Growth and Biochemical Activity of Passion Fruit Seedlings in Scion/Rootstock Combinations Under Salt Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Experimental Period
2.2. Plant Material
2.3. Growth Conditions
2.4. Experimental Design
2.5. Seedling Production and Transplanting
2.6. Salinity Treatments and Water Management
2.7. Variables Analyzed
2.8. Statistical Analyses
3. Results
3.1. Total Soluble Proteins
3.2. Hydrogen Peroxide (H2O2) and Catalase (CAT)
3.3. SPAD Index
3.4. Plant Height
3.5. Number of Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food Outlook—Biannual Report on Global Food Markets; Food Outlook; FAO: Rome, Italy, 2023. [Google Scholar]
- IBGE. Brazilian Institute of Geography and Statistics—IBGE. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/maracuja/br (accessed on 10 January 2024).
- Gheyi, H.R.; da Silva Dias, N.; De Lacerda, C.F. Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados, 2nd ed.; INCTSal: Fortaleza, CE, Brazil, 2016; 504p. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, ISBN 9251022631. [Google Scholar]
- Pecherina, A.; Dimitrieva, A.; Mudrilov, M.; Ladeynova, M.; Zanegina, D.; Brilkina, A.; Vodeneev, V. Salt-Induced Early Changes in Photosynthesis Activity Caused by Root-to-Shoot Signaling in Potato. Int. J. Mol. Sci. 2024, 25, 1229. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M.; Ahmad, P.; Chandna, R.; Prasad, M.N.V.; Ozturk, M. Enhancing Plant Productivity under Salt Stress: Relevance of Poly-Omics. In Salt Stress in Plants: Signalling, Omics and Adaptations; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer New York: New York, NY, USA, 2013; pp. 113–156. ISBN 9781461461081. [Google Scholar]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef] [PubMed]
- Contiero, L.F.; Cavichioli, J.C.; Aparecido Manzani Lisboa, L.; Vitorino, R.A.; Ramos, S.B.; de Figueiredo, P.A.M. Water Stress in Passion Fruit Cropping: An Approach to Its Development. Rev. Eng. Agric. Reveng. 2021, 29, 245–253. [Google Scholar] [CrossRef]
- Zandi, P.; Schnug, E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef]
- Barbosa, M.R.; de Souza, L.M.; Nascimento, K.R.P. Ros E O Estresse Oxidativo Por Seca Em Plantas. Multidiscip. Sci. Rep. 2023, 3, 1–17. [Google Scholar] [CrossRef]
- Davar, R.; Darvishzadeh, R.; Majd, A. Changes in Antioxidant Systems in Sunflower Partial Resistant and Susceptible Lines as Affected by Sclerotinia Sclerotiorum. Biologia 2013, 68, 821–829. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular Mycorrhizal Fungi Act as Biostimulants in Horticultural Crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic Action of a Microbial-Based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Wang, F.; Li, T.; Chen, Z.; Kong, D.; Bi, J.; Zhang, F.; Luo, X.; Wang, J.; et al. Enhanced Rice Salinity Tolerance via CRISPR/Cas9-Targeted Mutagenesis of the OsRR22 Gene. Mol. Breed. 2019, 39, 47. [Google Scholar] [CrossRef]
- de Souza, G.L.F.; Nascimento, A.P.J.; de Andrade Silva, J.; Bezerra, F.T.C.; da Silva, R.Í.L.; Cavalcante, L.F.; Mendonça, R.M.N. Growth of Wild Passion Fruit (Passiflora foetida L.) Rootstock under Irrigation Water Salinity. Rev. Bras. Eng. Agric. E Ambient. 2023, 27, 114–120. [Google Scholar] [CrossRef]
