on field-grown woody ornamentals. J. Environ. Hort. 1994, 12, 236–240. [Google Scholar] [CrossRef]
- BASF Corporation. Pendulum® 2G Granule Herbicide Label (EPA Reg. No. 241-375). Crop Data Management Systems. 2023. Available online: https://www.cdms.net/ldat/ld0BG008.pdf (accessed on 16 June 2025).
- Syngenta Crop Protection, LLC. SCP 1139A-L10D 0224: Product Label. Syngenta. 2024. Available online: https://assets.syngenta-us.com/pdf/labels/SCP%201139A-L10D%200224.pdf (accessed on 16 June 2025).
- Neal, J. Tower (Dimethenamid-p) Herbicide Information Factsheets. North Carolina State University Extension. 14 April 2022. Available online: https://content.ces.ncsu.edu/tower-dimethenamid-p (accessed on 16 June 2025).
- Neal, J. Marengo (Indaziflam), Specticle, or Esplanade: Herbicide Information Factsheets. North Carolina State University Extension. 14 April 2023. Available online: https://content.ces.ncsu.edu/marengo-indaziflam (accessed on 16 June 2025).
- Lamont, G.P.; O’Connell, M.A.; Nicholls, P.J. An evaluation of pre-emergent herbicides for container-grown ornamental plants. Sci. Hortic. 1985, 26, 241–251. [Google Scholar] [CrossRef]
- Neal, J. Weed Control in Woody Plant Propagation and Containerized Liner Production. NC State Extension Publications. 2016. Available online: https://content.ces.ncsu.edu/weed-control-in-woody-plant-propagation (accessed on 16 June 2025).
- University of Massachusetts Amherst. Weed Management for Outdoor cut Flowers. Center for Agriculture, Food, and the Environment. Available online: https://www.umass.edu/agriculture-food-environment/greenhouse-floriculture/fact-sheets/weed-management-for-outdoor-cut-flowers (accessed on 16 June 2025).
- U.S. Environmental Protection Agency. Pesticide Product and Labeling Information. 2020. Available online: https://www.epa.gov/pesticide-labels (accessed on 16 June 2025).
- Agriculture & Environment Research Unit. Pesticide Properties Database (PPDB). University of Hertfordshire. 21 April 2025. Available online: https://sitem.herts.ac.uk/aeru/ppdb/\ (accessed on 17 June 2025).
- Judge, C.A.; Neal, J.C.; Weber, J.B. Dose and concentration responses of common nursery weeds to Gallery, Surflan, and Treflan. J. Environ. Hortic. 2004, 22, 106–112. [Google Scholar] [CrossRef]
- Kočárek, M.; Artikov, H.; Voříšek, K.; Borůvka, L. Pendimethalin degradation in soil and its interaction with soil microorganisms. Soil Water Res. 2016, 11, 213–219. [Google Scholar] [CrossRef]
- Newby, A.; Altland, J.E.; Gilliam, C.H.; Wehtje, G. Pre-emergence liverwort control in nursery containers. HortTechnology 2007, 17, 496–500. [Google Scholar] [CrossRef]
- Elmore, C.L.; Humphrey, W.A.; Hesketh, K.A. Container nursery weed control. In Leaflet-Div. of Agricultural Sciences; FAO: Roma, Italy, 1979. [Google Scholar]
- Fausey, J.C. Controlling liverwort and moss now and in the future. HortTechnology 2003, 13, 35–38. [Google Scholar] [CrossRef]
- Marble, S.C.; Frank, M.S.; Laughinghouse, D.D.; Steed, S.T.; Boyd, N.S. Biology and Management of Liverwort (Marchantia polymorpha) in Ornamental Crop Production: ENH278/EP542, 9/2017. EDIS 2017, 2017. [Google Scholar] [CrossRef]
- Neal, J. Postemergence, non-selective herbicides for landscapes and nurseries. North Carolina State Extension Publications. 31 October 1998. Available online: https://content.ces.ncsu.edu/postemergence-non-selective-herbicides-for-landscapes-and-nurseries (accessed on 16 October 2024).
- Neal, J. Fusilade II (fluazifop-p-butyl). North Carolina State Extension Publications. 9 May 2016. Available online: https://content.ces.ncsu.edu/fusilade-ii-fluazifop-p-butyl (accessed on 19 June 2025).
