Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Phenotypic Traits Determination
2.3. Statistical Analyses
3. Results
3.1. Colorimetric Parameters of Poinsettia Plants
3.2. Plant and Canopy Parameters of Poinsettia Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krug, B.A.; Burnett, S.E.; Dennis, J.H.; Lopez, R.G. Growers Look at Operating a Sustainable Greenhouse. GMPro 2008, 28, 43–45. [Google Scholar]
- Miceli, A.; Moncada, A.; Vetrano, F.; Esposito, A. Response of Tagetes patula L. and Ageratum houstonianum Mill. to Microbial Biostimulant Inoculation and Organic Fertilization. Agronomy 2023, 13, 2522. [Google Scholar] [CrossRef]
- Xia, L.; Hao, W.; Qin, J.; Ji, F.; Yue, X. Carbon Emission Reduction and Promotion Policies Considering Social Preferences and Consumers’ Low-Carbon Awareness in the Cap-and-Trade System. J. Clean. Prod. 2018, 195, 1105–1124. [Google Scholar] [CrossRef]
- Choi, S.; Feinberg, R.A. The LOHAS (Lifestyle of Health and Sustainability) Scale Development and Validation. Sustainability 2021, 13, 1598. [Google Scholar] [CrossRef]
- Wani, M.A.; Nazki, I.T.; Din, A.; Iqbal, S.; Wani, S.A.; Khan, F.U. Neelofar Floriculture Sustainability Initiative: The Dawn of New Era. Sustain. Agric. Rev. 2018, 27, 91–127. [Google Scholar]
- Lopez, R.G.; Burnett, S.E.; Dennis, J.H.; Krug, B.A. 8 Steps to Take to Become Sustainable. GMPro 2008, 28, 50. [Google Scholar]
- Barreiro-Hurlé, J.; Espinosa-Goded, M.; Dupraz, P. Does Intensity of Change Matter? Factors Affecting Adoption of Agri-Environmental Schemes in Spain. J. Environ. Plan. Manag. 2010, 53, 891–905. [Google Scholar] [CrossRef]
- Martin, S.W.; Roberts, R.K.; Larkin, S.L.; Larson, J.A.; Paxton, K.W.; English, B.C.; Marra, M.C.; Reeves, J.M. A Binary Logit Estimation of Factors Affecting Adoption of GPS Guidance Systems by Cotton Producers. J. Agric. Appl. Econ. 2008, 40, 345–355. [Google Scholar]
- Gillespie, J.; Lewis, D. Processor Willingness to Adopt a Crawfish Peeling Machine: An Application of Technology Adoption under Uncertainty. J. Agric. Appl. Econ. 2008, 40, 369–383. [Google Scholar] [CrossRef]
- Paudel, K.P.; Gauthier, W.M.; Westra, J.V.; Hall, L.M. Factors Influencing and Steps Leading to the Adoption of Best Management Practices by Louisiana Dairy Farmers. J. Agric. Appl. Econ. 2008, 40, 203–222. [Google Scholar] [CrossRef]
- D’souza, G.; Cyphers, D.; Phipps, T. Factors Affecting the Adoption of Sustainable Agricultural Practices. Agric. Resour. Econ. Rev. 1993, 22, 159–165. [Google Scholar] [CrossRef]
- Kumar, M. Plant Growth Regulators and Their Implication in Ornamental Horticulture: An Overview. Int. J. Agric. Environ. Biotechnol. 2021, 14, 417–445. [Google Scholar] [CrossRef]
- Mejri, S.; Ghinet, A.; Magnin-Robert, M.; Randoux, B.; Abuhaie, C.-M.; Tisserant, B.; Gautret, P.; Rigo, B.; Halama, P.; Reignault, P. New Plant Immunity Elicitors from a Sugar Beet Byproduct Protect Wheat against Zymoseptoria Tritici. Sci. Rep. 2023, 13, 90. [Google Scholar] [CrossRef]
- Imandi, S.; Reddy, G.V.S. Studies on the Effect of Plant Growth Regulators on Vegetative Growth, Flowering, Yield and Shelf Life of the Marigold Cv. Siracole. Int. J. Agric. Sci. Res. (IJASR) 2017, 7, 65–70. [Google Scholar]
- Islam, M.K.; Khorsheduzzaman, A.K.M.; Rahman, M.L.; Moniruzzanan, M.; Talukder, M.B.; Rahim, M.A. Effect of Growth Regulators on Plant Emergence, Growth and Flower Production of Gladiolus. Bangladesh J. Agric. Sci. 2012, 37, 17–21. [Google Scholar]
- Jadhav, P.B.; Mangave, B.D.; Singh, A.; Dekhane, S.S.; Patel, D.J. Effect of Plant Growth Regulators and Natural Growth Substances on Growth and Flowering of Gladiolus Cv. Am. Beauty. Int. J. Curr. Res. 2015, 7, 17674–17676. [Google Scholar]