- Penella, C.; Landi, M.; Guidi, L.; Nebauer, S.G.; Pellegrini, E.; Bautista, A.S.; Remorini, D.; Nali, C.; López-Galarza, S.; Calatayud, A. Salt-Tolerant Rootstock Increases Yield of Pepper under Salinity through Maintenance of Photosynthetic Performance and Sinks Strength. J. Plant Physiol. 2016, 193, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.F.; Lisboa, R.A.; Oliveira, M.; Silva Júnior, M.J.; Alves, L.P. Caracterização das águas subterrâneas usadas para irrigação na área produtora de melão da Chapada do Apodi. Rev. Bras. De Eng. Agric. E Ambient. 2003, 7, 469–472. [Google Scholar] [CrossRef]
- Bradford, M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Steelheart, C.; Alegre, M.L.; Baldet, P.; Rothan, C.; Bres, C.; Just, D.; Okabe, Y.; Ezura, H.; Ganganelli, I.; Gergoff Grozeff, G.E.; et al. The Effect of Low Ascorbic Acid Content on Tomato Fruit Ripening. Planta 2020, 252, 36. [Google Scholar] [CrossRef]
- Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R.P. A Stable Nonfluorescent Derivative of Resorufin for the Fluorometric Determination of Trace Hydrogen Peroxide: Applications in Detecting the Activity of Phagocyte NADPH Oxidase and Other Oxidases. Anal. Biochem. 1997, 253, 162–168. [Google Scholar] [CrossRef]
- Bartoli, C.G.; Simontacchi, M.; Tambussi, E.; Beltrano, J.; Montaldi, E.; Puntarulo, S. Drought and Watering-Dependent Oxidative Stress: Effect on Antioxidant Content in Triticum aestivum L. Leaves. J. Exp. Bot. 1999, 50, 375–383. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Batool, M.; Mohamed, I.A.A.; Wang, Z.; Khatab, A.; Sherif, A.; Ahmad, H.; Khan, M.N.; Hassan, H.M.; Elrewainy, I.M.; et al. Antioxidative and Metabolic Contribution to Salinity Stress Responses in Two Rapeseed Cultivars during the Early Seedling Stage. Antioxidants 2021, 10, 1227. [Google Scholar] [CrossRef]
- Ashraf, M.; O’Leary, J.W. Changes in Soluble Proteins in Spring Wheat Stressed with Sodium Chloride. Biol. Plant. 1999, 42, 113–117. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Jain, V.; Jain, S. Differential Behavior of the Antioxidant System in Response to Salinity Induced Oxidative Stress in Salt-Tolerant and Salt-Sensitive Cultivars of Brassica juncea L. Biocatal. Agric. Biotechnol. 2018, 13, 12–19. [Google Scholar] [CrossRef]
- Bianchi, L.; Henrique Germino, G.; de Almeida Silva, M. Plant Adaptation to Water Deficit. Acta Iguazu 2017, 5, 15–32. [Google Scholar]
- Oliveira Novais Araújo, B.; Andrade Monteiro, M.; Celente Martins, A.; Lacerda Fonseca, L.; Somavilla Uliana, A.; Diel de Oliveira, V.; Pedó, T.; Zanatta Aumonde, T. Biochemical Performance of Bean Seedlings Under Water Restriction in Early Development. Rev. La Fac. Agron. 2021, 120, 070. [Google Scholar] [CrossRef]
- Suzuki, N.; Miller, G.; Morales, J.; Shulaev, V.; Torres, M.A.; Mittler, R. Respiratory Burst Oxidases: The Engines of ROS Signaling. Curr. Opin. Plant Biol. 2011, 14, 691–699. [Google Scholar] [CrossRef]
- Dietz, K.J. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Mol. Cells 2016, 39, 20–25. [Google Scholar] [CrossRef]
- Raja, V.; Majeed, U.; Kang, H.; Andrabi, K.I.; John, R. Abiotic Stress: Interplay between ROS, Hormones and MAPKs. Environ. Exp. Bot. 2017, 137, 142–157. [Google Scholar] [CrossRef]
- de Araújo, N.O.; de Sousa Santos, M.N.; de Araujo, F.F.; Véras, M.L.M.; de Jesus Tello, J.P.; da Silva Arruda, R.; Fugate, K.K.; Finger, F.L. Balance between Oxidative Stress and the Antioxidant System Is Associated with the Level of Cold Tolerance in Sweet Potato Roots. Postharvest Biol. Technol. 2021, 172, 111359. [Google Scholar] [CrossRef]
- Hurtado-Salazar, A.; Pereira da Silva, D.F.; Ceballos-Aguirre, N.; Ocampo, J.; Bruckner, C.H. Tolerancia a La Salinidad de Passiflora Tarminiana Coppens & Barney. Rev. Colomb. Cienc. Hortícolas 2018, 12, 11–19. [Google Scholar] [CrossRef]