- FBN. Clethodim: A Selective Herbicide for Grass Control. FBN. Available online: https://www.fbn.com/community/blog/clethodim#:~:text=Designed%20to%20be%20mixed%20with,and%20roots%2C%20killing%20the%20weeds (accessed on 20 June 2025).
- Neal, J. SureGuard (Flumioxazin). North Carolina State University Cooperative Extension. 6 June 2016. Available online: https://content.ces.ncsu.edu/sureguard-flumioxazin (accessed on 21 June 2023).
- Marble, C.; Pickens, J. Weed Control for Ornamentals Inside Greenhouses and Other Enclosed Structures: ENH1267/EP528, 11/2015. EDIS 2016, 2016, 5. [Google Scholar] [CrossRef]
- Neal, J. Greenhouse Weed Control (Horticulture Information Leaflets). North Carolina State University. 10 April 2023. Available online: https://content.ces.ncsu.edu/greenhouse-weed-control#section_heading (accessed on 10 April 2023).
- University of Massachusetts Extension Greenhouse Crops and Floriculture Program. Managing Weeds in and Around the Greenhouse. 2019. Available online: https://www.umass.edu/agriculture-food-environment/greenhouse-floriculture/fact-sheets/managing-weeds-in-around-greenhouse (accessed on 6 July 2025).
- Reséndiz-Vega, M.; García-Melo, J.; Hernández-Sánchez, E. Effectiveness of acetic acid, sodium bicarbonate and the vinegar/baking soda mixture to control the population of motita hay (Tillandsia recurvata) on the campus of the TulaTepejí Technological University. J. Innov. Eng. 2024, 8, 7–19. [Google Scholar] [CrossRef]
- Bałczewski, P.; Biczak, R.; Turek, M.; Pawłowska, B.; Różycka-Sokołowska, E.; Marciniak, B.; Deska, M.; Skalik, J. Ammonium 2,2′-thiodiacetates—Selective and environmentally safe herbicides. Ecotoxicol. Environ. Saf. 2018, 163, 408–416. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.; Yang, J.; Guan, A.; Ma, H. Design, synthesis, and herbicidal activity of novel quaternary ammonium salt derivatives. Pestic. Biochem. Physiol. 2017, 143, 246–251. [Google Scholar] [CrossRef]
- Lanini, W.T. Organic herbicides—Do they work. Calif. Weed Sci. Soc. J. 2010, 6, 1–3. [Google Scholar]
- Koperek, M. Organic Herbicides: Lemongrass Oil and Weed Control. World Agriculture Solutions. 8 May 2015. Available online: https://worldagriculturesolutions.com/tag/lemongrass-oil/ (accessed on 6 July 2025).
- Neal, J.; Senesac, A.; Are There Alternatives to Glyphosate for Weed Control in Landscapes? North Carolina State University Cooperative Extension. 13 February 2024. Available online: https://content.ces.ncsu.edu/are-there-alternatives-to-glyphosate-for-weed-control-in-landscapes (accessed on 6 July 2025).
- Sidhu, M.K.; Lopez, R.G.; Chaudhari, S.; Saha, D. A review of common liverwort control practices in container nurseries and greenhouse operations. HortTechnology 2020, 30, 471–479. [Google Scholar] [CrossRef]
- Center for Agriculture, Food, and the Environment. Managing Weeds in and Around the Greenhouse. UMass Extension Greenhouse Crops and Floriculture Program, University of Massachusetts Amherst. 2019. Available online: https://ag.umass.edu/greenhouse-floriculture/fact-sheets/managing-weeds-in-around-greenhouse (accessed on 6 July 2025).
- Chu, L.; Liu, H.; Zhang, Z.; Zhan, Y.; Wang, K.; Yang, D.; Liu, Z.; Yu, J. Evaluation of Wood Vinegar as an Herbicide for Weed Control. Agronomy 2022, 12, 3120. [Google Scholar] [CrossRef]
- Kanatas, P.; Zavra, S.-M.; Tataridas, A.; Gazoulis, I.; Antonopoulos, N.; Synowiec, A.; Travlos, I. Pelargonic Acid and Caraway Essential Oil Efficacy on Barnyardgrass (Echinochloa crus-galli (L.) P.Beauv.) and Johnsongrass (Sorghum halepense (L.) Pers.). Agronomy 2022, 12, 1755. [Google Scholar] [CrossRef]
- Pantović, J.G.; Sečanski, M. Weed Control in Organic Farming. Contemp. Agric. 2023, 72, 43–56. [Google Scholar] [CrossRef]
- Khadduri, N. Using essential oils to control moss and liverwort in containers. In National Proceedings: Forest and Conservation Nursery Associations-2010. Proc. RMRS-P-65; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; pp. 133–138. [Google Scholar]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Mallory-Smith, C.; Thill, D.C.; Morishita, D.W. Herbicide-Resistant Weeds and Their Management (p. 5). University of Idaho Cooperativae Extension System. 1993. Revised October 2015, Reviewed 2023. Available online: https://www.uidaho.edu/extension/publications/publication-detail?id=pnw0437 (accessed on 21 June 2025).