- Kaushik, H.; Kumar, J.; Singh, J.P.; Singh, R.K.; Rajbeer, R.; Kumar, S. Effect of GA3 and Biofertilizers on Growth and Flowering in Gladiolus (Gladiolus floribundus L.) Cv. American Beauty. Adv. Res. J. Crop Improv. 2016, 7, 52–55. [Google Scholar] [CrossRef]
- Abdolmaleki, M.; Khosh-khui, M.; Eshghi, S.; Ramezanian, A. Improvement in Vase Life of Cut Rose Cv “Dolce Vita” by Preharvest Foliar Application of Calcium Chloride and Salicylic Acid. Int. J. Hortic. Sci. Technol. 2015, 2, 55–66. [Google Scholar]
- Chaudhary, A.; Mishra, A.; Bola, P.K.; Nagar, K.K.; Chaudhary, P. Effect of Foliar Application of Zinc and Salicylic Acid on Flowering and Yield of African Marigold Cv. Pusa Narangi Gainda. HortFlora Res. Spectr. 2015, 4, 351–355. [Google Scholar]
- Gerailoo, S.; Ghasemnezhad, M.; Shiri, M.A. Effect of Short Time Treatment of Salicylic Acid in Delaying Flowers Senescence in Cut Rose (Rosa hybrida) Cv. Yellow Island. J. Plant Res. (Iran. J. Biol.) 2014, 27, 299–309. [Google Scholar]
- Mansouri, H. Salicylic Acid and Sodium Nitroprusside Improve Postharvest Life of Chrysanthemums. Sci. Hortic. 2012, 145, 29–33. [Google Scholar] [CrossRef]
- Akram, A.; Asghar, M.A.; Younis, A.; Akbar, A.F.; Talha, M.; Farooq, A.; Akhtar, G.; Shafiqe, M.; Mushtaq, M.Z. Foliar Application of Salicylic Acid and Its Impact on Pre and Post-Harvest Attributes of Antirrhinum majus L. J. Pure Appl. Agric. 2022, 7, 1–11. [Google Scholar]
- Choudhary, A.; Mishra, A.; Bola, P.K.; Moond, S.K.; Dhayal, M. Effect of Foliar Application of Zinc and Salicylic Acid on Growth, Flowering and Chemical Constitute of African Marigold Cv. Pusa Narangi Gainda (Targets erecta L.). J. Appl. Nat. Sci. 2016, 8, 1467–1470. [Google Scholar] [CrossRef]
- Jahanbazi, T.; Mortezaienejad, F.; Jafararpoor, M. Impact of Salicylic Acid and Jasmonic Acid on Keeping Quality of Rose (Cv.‘Angelina’) Flower. J. Nov. Appl. Sci. 2014, 3, 1328–1335. [Google Scholar]
- Abdou, M.H.; El-Sayed, A.A.; Attia, F.A.; Khalil, A.R. Effect of Compost, Salicylic and Ascorbic Acids Treatments on Vegetative Growth and Flowering of Gladiolus grandiflorus Cv. White Prosperity. Sci. J. Flowers Ornam. Plants 2014, 1, 223–231. [Google Scholar] [CrossRef]
- Devarakonda, S.; Madhumathi, C.; Lakshmi, L.M.; Bhaskar, V.V.; Umamahesh, V.; Rajasekharam, T.; Reddy, M. Effect of Plant Elicitors on Growth, Yield and Quality of Papaya (Carica papaya). Curr. Hortic. 2020, 8, 23–28. [Google Scholar] [CrossRef]
- Kazemi, M. Foliar Application of Salicylic Acid and Methyl Jasmonate on Yield, Yield Components and Chemical Properties of Tomato. Jordan J. Agric. Sci. 2014, 10, 771–778. [Google Scholar] [CrossRef]
- Navarro, C. Poinsettia Growers in Mexico Expanding Domestic Sales, Still Not Allowed to Export to US Market. Lat. Am. Digit. Beat 2010, 078088. [Google Scholar]
- Taylor, J.M.; Lopez, R.G.; Currey, C.J.; Janick, J. The Poinsettia: History and Transformation. Chron. Hortic. 2011, 51, 23–28. [Google Scholar]
- Elwan, M.W.M.; El-Hamahmy, M.A.M. Improved Productivity and Quality Associated with Salicylic Acid Application in Greenhouse Pepper. Sci. Hortic. 2009, 122, 521–526. [Google Scholar] [CrossRef]
- Choudhary, A.; Mishra, A.; Nagar, K.K.; Meena, R.R. Foliar Application of Zinc and Salicylic Acid on African Marigold. J. Crop Weed 2016, 12, 107–111. [Google Scholar]
- Sonneveld, C.; Voogt, W.; Sonneveld, C.; Voogt, W. Nutrient Solutions for Soilless Cultures. In Plant Nutrition of Greenhouse Crops; Springer: Berlin/Heidelberg, Germany, 2009; pp. 257–275. [Google Scholar]