- Kotula, L.; Clode, P.L.; Jimenez, J.D.L.C.; Colmer, T.D. Salinity Tolerance in Chickpea Is Associated with the Ability to “exclude” Na from Leaf Mesophyll Cells. J. Exp. Bot. 2019, 70, 4991–5002. [Google Scholar] [CrossRef]
- Azevedo Neto, A.D.d.; Pereira, P.P.A.; Costa, D.P.; dos Santos, A.C.C. Fluorescência Da Chlorofila Como Uma Possível Ferramenta Para Seleção de Tolerância à Salinidade Em Girassol. Rev. Ciência Agronômica 2011, 42, 893–897. [Google Scholar] [CrossRef]
- Ben Rejeb, I.; Pastor, V.; Mauch-Mani, B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants 2014, 3, 458–475. [Google Scholar] [CrossRef]
- Liu, B.; Li, M.; Cheng, L.; Liang, D.; Zou, Y.; Ma, F. Influence of Rootstock on Antioxidant System in Leaves and Roots of Young Apple Trees in Response to Drought Stress. Plant Growth Regul. 2012, 67, 247–256. [Google Scholar] [CrossRef]
- Aydın, A. The Growth, Leaf Antioxidant Enzymes and Amino Acid Content of Tomato as Affected by Grafting on Wild Tomato Rootstocks 1 (S. Pimpinellifolium and S. Habrochaites) Under Salt Stress. Sci. Hortic. 2024, 325, 112679. [Google Scholar] [CrossRef]
- Yao, Z.; Rao, Z.; Hou, S.W.; Tian, C.; Liu, C.Y.; Yang, X.; Zhu, G. The Appropriate Expression and Coordination of Glycolate Oxidase and Catalase Are Vital to the Successful Construction of the Photorespiratory Metabolic Pathway. Front. Plant Sci. 2022, 13, 999757. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, R.; Uzilday, B.; Sekmen, A.H.; Turkan, I. Reactive Oxygen Species Regulation and Antioxidant Defense in Halophytes. Funct. Plant Biol. 2013, 40, 832–847. [Google Scholar] [CrossRef]
- Li, R.H.; Guo, P.; Michael, B.; Stefania, G.; Salvatore, C. Evaluation of Chlorophyll Content and Fluorescence Parameters as Indicators of Drought Tolerance in Barley. Agric. Sci. China 2006, 5, 751–757. [Google Scholar] [CrossRef]
- Netto, A.T.; Campostrini, E.; De Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic Pigments, Nitrogen, Chlorophyll a Fluorescence and SPAD-502 Readings in Coffee Leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P.; Whaley, E. Growth Environment and Leaf Anatomy Affect Nondestructive Estimates of Chlorophyll and Nitrogen in Citrus sp. Leaves. J. Am. Soc. Hortic. Sci. 2005, 130, 152–158. [Google Scholar] [CrossRef]
- Leão, P.C.d.S.; Chaves, A.R.d.M. Sistemas de Condução e suas Influências na Produtividade e Desempenho Agronômico de Videiras ‘Syrah’ e ‘Chenin Blanc’ no Vale do São Francisco; Embrapa Semiárido: Petrolina, Brazil, 2020; 32p. [Google Scholar]
- Abdelrady, W.A.; Ma, Z.; Elshawy, E.E.; Wang, L.; Askri, S.M.H.; Ibrahim, Z.; Dennis, E.; Kanwal, F.; Zeng, F.; Shamsi, I.H. Physiological and Biochemical Mechanisms of Salt Tolerance in Barley under Salinity Stress. Plant Stress 2024, 11, 100403. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Lopes, M.A.C.; Sá, F.V.S.; Nobre, R.G.; Moreira, R.C.L.; Silva, L.A.; Paiva, E.P. Interaction of irrigation water salinity and substrate on the production of yellow passion fruit seedlings. Comum. Sci. 2015, 6, 471–478. [Google Scholar] [CrossRef]
- Souza, T.M.A.; Mendonça, V.; Sá, F.V.S.; Silva, M.J.; Dourado, C.S.T. Calcium silicate as salt stress attenuator in seedlings of yellow passion fruit cv. BRS GA1. Rev. Caatinga 2020, 33, 509–517. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current Status of Vegetable Grafting: Diffusion, Grafting Techniques, Automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Lee, J.; Rai, P.K.; Jeon, Y.J.; Kim, K.H.; Kwon, E.E. The Role of Algae and Cyanobacteria in the Production and Release of Odorants in Water. Environ. Pollut. 2017, 227, 252–262. [Google Scholar] [CrossRef]