- Tranel, P.J.; Riggins, C.W.; Bell, M.S.; Hager, A.G. Herbicide resistances in Amaranthus tuberculatus: A call for new options. J. Agric. Food Chem. 2011, 59, 5808–5812. [Google Scholar] [CrossRef]
- Powles, S.B.; Matthews, J.M. Multiple herbicide resistance in annual ryegrass (Lolium rigidum): A driving force for the adoption of integrated weed management. In Resistance’91: Achievements and Developments in Combating Pesticide Resistance; Springer: Dordrecht, The Netherlands, 1992; pp. 75–87. [Google Scholar]
- Pratley, J.; Urwin, N.; Stanton, R.; Baines, P.; Broster, J.; Cullis, K.; Schafer, D.; Bohn, J.; Krueger, R. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 1999, 47, 405–411. [Google Scholar] [CrossRef]
- Degennaro, F.P.; Weller, S.C. Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci. 1984, 32, 472–476. [Google Scholar] [CrossRef]
- VanGessel, M.J. Glyphosate-resistant horseweed from Delaware. Weed Sci. 2001, 49, 703–705. [Google Scholar] [CrossRef]
- Barrantes-Santamaría, W.; Castillo-Matamoros, R.; Herrera-Murillo, F.; Brenes-Angulo, A.; Gómez-Alpízar, L. Detection of the Trp-2027-Cys Mutation in Fluazifop-P-Butyl–Resistant Itchgrass (Rottboellia cochinchinensis) Using High-Resolution Melting Analysis (HRMA). Weed Sci. 2018, 66, 286–292. [Google Scholar] [CrossRef]
- González-Torralva, F.; Norsworthy, J. Target-site mutations Ile1781Leu and Ile2041Asn in the ACCase2 gene confer resistance to fluazifop-p-butyl and pinoxaden herbicides in a johnsongrass accession from Arkansas, USA. Plant Direct 2024, 8, e576. [Google Scholar] [CrossRef]
- Hidayat, I.; Preston, C. Enhanced Metabolism of Fluazifop Acid in a Biotype of Digitaria sanguinalis Resistant to the Herbicide Fluazifop-P-Butyl. Pestic. Biochem. Physiol. 1997, 57, 137–146. [Google Scholar] [CrossRef]
- Du, L.; Liu, W.; Yuan, G.; Guo, W.; Li, Q.; Wang, J. Cross-resistance patterns to ACCase-inhibitors in American sloughgrass (Beckmannia syzigachne Steud.) homozygous for specific ACCase mutations. Pestic. Biochem. Physiol. 2016, 126, 42–48. [Google Scholar] [CrossRef]
- Lin, W.; Chiang, Y.; Wang, C.; Wang, C. Non-Target Site Mechanisms of Resistance to Fluazifop-butyl of Goosegrass (Eleusine indica (L.) Gaertn.) in Taiwan: Uptake, Translocation and Metabolism. Plant J. 2018, 65, 1–13. [Google Scholar] [CrossRef]
- Carvalho-Moore, P.; Norsworthy, J.; González-Torralva, F.; Hwang, J.; Patel, J.; Barber, L.; Butts, T.; McElroy, J. Unraveling the Mechanism of Resistance in a Glufosinate-Resistant Palmer Amaranth (Amaranthus palmeri) Accession. Weed Sci. 2022, 70, 370–379. [Google Scholar] [CrossRef]
- Lei, T.; Feng, T.; Wang, L.; Yuan, X.; Wu, L.; Wu, B.; Du, J.; Li, J.; Ma, H. Metabolic resistance mechanism to glufosinate in Eleusine indica. Pestic. Biochem. Physiol. 2024, 204, 106083. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shan, B.; Li, Z.; Chen, Q.; Yu, H.; Cui, H.; Li, X. Unraveling the mechanisms of multiple resistance across glyphosate and glufosinate in Eleusine indica. Pestic. Biochem. Physiol. 2024, 206, 106181. [Google Scholar] [CrossRef]
- Schulteis, B.; Moisinho, I.; Butler-Jones, A.; Besançon, T.; Brunharo, C.; Sosnoskie, L. Response of Horseweed (Erigeron canadensis) from New York Vineyards and Orchards to Paraquat and Diquat. HortScience 2025, 60, 554–562. [Google Scholar] [CrossRef]