- Bakker, J.; Bridle, P.; Timberlake, C.F. Tristimulus Measurements (CIELAB 76) of Port Wine Colour. Vitis 1986, 25, 67–78. [Google Scholar]
- McLellan, M.R.; Lind, L.R.; Kime, R.W. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L, a, b Data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Shamey, R. CIE 1994 (ΔL* ΔC*ab ΔH*ab). In Encyclopedia of Color Science and Technology; Shamey, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; p. 174. ISBN 978-3-030-89862-5. [Google Scholar]
- Shamey, R. Hue Difference, Delta H. In Encyclopedia of Color Science and Technology; Shamey, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; p. 906. ISBN 978-3-030-89862-5. [Google Scholar]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef]
- Li, A.; Sun, X.; Liu, L. Action of Salicylic Acid on Plant Growth. Front. Plant Sci. 2022, 13, 878076. [Google Scholar] [CrossRef]
- Dat, J.F.; Lopez-Delgado, H.; Foyer, C.H.; Scott, I.M. Effects of Salicylic Acid on Oxidative Stress and Thermotolerance in Tobacco. J. Plant Physiol. 2000, 156, 659–665. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Role of Salicylic Acid in Induction of Plant Defense System in Chickpea (Cicer arietinum L.). Plant Signal Behav. 2011, 6, 1787–1792. [Google Scholar] [CrossRef]
- Rong, D.; Luo, N.; Mollet, J.C.; Liu, X.; Yang, Z. Salicylic Acid Regulates Pollen Tip Growth through an NPR3/NPR4-Independent Pathway. Mol. Plant 2016, 9, 1478–1491. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Abas, M.; Verstraeten, I.; Glanc, M.; Molnár, G.; Hajný, J.; Lasák, P.; Petřík, I.; Russinova, E.; Petrášek, J. Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants. Curr. Biol. 2020, 30, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Armengot, L.; Marquès-Bueno, M.M.; Soria-Garcia, A.; Müller, M.; Munné-Bosch, S.; Martínez, M.C. Functional Interplay between Protein Kinase CK 2 and Salicylic Acid Sustains PIN Transcriptional Expression and Root Development. Plant J. 2014, 78, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.; Groot, E.P.; Kazantsev, F.V.; Teale, W.; Omelyanchuk, N.; Kovrizhnykh, V.; Palme, K.; Mironova, V. V Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiol. 2019, 180, 1725–1739. [Google Scholar] [CrossRef]
- Traw, M.B.; Bergelson, J. Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis. Plant Physiol. 2003, 133, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Abdi, N.; Van Biljon, A.; Steyn, C.; Labuschagne, M.T. Salicylic Acid Improves Growth and Physiological Attributes and Salt Tolerance Differentially in Two Bread Wheat Cultivars. Plants 2022, 11, 1853. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae) by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System. Front. Plant Sci. 2017, 8, 600. [Google Scholar] [CrossRef]
- Owen, W.G.; Lopez, R.G. Geranium and Purple Fountain Grass Leaf Pigmentation Is Influenced by End-of-Production Supplemental Lighting with Red and Blue Light-Emitting Diodes. HortScience 2017, 52, 236–244. [Google Scholar] [CrossRef]
- Fairoj, S.A.; Islam, M.M.; Islam, M.A.; Zaman, E.; Momtaz, M.B.; Hossain, M.S.; Jahan, N.A.; Shams, S.-N.-U.; Urmi, T.A.; Rasel, M.A. Salicylic Acid Improves Agro-Morphology, Yield and Ion Accumulation of Two Wheat (Triticum aestivum L.) Genotypes by Ameliorating the Impact of Salt Stress. Agronomy 2022, 13, 25. [Google Scholar] [CrossRef]
- Mahajan, M.; Nazir, F.; Jahan, B.; Siddiqui, M.H.; Iqbal, N.; Khan, M.I.R. Salicylic Acid Mitigates Arsenic Stress in Rice (Oryza sativa) via Modulation of Nitrogen–Sulfur Assimilation, Ethylene Biosynthesis, and Defense Systems. Agriculture 2023, 13, 1293. [Google Scholar] [CrossRef]
