Advancing Citrus Breeding: Next- Genereation Tools for Resistance, Flavor and Health
Abstract
1. Introduction
2. Molecular Breeding Technologies
2.1. Marker-Assisted Selection Breeding (MAS)
Marker | Associated Trait | Resistance Type | Reference |
---|---|---|---|
SNP08 | Alternaria brown spot | Disease resistance | [5] |
SSR markers | Citrus tristeza virus, Phytophthora | Disease resistance | [12] |
SNPs (various) | Seedlessness, parthenocarpy | Reproductive trait | [17,18,19] |
QTL markers | Fruit-quality traits (°Brix, acidity) | Fruit-quality trait | [20,21] |
2.2. Genomic Selection Breeding (GS)
2.3. Genome Editing Breeding
2.4. Somatic Hybridization Breeding (SH)
2.5. Mutation Breeding and TILLING
2.6. Speed Breeding and Early Flowering Techniques
3. Integration with ‘Omics’ Technologies
4. Future Prospects and Challenges
- Standardizing phenotyping protocols across environments to reduce inconsistencies in genomic prediction.
- Deepening the functional validation of candidate genes identified via omics approaches.
- Developing non-GMO, transgene-free editing pipelines amenable to global commercialization.
- Expanding multilocation, multiyear field trials to evaluate the stability of edited or selected traits.
5. Conclusions
- Bridging knowledge gaps in polygenic trait architecture and gene–environment interactions.
- Creating integrated platforms for multitrait pyramiding.
- Leveraging advances in epigenome editing and multiplex CRISPR technologies to enhance efficiency.
- Fostering international collaboration to harmonize regulatory frameworks and promote public dialogue.
Funding
Conflicts of Interest
References
- Rao, M.J.; Duan, M.; Eman, M.; Yuan, H.; Sharma, A.; Zheng, B. Comparative Analysis of Citrus Species’ Flavonoid Metabolism, Gene Expression Profiling, and Their Antioxidant Capacity under Drought Stress. Antioxidants 2024, 13, 1149. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, C.; Gmitter, F.G. QTL Mapping of Mandarin (Citrus reticulata) Fruit Characters Using High-Throughput SNP Markers. Tree Genet. Genomes 2016, 12, 77. [Google Scholar] [CrossRef]
- Wu, G.A.; Prochnik, S.; Jenkins, J.; Salse, J.; Hellsten, U.; Murat, F.; Perrier, X.; Ruiz, M.; Scalabrin, S.; Terol, J.; et al. Sequencing of Diverse Mandarin, Pummelo and Orange Genomes Reveals Complex History of Admixture during Citrus Domestication. Nat. Biotechnol. 2014, 32, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U.; Bowman, K.D. Transcriptional Response of Susceptible and Tolerant Citrus to Infection with Candidatus Liberibacter Asiaticus. Plant Sci. 2012, 185–186, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Arlotta, C.; Ciacciulli, A.; Strano, M.C.; Cafaro, V.; Salonia, F.; Caruso, P.; Licciardello, C.; Russo, G.; Smith, M.W.; Cuenca, J.; et al. Disease Resistant Citrus Breeding Using Newly Developed High Resolution Melting and CAPS Protocols for Alternaria Brown Spot Marker Assisted Selection. Agronomy 2020, 10, 1368. [Google Scholar] [CrossRef]
- Talukder, Z.I.; Underwood, W.; Ma, G.; Seiler, G.J.; Misar, C.G.; Cai, X.; Qi, L. Genetic Dissection of Phomopsis Stem Canker Resistance in Cultivated Sunflower Using High Density SNP Linkage Map. Int. J. Mol. Sci. 2020, 21, 1497. [Google Scholar] [CrossRef]
- Omura, M.; Shimada, T. Citrus Breeding, Genetics and Genomics in Japan. Breed. Sci. 2016, 66, 3–17. [Google Scholar] [CrossRef]
- Peng, A.; Zhang, J.; Zou, X.; He, Y.; Xu, L.; Lei, T.; Yao, L.; Li, Q.; Chen, S. Pyramiding the Antimicrobial PR1aCB and AATCB Genes in ‘Tarocco’ Blood Orange (Citrus sinensis Osbeck) to Enhance Citrus Canker Resistance. Transgenic Res. 2021, 30, 635–647. [Google Scholar] [CrossRef]