- Leal, J.; Souza, A.; Borella, J.; Araujo, A.; Langaro, A.; Chapeta, A.; Amorim, E.; Silva, G.; Morran, S.; Zobiole, L.; et al. Sumatran Fleabane (Conyza sumatrensis) Resistant to Psi-Inhibiting Herbicides and Physiological Responses to Paraquat. Weed Sci. 2021, 70, 46–54. [Google Scholar] [CrossRef]
- Moretti, M.; Bobadilla, L.; Hanson, B. Cross-resistance to diquat in glyphosate/paraquat-resistant hairy fleabane (Conyza bonariensis) and horseweed (Conyza canadensis) and confirmation of 2,4-D resistance in Conyza bonariensis. Weed Technol. 2021, 35, 554–559. [Google Scholar] [CrossRef]
- Szigeti, Z.; Rácz, I.; Lásztity, D. Paraquat Resistance of Weeds—The Case of Conyza canadensis (L.) Cronq. Z. Naturforschung C 2001, 56, 319–328. [Google Scholar] [CrossRef]
- Weaver, S.; Downs, M.; Neufeld, B. Response of paraquat-resistant and -susceptible horseweed (Conyza canadensis) to diquat, linuron, and oxyfluorfen. Weed Sci. 2004, 52, 549–553. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Koetz, E.; Wu, H.; Shephard, A. Paraquat resistance and hormetic response observed in Conyza sumatrensis (Retz.) E. Walker (tall fleabane) in Australian cotton cropping systems. Phytoparasitica 2021, 50, 269–279. [Google Scholar] [CrossRef]
- Brunharo, C.; Short, A.; Bobadilla, L.; Streisfeld, M. The Genome of Lolium multiflorum Reveals the Genetic Architecture of Paraquat Resistance. Mol. Ecol. 2025, 34, e17775. [Google Scholar] [CrossRef] [PubMed]
- Ndou, V.; Kotze, D.; Marjanovic-Painter, B.; Phiri, E.; Pieterse, P.; Sonopo, M. Reduced Translocation Confers Paraquat Resistance in Plantago lanceolata. Agronomy 2024, 14, 977. [Google Scholar] [CrossRef]
- Powles, S. Appearance of a biotype of the weed, Hordeum glaucum Steud., resistant to the herbicide paraquat. Weed Res. 1986, 26, 167–172. [Google Scholar] [CrossRef]
- Symington, H.; Soltani, N.; Kaastra, A.; Hooker, D.; Robinson, D.; Sikkema, P. Control of multiple-herbicide-resistant waterhemp with acetochlor-based herbicide mixtures in soybean. Weed Technol. 2024, 38, 1–7. [Google Scholar] [CrossRef]
- Soltani, N.; Brown, L.; Sikkema, P. Multiple-resistant waterhemp control in herbicide-resistant 3 (HT3) soybean. Can. J. Plant Sci. 2020, 100, 692–696. [Google Scholar] [CrossRef]
- Chhokar, R. Flumioxazin and Flufenacet as possible options for the control of multiple herbicide-resistant littleseed canarygrass (Phalaris minor Retz.) in wheat. Weeds-J. Asian-Pac. Weed Sci. Soc. 2019, 1, 45–60. [Google Scholar]
- Ferrier, J.; Soltani, N.; Hooker, D.; Robinson, D.; Sikkema, P. Biologically Effective Dose of Flumioxazin and Pyroxasulfone for Control of Multiple Herbicide–Resistant Waterhemp (Amaranthus tuberculatus) in Soybean. Weed Sci. 2022, 70, 243–248. [Google Scholar] [CrossRef]
- Kumar, S.; Dadarwal, R.S.; Mal, T.; Akshit; Devi, P.; Kumari, A.; Chahal, G. Efficacy of sequential application of herbicide mixture for management of multiple herbicide resistant in Phalaris minor in wheat (Triticum aestivum). Indian J. Agric. Sci. 2024, 94, 495–500. [Google Scholar] [CrossRef]
- Miranda, J.; Jhala, A.; Bradshaw, J.; Lawrence, N. Crop safety and control of acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) with very long-chain fatty acid-inhibiting herbicides in dry edible bean. Front. Agron. 2024, 6, 1401865. [Google Scholar] [CrossRef]