- Zahra, S.; Amin, B.; Ali, V.S.M.; Ali, Y.; Mehdi, Y. The Salicylic Acid Effect on the Tomato (Lycopersicum esculentum Mill.) Sugar, Protein and Proline Contents under Salinity Stress (NaCl). J. Biophys. Struct. Biol. 2010, 2, 35–41. [Google Scholar]
- Çag, S.; Cevahir-Öz, G.; Sarsag, M.; Gören-Saglam, N. Effect of Salicylic Acid on Pigment, Protein Content and Peroxidase Activity in Excised Sunflower Cotyledons. Pak. J. Bot. 2009, 41, 2297–2303. [Google Scholar]
- Rastegar, S.; Shojaie, A.; Koy, R.A.M. Foliar Application of Salicylic Acid and Calcium Chloride Delays the Loss of Chlorophyll and Preserves the Quality of Broccoli during Storage. J. Food Biochem. 2022, 46, e14154. [Google Scholar] [CrossRef]
- Youssef, S.M.; López-Orenes, A.; Ferrer, M.A.; Calderón, A.A. Foliar Application of Salicylic Acid Enhances the Endogenous Antioxidant and Hormone Systems and Attenuates the Adverse Effects of Salt Stress on Growth and Yield of French Bean Plants. Horticulturae 2023, 9, 75. [Google Scholar] [CrossRef]
- Dobón-Suárez, A.; Giménez, M.J.; García-Pastor, M.E.; Zapata, P.J. Salicylic Acid Foliar Application Increases Crop Yield and Quality Parameters of Green Pepper Fruit during Postharvest Storage. Agronomy 2021, 11, 2263. [Google Scholar] [CrossRef]
- Li, S.; Nayar, S.; Jia, H.; Kapoor, S.; Wu, J.; Yukawa, Y. The Arabidopsis Hypoxia Inducible AtR8 Long Non-Coding RNA Also Contributes to Plant Defense and Root Elongation Coordinating with WRKY Genes under Low Levels of Salicylic Acid. Noncoding RNA 2020, 6, 8. [Google Scholar] [CrossRef]
- Souri, M.K.; Tohidloo, G. Effectiveness of Different Methods of Salicylic Acid Application on Growth Characteristics of Tomato Seedlings under Salinity. Chem. Biol. Technol. Agric. 2019, 6, 26. [Google Scholar] [CrossRef]
- Feild, T.S.; Lee, D.W.; Holbrook, N.M. Why Leaves Turn Red in Autumn. The Role of Anthocyanins in Senescing Leaves of Red-Osier Dogwood. Plant Physiol. 2001, 127, 566–574. [Google Scholar] [CrossRef]
- Moustaka, J.; Panteris, E.; Adamakis, I.-D.S.; Tanou, G.; Giannakoula, A.; Eleftheriou, E.P.; Moustakas, M. High Anthocyanin Accumulation in Poinsettia Leaves Is Accompanied by Thylakoid Membrane Unstacking, Acting as a Photoprotective Mechanism, to Prevent ROS Formation. Environ. Exp. Bot. 2018, 154, 44–55. [Google Scholar] [CrossRef]
- Carlson, J.E.; Holsinger, K.E. Natural Selection on Inflorescence Color Polymorphisms in Wild Protea Populations: The Role of Pollinators, Seed Predators, and Intertrait Correlations. Am. J. Bot. 2010, 97, 934–944. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Yu, X.; Xu, Y.; Yan, S. Salicylic Acid and Ethylene Coordinately Promote Leaf Senescence. J. Integr. Plant Biol. 2021, 63, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kohli, S.K.; Khanna, K.; Ramakrishnan, M.; Kumar, V.; Bhardwaj, R.; Brestic, M.; Skalicky, M.; Landi, M.; Zheng, B. Salicylic Acid: A Phenolic Molecule with Multiple Roles in Salt-Stressed Plants. J. Plant Growth Regul. 2023, 42, 4581–4605. [Google Scholar] [CrossRef]
- Barrett, J. Consumer Poinsettia Preference. L Gard. Retail. 2005, 4, 1–4. [Google Scholar]
- Posadas, B.C.; Coker, C.E.H.; Jackson, C.; Knight, P.R.; DelPrince, J.M.; Langlois, S.A.; Ryals, J.B. Online Survey of Consumer Preferences for Poinsettia Cultivars. Horticulturae 2023, 9, 449. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Marczak, L.D.F.; Tessaro, I.C. Tracking Bioactive Compounds with Colour Changes in Foods—A Review. Dye. Pigment. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, Y.; Peng, W.; Wang, Z.; Xie, D. Molecular Mechanism for Jasmonate-Induction of Anthocyanin Accumulation in Arabidopsis. J. Exp. Bot. 2009, 60, 3849–3860. [Google Scholar] [CrossRef] [PubMed]