- Da Silva, R.M.; de Aguiar Cardoso, E.; Faleiro, F.G.; Linhares, P.C.F.; Barreto, É.d.S.; De Sousa, R.P.; De Assis, J.P.; Lobato, L.V.d.C. Grafting of Passion Fruit Cultivars on Passiflora foetida L. and Influence of Grafting Age. Obs. La Econ. Latinoam. 2023, 21, 6152–6167. [Google Scholar] [CrossRef]
F Test (p Value) | ||
---|---|---|
Sources of variation | TSPCL | TSPCR |
Species Combinations (SC) | 0.774 (0.476) ns | 11.489 (0.001) ** |
Salinity (S) | 1.709 (0.207) ns | 0.630 (0.438) ns |
SC × S | 0.927 (0.414) ns | 1.468 (0.257) ns |
CV (%) | 8.25 | 16.69 |
Tukey test (p < 0.05) and standard deviation for TSPCR (mg g−1) | ||
Grafting | TSPCR | |
P. edulis + P. edulis | 0.26 ± 0.03 a | |
P. foetida L. + P. foetida L. | 0.21 ± 0.05 b | |
P. foetida L. + P. edulis | 0.17 ± 0.02 b |
F Test (p Value) | ||
---|---|---|
Sources of Variation | H2O2 Leaves 1 | H2O2 Roots 1 |
Species Combinations (SC) | 98.164 (0.000) ** | 45.433 (0.000) ** |
Salinity (S) | 213.019 (0.000) ** | 65.080 (0.000) ** |
SC × S | 90.644 (0.000) ** | 11.157 (0.001) ** |
CV (%) | 6.36 | 11.56 |
F Test (p Value) | |||||
---|---|---|---|---|---|
Sources of Variation | SPAD | PH | NL | CATleaf | CATroot |
Species Combinations (SC) | 13.58 (0.00) ** | 41.03 (0.00) ** | 182.01 (0.00) ** | 46.83 (0.00) ** | 115.71 (0.00) ** |
Salinity | 0.02 (0.89) ns | 30.50 (0.00) ** | 22.04 (0.00) ** | 8.68 (0.01) * | 22.24 (0.00) ** |
SC × S | 0.14 (0.87) ns | 2.43 (0.12) ns | 16.60 (0.00) ** | 9.06 (0.00) ** | 10.42 (0.01) * |
CV (%) | 9.09 | 14.25 | 6.87 | 17.37 | 9.99 |
Tukey test (p < 0.05) and standard deviation for SPAD index | |||||
Grafting | SPAD index | ||||
P. edulis + P. edulis | 39.4 ± 2.32 a | ||||
P. foetida L. + P. foetida L. | 31.2 ± 3.54 b | ||||
P. foetida L. + P. edulis | 34.3 ± 2.91 b |
EC (dS m−1) | Combining Species in Grafting 1 | ||
---|---|---|---|
E + E | F + F | F + E | |
0.5 | 7.00 ± 1.00 aB | 20.00 ± 3.00 aA | 4.33 ± 0.44 aC |
6.0 | 5.25 ± 0.38 aB | 14.00 ± 3.00 bA | 6.67 ± 0.89 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.A.d.; Medeiros, J.F.d.; Bartoli, C.G.; Steelheart, C.; Dantas, M.d.M.; Silva, R.R.d.; Silva, W.A.O.d.; Sa, F.V.d.S. Growth and Biochemical Activity of Passion Fruit Seedlings in Scion/Rootstock Combinations Under Salt Stress. Horticulturae 2025, 11, 1130. https://doi.org/10.3390/horticulturae11091130
Silva AAd, Medeiros JFd, Bartoli CG, Steelheart C, Dantas MdM, Silva RRd, Silva WAOd, Sa FVdS. Growth and Biochemical Activity of Passion Fruit Seedlings in Scion/Rootstock Combinations Under Salt Stress. Horticulturae. 2025; 11(9):1130. https://doi.org/10.3390/horticulturae11091130
Chicago/Turabian StyleSilva, Alex Alvares da, Jose Francismar de Medeiros, Carlos Guillermo Bartoli, Charlotte Steelheart, Marlon de Morais Dantas, Rodrigo Rafael da Silva, Wedson Aleff Oliveira da Silva, and Francisco Vanies da Silva Sa. 2025. "Growth and Biochemical Activity of Passion Fruit Seedlings in Scion/Rootstock Combinations Under Salt Stress" Horticulturae 11, no. 9: 1130. https://doi.org/10.3390/horticulturae11091130
APA StyleSilva, A. A. d., Medeiros, J. F. d., Bartoli, C. G., Steelheart, C., Dantas, M. d. M., Silva, R. R. d., Silva, W. A. O. d., & Sa, F. V. d. S. (2025). Growth and Biochemical Activity of Passion Fruit Seedlings in Scion/Rootstock Combinations Under Salt Stress. Horticulturae, 11(9), 1130. https://doi.org/10.3390/horticulturae11091130