- Miranda, J.; Jhala, A.; Bradshaw, J.; Lawrence, N. Control of acetolactate synthase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) with sequential applications of dimethenamid-P in dry edible bean. Weed Technol. 2022, 36, 325–333. [Google Scholar] [CrossRef]
- Schryver, M.; Soltani, N.; Hooker, D.; Robinson, D.; Tranel, P.; Sikkema, P. Control of glyphosate-resistant waterhemp (Amaranthus tuberculatus var rudis) with dicamba and dimethenamid-P in Ontario. Can. J. Plant Sci. 2017, 98, 362–369. [Google Scholar] [CrossRef]
- Schneegurt, M.; Heim, D.; Larrinua, I. Investigation into the Mechanism of Isoxaben Tolerance in Dicot Weeds. Weed Sci. 1994, 42, 163–167. [Google Scholar] [CrossRef]
- Brabham, C.; Stork, J.; Barrett, M.; Debolt, S. Grass cell walls have a role in the inherent tolerance of grasses to the cellulose biosynthesis inhibitor isoxaben. Pest Manag. Sci. 2018, 74 4, 878–884. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Q.; Patterson, E.; Sayer, C.; Powles, S. Dinitroaniline Herbicide Resistance and Mechanisms in Weeds. Front. Plant Sci. 2021, 12, 634018. [Google Scholar] [CrossRef]
- Russell, E.; Peppers, J.; Rutland, C.; Patel, J.; Hall, N.; Gamble, A.; McElroy, J. Mitotic-Inhibiting Herbicide Response Variation in Goosegrass (Eleusine indica) with a Leu-136-Phe Substitution in α-Tubulin. Weed Sci. 2021, 70, 20–25. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, J.; Nyporko, A.; Han, H.; Yu, Q.; Powles, S. Novel α-Tubulin Mutations Conferring Resistance to Dinitroaniline Herbicides in Lolium rigidum. Front. Plant Sci. 2018, 9, 97. [Google Scholar] [CrossRef]
- Jasieniuk, M.; Brûlé-Babel, A.; Morrison, I. Inheritance of Trifluralin Resistance in Green Foxtail (Setaria viridis). Weed Sci. 1994, 42, 123–127. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Q.; Owen, M.; Han, H.; Patterson, E.; Sayer, C.; Powles, S. Target-site resistance to trifluralin is more prevalent in annual ryegrass populations from Western Australia. Pest Manag. Sci. 2021, 78, 1206–1212. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Q.; Cui, D.; Zha, H.; Ren, X.; Xie, L.; Wang, J.; Tayier, T. Metabolism of Resistant and Non-Resistant Solanum nigrum L. in Response to Pendimethalin in Cotton Fields. Gesunde Pflanz. 2022, 75, 775–783. [Google Scholar] [CrossRef]
- Chaudhary, A.; Chhokar, R.; Dhanda, S.; Kaushik, P.; Kaur, S.; Poonia, T.; Khedwal, R.; Kumar, S.; Punia, S. Herbicide Resistance to Metsulfuron-Methyl in Rumex dentatus L. in North-West India and Its Management Perspectives for Sustainable Wheat Production. Sustainability 2021, 13, 6947. [Google Scholar] [CrossRef]
- Garg, R.; Singh, S.; Loura, D. Efficacy of isoproturon and pendimethalin against resistant biotypes of Rumex spp. in wheat (Triticum aestivum L.). Indian J. Ecol. 2022, 49, 716–720. [Google Scholar]
- Osburn, A.; Bowling, R.; Unruh, J.; McKeithen, C.; Hathcoat, D.; Bagavathiannan, M. Annual bluegrass cross resistance to prodiamine and pronamide in the southern United States. Weed Technol. 2024, 38, e76. [Google Scholar] [CrossRef]
- Brosnan, J.; Vargas, J.; Breeden, G.; Zobel, J. Herbicide resistance in annual bluegrass on Tennessee golf courses. Crop Forage Turfgrass Manag. 2020, 6, e20050. [Google Scholar] [CrossRef]
- Brosnan, J.; Vargas, J.; Spesard, B.; Netzband, D.; Zobel, J.; Chen, J.; Patterson, E. Annual Bluegrass (Poa annua) Resistance to Indazilam Applied Early-Postemergence. Pest Manag. Sci. 2020, 76, 2049–2057. [Google Scholar] [CrossRef]