- Caarls, L.; Pieterse, C.M.J.; Van Wees, S.C.M. How Salicylic Acid Takes Transcriptional Control over Jasmonic Acid Signaling. Front. Plant Sci. 2015, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.G.; Ellis, C.; Devoto, A. The Jasmonate Signal Pathway. Plant Cell 2002, 14, S153–S164. [Google Scholar] [CrossRef] [PubMed]
- Treutter, D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant Biol. 2005, 7, 581–591. [Google Scholar] [CrossRef]
- Darne, G. New Hypotheses on Anthocyanin Biosynthesis in Berries and Leaves of the Grapevine. Vitis 1993, 32, 77–85. [Google Scholar]
- Harborne, J.B.; Marby, H.; Marby, T.J. The Flavonoids; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 1489929096. [Google Scholar]
- Bouvier, F.; Backhaus, R.A.; Camara, B. Induction and Control of Chromoplast-Specific Carotenoid Genes by Oxidative Stress. J. Biol. Chem. 1998, 273, 30651–30659. [Google Scholar] [CrossRef]
- Zarinkamar, F.; Tajik, S.; Soleimanpour, S. Effects of Altitude on Anatomy and Concentration of Crocin, Picrocrocin and Safranal in ‘Crocus sativus’ L. Aust. J. Crop Sci. 2011, 5, 831–838. [Google Scholar]
- Ammanullah, M.M.; Sekar, S.; Vicent, S. Plant Growth Substances in Crop Production. Asian J. Plant Sci. 2010, 9, 215–222. [Google Scholar] [CrossRef]
- Li, Z.; Ma, N.; Sun, P.; Zhang, F.; Li, L.; Li, H.; Zhang, S.; Wang, X.; You, C.; Zhang, Z. Fungal Invasion-induced Accumulation of Salicylic Acid Promotes Anthocyanin Biosynthesis through MdNPR1-MdTGA2. 2 Module in Apple Fruits. Plant J. 2024, 119, 1859–1879. [Google Scholar] [CrossRef]
- García-Pastor, M.E.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M.; Guillén, F. Preharvest Salicylate Treatments Enhance Antioxidant Compounds, Color and Crop Yield in Low Pigmented-Table Grape Cultivars and Preserve Quality Traits during Storage. Antioxidants 2020, 9, 832. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Fu, Y.; Li, C. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 16415. [Google Scholar] [CrossRef]
- Xiang, S.; Qiu, X.; Yan, X.; Ruan, R.; Cheng, P. Salicylic Acid Improved the Growth of Dunaliella salina and Increased the Proportion of 9-Cis-β-Carotene Isomers. Mar. Drugs 2025, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Benitez-García, I.; Vanegas-Espinoza, P.; Paredes-Lopez, O.; Villar-Martínez, A. Salicilic Acid Effect on Carotenoid Production and Carotenogenic Gene Expression of in Vitro Culture of Marigold. J. Chem. Biol. Phys. Sci. 2014, 30, 74. [Google Scholar]
- Vithana, M.D.K.; Singh, Z.; Ul Hasan, M. Pre-and Post-Harvest Elicitation with Methyl Jasmonate and Salicylic Acid Followed by Cold Storage Synergistically Improves Red Colour Development and Health-Promoting Compounds in Blood Oranges. J. Plant Growth Regul. 2024, 43, 1657–1671. [Google Scholar] [CrossRef]
- Ismail, A.; Shahidan, N.; Mat, N.; Othman, R. Effect of Salicylic Acid on Carotenoids and Chlorophyll Content in Mas Cotek (Ficus deltoidea Jack Var. Trengganuensis) Leaves and Its Retinol Activity Equivalents (RAE). J. Pharm. Nutr. Sci. 2020, 10, 25–33. [Google Scholar] [CrossRef]
- Ramzan, M.; Javed, T.; Hassan, A.; Ahmed, M.Z.; Ashraf, H.; Shah, A.A.; Iftikhar, M.; El-Sheikh, M.A.; Raja, V. Protective Effects of the Exogenous Application of Salicylic Acid and Chitosan on Chromium-Induced Photosynthetic Capacity and Osmotic Adjustment in Aconitum Napellus. BMC Plant Biol. 2024, 24, 933. [Google Scholar] [CrossRef]
- Ortega, M.A.; Celoy, R.M.; Chacon, F.; Yuan, Y.; Xue, L.-J.; Pandey, S.P.; Drowns, M.R.; Kvitko, B.H.; Tsai, C.-J. Altering Cold-Regulated Gene Expression Decouples the Salicylic Acid–Growth Trade-off in Arabidopsis. Plant Cell 2024, 36, 4293–4308. [Google Scholar] [CrossRef] [PubMed]
- Sardoei, A.S.; Fahraji, S.S.; Ghasemi, H. Effect of Salicylic Acid on Rooting of Poinsettia (Euphorbia pulcherrima). Int. J. Adv. Biol. Biomed. Res. 2014, 2, 1883–1886. [Google Scholar]
- Horváth, E.; Pál, M.; Szalai, G.; Páldi, E.; Janda, T. Exogenous 4-Hydroxybenzoic Acid and Salicylic Acid Modulate the Effect of Short-Term Drought and Freezing Stress on Wheat Plants. Biol. Plant 2007, 51, 480–487. [Google Scholar] [CrossRef]
- Hayat, S.; Fariduddin, Q.; Ali, B.; Ahmad, A. Effect of Salicylic Acid on Growth and Enzyme Activities of Wheat Seedlings. Acta Agron. Hung. 2005, 53, 433–437. [Google Scholar] [CrossRef]
- Rivas-San Vicente, M.; Plasencia, J. Salicylic Acid beyond Defence: Its Role in Plant Growth and Development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef]
- Phong Lam, V.; Loi, D.N.; Shin, J.; Mi, L.K.; Park, J. Optimization of Salicylic Acid Concentrations for Increasing Antioxidant Enzymes and Bioactive Compounds of Agastache Rugosa in a Plant Factory. PLoS ONE 2024, 19, e0306340. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.; Senaratna, T.; Sivasithamparam, K. Salicylic Acid Induces Salinity Tolerance in Tomato (Lycopersicon esculentum Cv. Roma): Associated Changes in Gas Exchange, Water Relations and Membrane Stabilisation. Plant Growth Regul. 2006, 49, 77–83. [Google Scholar]
- Tang, W.; Liang, L.; Xie, Y.; Li, X.; Lin, L.; Huang, Z.; Sun, B.; Sun, G.; Tu, L.; Li, H. Foliar Application of Salicylic Acid Inhibits the Cadmium Uptake and Accumulation in Lettuce (Lactuca sativa L.). Front. Plant Sci. 2023, 14, 1200106. [Google Scholar] [CrossRef] [PubMed]
Salicylic Acid (SA) | Application Method (AM) | Significance | |||||||
---|---|---|---|---|---|---|---|---|---|
10−3 M | 10−4 M | 10−5 M | Control | Roots | Foliar | SA | AM | SA x AM | |
Before the 1st treatment (8 October) | |||||||||
L* | 28.2 ± 0.7 | 29.5 ± 0.4 | 28.8 ± 1.2 | 28.4 ± 1.0 | 28.8 ± 0.7 | 28.6 ± 0.5 | ns | ns | ns |
a* | −12.2 ± 0.8 | −12.6 ± 0.6 | −12.7 ± 1.0 | −11.9 ± 0.4 | −12.5 ± 0.6 | −12.2 ± 0.4 | ns | ns | ns |
b* | 15.5 ± 1.0 | 16.2 ± 1.0 | 16.2 ± 1.6 | 14.8 ± 0.7 | 15.8 ± 0.9 | 15.6 ± 0.7 | ns | ns | ns |
Chroma | 19.8 ± 1.3 | 20.5 ± 1.2 | 20.6 ± 1.8 | 19.1 ± 0.8 | 20.1 ± 1.0 | 19.8 ± 0.8 | ns | ns | ns |
Hue° | 128.3 ± 0.8 | 127.9 ± 0.4 | 128.2 ± 1.4 | 128.7 ± 0.9 | 128.4 ± 0.7 | 128.1 ± 0.6 | ns | ns | ns |
10 days after the 1st treatment (18 October) | |||||||||
L* | 28.0 ± 0.6 | 28.4 ± 0.9 | 28.8 ± 0.6 | 28.2 ± 0.6 | 28.1 ± 0.5 | 28.7 ± 0.4 | ns | ns | ns |
a* | −11.1 ± 0.6 | −11.7 ± 1.4 | −11.3 ± 0.6 | −12.3 ± 0.6 | −11.2 ± 0.7 | −11.9 ± 0.5 | ns | ns | ns |
b* | 15.1 ± 1.0 | 15.7 ± 1.9 | 15.6 ± 0.9 | 15.8 ± 0.7 | 16.1 ± 1.0 | 15.1 ± 0.6 | ns | ns | ns |
Chroma | 18.7 ± 1.1 | 19.6 ± 2.3 | 19.3 ± 1.1 | 20.0 ± 0.9 | 18.8 ± 1.2 | 20.0 ± 0.7 | ns | ns | ns |
Hue° | 126.3 ± 0.6 | 126.6 ± 0.9 | 125.8 ± 0.6 | 127.7 ± 0.6 | 126.6 ± 0.6 | 126.6 ± 0.4 | ns | ns | ns |
10 days after the 2nd treatment (28 October) | |||||||||
L* | 26.7 ± 0.6 | 27.0 ± 0.6 | 26.1 ± 0.3 | 26.3 ± 0.6 | 25.9 ± 0.3 b | 27.2 ± 0.4 a | ns | * | * |
a* | −8.2 ± 0.3 | −9.2 ± 0.8 | −8.8 ± 0.8 | −8.1 ± 0.5 | −8.2 ± 0.4 | −8.9 ± 0.5 | ns | ns | ns |
b* | 11.5 ± 0.4 | 12.3 ± 1.0 | 12.1 ± 0.9 | 11.4 ± 0.6 | 11.2 ± 0.4 b | 12.5 ± 0.5 a | ns | * | ns |
Chroma | 14.2 ± 0.4 | 15.4 ± 1.2 | 14.9 ± 1.2 | 14.0 ± 0.7 | 15.9 ± 0.6 | 13.1 ± 0.7 | ns | ns | ns |
Hue° | 125.3 ± 0.9 | 126.8 ± 0.4 | 125.8 ± 0.8 | 125.3 ± 1.1 | 126.2 ± 0.6 | 125.4 ± 0.5 | ns | ns | ns |
Salicylic Acid (SA) | Application Method (AM) | Significance | ||||||