- Jha, P.; Kumar, V.; Garcia, J.; Reichard, N. Tank Mixing Pendimethalin with Pyroxasulfone and Chloroacetamide Herbicides Enhances In-Season Residual Weed Control in Corn. Weed Technol. 2015, 29, 198–206. [Google Scholar] [CrossRef]
- Aulakh, J. Weed Control Efficacy and Ornamental Plant Tolerance to Dimethenamid–p + Pendimethalin Granular Herbicide. J. Environ. Hortic. 2023, 41, 74–79. [Google Scholar] [CrossRef]
- Becker, J.; Dzikowski, M.; Wittrock, A.; Tiede, A. Control of ALS resistant volunteer oil seed rape and other dicotyledonous weeds with GF-145, a new cereal herbicide product containing isoxaben and florasulam. Julius-Kühn-Archive 2014, 552–556. [Google Scholar] [CrossRef]
- Wells, G. Florasulam+isoxaben for management of herbicide resistant wild radish in Western Australia. In Proceedings of the 16th Australian Weeds Conference. 2008; pp. 336–338.
- Busi, R.; Powles, S.; Beckie, H.; Renton, M. Rotations and mixtures of soil-applied herbicides delay resistance. Pest Manag. Sci. 2020, 76, 487–496. [Google Scholar] [CrossRef]
- Comont, D.; Lowe, C.; Hull, R.; Crook, L.; Hicks, H.; Onkokesung, N.; Beffa, R.; Childs, D.; Edwards, R.; Freckleton, R.; et al. Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.; Reasor, E.; Vargas, J.; Breeden, G.; Kopsell, D.; Cutulle, M.; Mueller, T. A Putative Prodiamine-Resistant Annual Bluegrass (Poa annua) Population is Controlled by Indaziflam. Weed Sci. 2014, 62, 138–144. [Google Scholar] [CrossRef]
- Breeden, S.; Brosnan, J.; Mueller, T.; Breeden, G.; Horvath, B.; Senseman, S. Confirmation and Control of Annual Bluegrass (Poa annua) with Resistance to Prodiamine and Glyphosate. Weed Technol. 2017, 31, 111–119. [Google Scholar] [CrossRef]
- McCullough, P.; Yu, J.; De Barreda, D. Efficacy of Preemergence Herbicides for Controlling a Dinitroaniline-Resistant Goosegrass (Eleusine indica) in Georgia. Weed Technol. 2013, 27, 639–644. [Google Scholar] [CrossRef]
- Miller, L.R.; Landau, C.A.; Williams, M.M., II; Hager, A.G. Early-planted soybean weed management as affected by herbicide application rate and timing. Weed Technol. 2025, 39, e16. [Google Scholar] [CrossRef]
- Alptekin, H.; Ozkan, A.; Gurbuz, R.; Kulak, M. Management of Weeds in Maize by Sequential or Individual Applications of Pre- and Post-Emergence Herbicides. Agriculture 2023, 13, 421. [Google Scholar] [CrossRef]
- Dai, S.; Wang, Y.; Yook, M.; Wu, H.; Chen, M.; Zhang, C. Screening of Pre- and Post-Emergence Herbicides for Weed Control in Camelina sativa (L.) Crantz. Agronomy 2025, 15, 640. [Google Scholar] [CrossRef]
- Kousta, A.; Katsis, C.; Tsekoura, A.; Chachalis, D. Effectiveness and Selectivity of Pre- and Post-Emergence Herbicides for Weed Control in Grain Legumes. Plants 2024, 13, 211. [Google Scholar] [CrossRef]
- Fanish, S.; Ragavan, T. Study the combined effect of brown manuring with post emergence herbicide on weed management in planted sugarcane. J. Crop Weed 2020, 16, 211–216. [Google Scholar] [CrossRef]
- Rabari, P.; Hatti, V.; Jat, J.; Kumar, V. Weed Management through Pre and Post-emergence Herbicides in Groundnut. Int. J. Bio-Res. Stress Manag. 2024, 15, 1–9. [Google Scholar] [CrossRef]
- Prachand, S.; Kalhapure, A.; Kubde, K. Weed management in soybean with pre- and post-emergence herbicides. Indian J. Weed Sci. 2015, 47, 163–165. [Google Scholar]