---|---|---|---|---|---|---|---|---|
10−3 M | 10−4 M | 10−5 M | Roots | Foliar | SA | AM | SA x AM | |
Oldest leaf | ||||||||
ΔL* | 0.3 ± 1.2 | 0.9 ± 0.9 | −0.4 ± 0.9 | 2.5 ± 0.6 | −2.0 ± 1.3 | ns | * | * |
Δa* | −0.7 ± 0.7 ab | −2.5 ± 1.5 b | 0.7 ± 1.5 a | −0.8 ± 0.7 | −0.8 ± 0.6 | ** | ns | ns |
Δb* | 0.8 ± 0.8 ab | 2.6 ± 0.7 a | −0.4 ± 0.6 b | 1.0 ± 0.4 | 1.0 ± 0.9 | ** | ns | ns |
ΔChroma | 1.0 ± 0.9 ab | 3.6 ± 0.7 a | −0.7 ± 0.6 b | 1.3 ± 0.5 | 1.3 ± 0.9 | ** | ns | ns |
ΔHue° | 0.2 ± 0.6 | 0.3 ± 1.0 | 0.3 ± 0.7 | 0.2 ± 0.7 | 0.3 ± 0.7 | ns | ns | ns |
ΔE | 2.9 ± 0.1 | 5.0 ± 0.1 | 3.9 ± 0.1 | 3.6 ± 0.1 | 4.3 ± 0.1 | ns | ns | ns |
Youngest leaf | ||||||||
ΔL* | −0.6 ± 0.8 | −0.1 ± 0.5 | −0.9 ± 1.2 | 0.6 ± 0.6 a | −1.7 ± 0.7 b | ns | * | ns |
Δa* | 0.8 ± 0.6 | 1.7 ± 0.8 | 3.1 ± 1.0 | 0.6 ± 0.6 | 0.6 ± 0.5 | ns | ns | ns |
Δb* | −1.4 ± 0.3 | −2.4 ± 0.5 | −3.0 ± 1.1 | −0.9 ± 0.5 | −3.6 ± 0.8 | ns | ns | ns |
ΔChroma | −1.6 ± 0.8 a | −2.9 ± 0.5 ab | −4.0 ± 1 b | −1.7 ± 0.4 a | −4.0 ± 0.5 b | * | ** | ns |
ΔHue° | 0.6 ± 0.5 | 1.1 ± 0.4 | 1.7 ± 1.4 | 0.5 ± 0.5 | 0.5 ± 0.9 | ns | ns | ns |
ΔE | 2.5 ± 0.2 b | 3.7 ± 0.3 ab | 5.2 ± 0.9 a | 2.9 ± 0.2 b | 4.8 ± 0.6 a | ** | ** | ns |
Salicylic Acid (SA) | Application Method (AM) | Significance | ||||||
---|---|---|---|---|---|---|---|---|
10−3 M | 10−4 M | 10−5 M | Roots | Foliar | SA | AM | SA x AM | |
Oldest leaf | ||||||||
ΔL* | 1.6 ± 1.9 | 0.8 ± 1.8 | −0.2 ± 1.4 | 0.9 ± 1.0 | 0.6 ± 1.2 | ns | ns | ** |
Δa* | −1.9 ± 0.6 | −0.9 ± 1.0 | −2.3 ± 1.3 | −4.1 ± 0.7 b | 0.8 ± 1.0 a | ns | * | ns |
Δb* | −2.0 ± 1.6 | −0.6 ± 1.9 | −1.4 ± 1.0 | −2.2 ± 0.8 | −0.5 ± 1.0 | ns | ns | ns |
ΔChroma | −2.7 ± 1.2 | −1.0 ± 0.8 | −2.7 ± 1.1 | −4.6 ± 0.8 b | −0.3 ± 0.8 a | ns | ** | ns |
ΔHue° | 1.0 ± 1.1 | 1.8 ± 0.7 | 1.0 ± 0.8 | 1.2 ± 0.8 | 1.3 ± 0.6 | ns | ns | ns |
ΔE | 5.1 ± 0.3 | 4.9 ± 0.3 | 4.9 ± 0.4 | 5.7 ± 0.2 | 4.2 ± 0.3 | ns | ns | ns |
Youngest leaf | ||||||||
ΔL* | −1.2 ± 1.3 | 0.1 ± 3.3 | −4.8 ± 3.7 | 1.7 ± 1.9 a | −5.7 ± 2.5 b | ns | ** | ns |
Δa* | −3.7 ± 0.8 | −1.6 ± 3.1 | −6.4 ± 3 | −1.8 ± 1.5 | −6.0 ± 1.8 | ns | ns | * |
Δb* | −0.9 ± 1.1 | −1.0 ± 2.3 | −4.7 ± 2.6 | 0.5 ± 1.5 | −4.9 ± 1.8 | ns | ns | * |
ΔChroma | −3.6 ± 0.9 | −1.9 ± 2.5 | −8.0 ± 2.8 | −1.2 ± 1.4 | −7.7 ± 1.8 | ns | ns | * |
ΔHue° | 1.3 ± 1.1 | 1.8 ± 2.6 | 1.9 ± 3.1 | 1.6 ± 1.1 | 1.7 ± 2.8 | ns | ns | ns |
ΔE | 4.7 ± 0.6 | 8.6 ± 0.6 | 12.5 ± 0.5 | 6.8 ± 0.5 | 10.3 ± 0.4 | ** | ns | * |
Treatments | Plant Height (cm) | Stem Diameter (mm) | Branch Number | Leaf Number | |||||
---|---|---|---|---|---|---|---|---|---|
8 Oct | 18 Oct | 28 Oct | 5 Dec | Total | Green Leaves | Red Bracts | |||
Salicylic acid (SA) | |||||||||
10−3 M | 10.7 ± 0.2 | 12.7 ± 0.5 | 15.3 ± 0.5 | 30.8 ± 0.4 | 8.1 ± 0.2 | 6.3 ± 0.2 | 109.3 ± 2.5 | 48.3 ± 0.8 | 61.0 ± 2.7 |
10−4 M | 10.6 ± 0.3 | 12.5 ± 0.8 | 16.3 ± 0.6 | 33.3 ± 1.6 | 8.6 ± 0.2 | 6.2 ± 0.3 | 117.0 ± 7.9 | 51.2 ± 3 | 65.8 ± 5 |
10−5 M | 10.2 ± 0.7 | 13.6 ± 0.4 | 15.2 ± 0.7 | 33.0 ± 0.9 | 8.9 ± 0.6 | 5.7 ± 0.2 | 106.5 ± 3.3 | 48.0 ± 1.1 | 58.5 ± 2.5 |
Control | 10.8 ± 0.3 | 12.5 ± 0.4 | 16.6 ± 0.6 | 31.0 ± 1.7 | 8.2 ± 0.2 | 6.0 ± 0.3 | 113.5 ± 4 | 48.0 ± 2.3 | 65.5 ± 3.5 |
Application method (AM) | |||||||||
Roots | 10.6 ± 0.4 | 12.7 ± 0.2 | 15.5 ± 0.5 | 31.2 ± 1.0 | 8.7 ± 0.3 | 6.2 ± 0.2 | 114.7 ± 3.5 | 49.7 ± 1.5 | 64.9 ± 2.6 |
Foliar | 10.6 ± 0.2 | 13.0 ± 0.5 | 16.1 ± 0.4 | 31.9 ± 0.7 | 8.3 ± 0.2 | 5.9 ± 0.2 | 108.5 ± 3.2 | 48.0 ± 1.2 | 60.5 ± 2.4 |
Significance | |||||||||
SA | ns | ns | ns | ns | ns | ns | ns | ns | ns |
AM | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SA x AM | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Canopy Width | Canopy Area | Green Leaves | Red Bracts | ||
---|---|---|---|---|---|---|
(cm) | (cm2 plant−1) | Area (cm2 plant−1) | SLA (cm2 g DW−1) | Area (cm2 plant−1) | SLA (cm2 g DW−1) | |
Salicylic acid (SA) | ||||||
10−3 M | 35.9 ± 0.4 | 427.7 ± 15.1 | 981.8 ± 39.7 | 200.1 ± 3.8 | 1421.7 ± 94.9 c | 303.8 ± 13.1 |
10−4 M | 34.3 ± 1.0 | 426.2 ± 10.2 | 1117.7 ± 57.9 | 199.9 ± 4.2 | 1808.0 ± 76.1 a | 317.3 ± 18.7 |
10−5 M | 35.3 ± 1.5 | 494.9 ± 10.4 | 1128.3 ± 64.0 | 190.3 ± 3.2 | 1574.2 ± 53.0 b | 312.5 ± 10.5 |
Control | 37.6 ± 1.5 | 438.0 ± 14.2 | 1072.8 ± 76.2 | 191.1 ± 6.6 | 1665.2 ± 56.5 b | 316.2 ± 11.3 |
Application method (AM) | ||||||
Roots | 35.9 ± 0.9 | 456.0 ± 9.6 | 1101.3 ± 62.7 | 194.5 ± 3.5 | 1719.4 ± 89.1 a | 335.5 ± 9.6 |
Foliar | 36.7 ± 0.8 | 444.6 ± 13.0 | 1049.0 ± 47.0 | 196.2 ± 3.4 | 1542.6 ± 82.8 b | 334.6 ± 9.3 |
Significance | ||||||
SA | ns | ** | ns | ns | ** | ns |
AM | ns | ns | ns | ns | ns | ns |
SA x AM | ns | * | ns | ns | ns | ns |
Salicylic Acid (SA) | Application Method (AM) | Significance | |||||||
---|---|---|---|---|---|---|---|---|---|
10−3 M | 10−4 M | 10−5 M | Control | Roots | Foliar | SA | AM | SA x AM | |
Fresh weight (g) | |||||||||
Roots | 13.5 ± 0.5 | 11.2 ± 1 | 13.2 ± 1.3 | 11.5 ± 0.7 | 12.4 ± 0.6 | 12.3 ± 0.8 | ns | ns | ns |
Stem | 23.5 ± 1.3 | 21.4 ± 3.3 | 22.5 ± 3.4 | 18.9 ± 1.7 | 22.3 ± 1.7 | 20.9 ± 1.9 | ns | ns | ns |
Leaves | 36.9 ± 1.3 | 34.8 ± 3.4 | 34.4 ± 2.1 | 29.8 ± 3.6 | 35.3 ± 2.1 | 32.7 ± 1.8 | ns | ns | ns |
Bracts | 36.6 ± 2.2 c | 45.4 ± 3.1 a | 40.5 ± 1.6 b | 40.9 ± 2.9 b | 43.8 ± 1.9 a | 39.4 ± 1.8 b | ** | * | ns |
Total | 114.5 ± 3.2 | 111.3 ± 9.8 | 115.4 ± 4.8 | 96.8 ± 7.6 | 113.7 ± 5.3 | 105.3 ± 4.6 | ns | ns | ns |
Shoot/Root | 7.5 ± 0.6 | 8.7 ± 0.7 | 7.7 ± 1.1 | 7.4 ± 0.9 | 8.2 ± 0.5 | 7.5 ± 0.7 | ns | ns | ns |
Dry weight (g) | |||||||||
Roots | 1.8 ± 0.1 | 1.4 ± 0.2 | 1.7 ± 0.2 | 1.5 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | ns | ns | ns |
Stem | 5.6 ± 0.2 | 4.9 ± 0.7 | 5.4 ± 0.5 | 5.0 ± 0.3 | 5.3 ± 0.3 | 5.1 ± 0.3 | ns | ns | ns |
Leaves | 5.9 ± 0.2 | 5.7 ± 0.5 | 5.6 ± 0.4 | 4.9 ± 0.5 | 5.7 ± 0.3 | 5.4 ± 0.3 | ns | ns | ns |
Bracts | 4.7 ± 0.3 | 5.7 ± 0.3 | 5.1 ± 0.2 | 5.0 ± 0.4 | 5.5 ± 0.2 | 4.7 ± 0.2 | ** | * | * |
Total | 18.4 ± 0.5 | 17.4 ± 1.5 | 18.3 ± 1.1 | 16.1 ± 1.2 | 18.1 ± 0.7 | 17 ± 0.8 | ns | ns | ns |
Shoot/Root | 9.8 ± 0.8 | 11.5 ± 0.8 | 10.1 ± 1 | 9.7 ± 0.9 | 10.5 ± 0.6 | 10.2 ± 0.7 | ns | ns | ns |
Epigeal dry matter % | 16.5 ± 0.3 | 16.0 ± 0.4 | 16.3 ± 0.7 | 17.2 ± 0.2 | 16.4 ± 0.3 | 16.6 ± 0.4 | ns | ns | ns |
Root dry matter % | 13.0 ± 0.5 | 12.6 ± 0.4 | 12.7 ± 0.3 | 13.4 ± 0.3 | 13.0 ± 0.3 | 12.8 ± 0.3 | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, A.; Miceli, A.; Vetrano, F.; Campo, S.; Moncada, A. Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.). Horticulturae 2025, 11, 904. https://doi.org/10.3390/horticulturae11080904
Esposito A, Miceli A, Vetrano F, Campo S, Moncada A. Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.). Horticulturae. 2025; 11(8):904. https://doi.org/10.3390/horticulturae11080904
Chicago/Turabian StyleEsposito, Alessandro, Alessandro Miceli, Filippo Vetrano, Samantha Campo, and Alessandra Moncada. 2025. "Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.)" Horticulturae 11, no. 8: 904. https://doi.org/10.3390/horticulturae11080904
APA StyleEsposito, A., Miceli, A., Vetrano, F., Campo, S., & Moncada, A. (2025). Effects of Salicylic Acid Application Method and Concentration on the Growth and Ornamental Quality of Poinsettia (Euphorbia pulcherrima Willd.). Horticulturae, 11(8), 904. https://doi.org/10.3390/horticulturae11080904