- Yogananda, S.; Thimmegowda, P.; Shruthi, G. Performance of sequential application of pre and post-emergence herbicides for management of weeds in aerobic rice (Oryza sativa). Indian J. Agron. 2022, 67, 12–19. [Google Scholar] [CrossRef]
- Martinelli, R.; Rufino, L., Jr.; Desiderio, D.; La Cruz, R.; Monquero, P.; Azevedo, F. The impacts of ecological mowing combined with conventional mechanical or herbicide management on weeds in orange orchards. Weed Res. 2022, 62, 431–445. [Google Scholar] [CrossRef]
- Saile, M.; Spaeth, M.; Gerhards, R. Evaluating Sensor-Based Mechanical Weeding Combined with Pre- and Post-Emergence Herbicides for Integrated Weed Management in Cereals. Agronomy 2022, 12, 1465. [Google Scholar] [CrossRef]
- Berg, J.; Ring, H.; Bernhardt, H. Combined Mechanical–Chemical Weed Control Methods in Post-Emergence Strategy Result in High Weed Control Efficacy in Sugar Beet. Agronomy 2025, 15, 879. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Pratley, J.; Luckett, D.; Lemerle, D.; Wu, H. Weed management in canola (Brassica napus L): A review of current constraints and future strategies for Australia. Arch. Agron. Soil Sci. 2020, 66, 427–444. [Google Scholar] [CrossRef]
- Amini, R.; Abbaszadeh, M.; Khoshmaram, L. Performance of integrating reduced trifluralin doses with nonchemical treatments on weed management and dill (Anethum graveolens L.) yield. Crop Prot. 2023, 168, 106233. [Google Scholar] [CrossRef]
- Owen, M. Diverse Approaches to Herbicide-Resistant Weed Management. Weed Sci. 2016, 64, 570–584. [Google Scholar] [CrossRef]
- Lewis, D.; Cutulle, M.; Schmidt-Jeffris, R.; Blubaugh, C. Better Together? Combining Cover Crop Mulches, Organic Herbicides, and Weed Seed Biological Control in Reduced-Tillage Systems. Environ. Entomol. 2020, 49, 1327–1334. [Google Scholar] [CrossRef]
- Sharawat, V.; Shilpa; Dinesh. Modern techniques, avenues for integrated weed management. Int. J. Res. Agron. 2024, 7, 114–122. [Google Scholar] [CrossRef]
- Pavlović, D.; Vrbničanin, S.; Anđelković, A.; Božić, D.; Rajkovic, M.; Malidža, G. Non-Chemical Weed Control for Plant Health and Environment: Ecological Integrated Weed Management (EIWM). Agronomy 2022, 12, 1091. [Google Scholar] [CrossRef]
- Samtani, J.; Kling, G.; Mathers, H.; Case, L. Rice Hulls, Leaf-waste Pellets, and Pine Bark as Herbicide Carriers for Container-grown Woody Ornamentals. HortTechnology 2007, 17, 289–295. [Google Scholar] [CrossRef]
- deNux, C.; Hou, A.; Fultz, L. Evaluation of Organic and Synthetic Herbicide Applications on Weed Suppression in a Conventional Cropping System in Louisiana. Sustainability 2024, 16, 3019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grewal, S.; Saha, D. Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States. Horticulturae 2025, 11, 926. https://doi.org/10.3390/horticulturae11080926
Grewal S, Saha D. Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States. Horticulturae. 2025; 11(8):926. https://doi.org/10.3390/horticulturae11080926
Chicago/Turabian StyleGrewal, Sushil, and Debalina Saha. 2025. "Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States" Horticulturae 11, no. 8: 926. https://doi.org/10.3390/horticulturae11080926
APA StyleGrewal, S., & Saha, D. (2025). Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States. Horticulturae, 11(8), 926. https://doi.org/10.3390/horticulturae11080926