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the Origin and Evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef]
- Cuenca, J.; Aleza, P.; Garcia-Lor, A.; Ollitrault, P.; Navarro, L. Fine Mapping for Identification of Citrus Alternaria Brown Spot Candidate Resistance Genes and Development of New SNP Markers for Marker-Assisted Selection. Front. Plant Sci. 2016, 7, 1948. [Google Scholar] [CrossRef]
- Shimizu, T.; Aka Kacar, Y.; Cristofani-Yaly, M.; Curtolo, M.; Machado, M.A. Markers, Maps, and Marker-Assisted Selection. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 107–139. ISBN 978-3-030-15308-3. [Google Scholar]
- Siviero, A.; Cristofani, M.; Furtado, E.L.; Garcia, A.A.F.; Coelho, A.S.G.; Machado, M.A. Identification of QTLs Associated with Citrus Resistance to Phytophthora Gummosis. J. Appl. Genet. 2006, 47, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Deng, Z.; Chen, C.; Gmitter, F.G.; Bowman, K. Marker Assisted Selection in Citrus Rootstock Breeding Based on a Major Gene Locus ‘Tyr1’ Controlling Citrus Nematode Resistance. Agric. Sci. China 2010, 9, 557–567. [Google Scholar] [CrossRef]
- Fang, D.Q.; Federici, C.T.; Roose, M.L. A High-Resolution Linkage Map of the Citrus Tristeza Virus Resistance Gene Region in Poncirus trifoliata (L.) Raf. Genetics 1998, 150, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Endo, T.; Shimada, T.; Fujii, H.; Shimizu, T.; Kuniga, T.; Yoshioka, T.; Nesumi, H.; Yoshida, T.; Omura, M. PCR Primers for Marker Assisted Backcrossing to Introduce a CTV Resistance Gene from Poncirus trifoliata (L.) Raf. into Citrus. J. Jpn. Soc. Hortic. Sci. 2011, 80, 295–307. [Google Scholar] [CrossRef]
- Lima, R.P.M.; Curtolo, M.; Merfa, M.V.; Cristofani-Yaly, M.; Machado, M.A. QTLs and eQTLs Mapping Related to Citrandarins’ Resistance to Citrus Gummosis Disease. BMC Genom. 2018, 19, 516. [Google Scholar] [CrossRef]
- Vardi, A.; Levin, I.; Carmi, N. Induction of Seedlessness in Citrus: From Classical Techniques to Emerging Biotechnological Approaches. J. Am. Soc. Hortic. Sci. 2008, 133, 117–126. [Google Scholar] [CrossRef]
- Montalt, R.; Vives, M.C.; Navarro, L.; Ollitrault, P.; Aleza, P. Parthenocarpy and Self-Incompatibility in Mandarins. Agronomy 2021, 11, 2023. [Google Scholar] [CrossRef]
- Montalt, R.; Cuenca, J.; Vives, M.C.; Mournet, P.; Navarro, L.; Ollitrault, P.; Aleza, P. Genotyping by Sequencing for SNP-Based Linkage Analysis and the Development of KASPar Markers for Male Sterility and Polyembryony in Citrus. Plants 2023, 12, 1567. [Google Scholar] [CrossRef]
- Khefifi, H.; Dumont, D.; Costantino, G.; Doligez, A.; Brito, A.C.; Bérard, A.; Morillon, R.; Ollitrault, P.; Luro, F. Mapping of QTLs for Citrus Quality Traits throughout the Fruit Maturation Process on Clementine (Citrus reticulata × C. sinensis) and Mandarin (C. reticulata Blanco) Genetic Maps. Tree Genet. Genomes 2022, 18, 40. [Google Scholar] [CrossRef]
- Imai, A.; Nonaka, K.; Kuniga, T.; Yoshioka, T.; Hayashi, T. Genome-Wide Association Mapping of Fruit-Quality Traits Using Genotyping-by-Sequencing Approach in Citrus Landraces, Modern Cultivars, and Breeding Lines in Japan. Tree Genet. Genomes 2018, 14, 24. [Google Scholar] [CrossRef]
- Ruiz, M.; Pensabene-Bellavia, G.; Quiñones, A.; García-Lor, A.; Morillon, R.; Ollitrault, P.; Primo-Millo, E.; Navarro, L.; Aleza, P. Molecular Characterization and Stress Tolerance Evaluation of New Allotetraploid Somatic Hybrids Between Carrizo Citrange and Citrus macrophylla W. Rootstocks. Front. Plant Sci. 2018, 9, 901. [Google Scholar] [CrossRef]
- Imai, A.; Kuniga, T.; Yoshioka, T.; Nonaka, K.; Mitani, N.; Fukamachi, H.; Hiehata, N.; Yamamoto, M.; Hayashi, T. Single-Step Genomic Prediction of Fruit-Quality Traits Using Phenotypic Records of Non-Genotyped Relatives in Citrus. PLoS ONE 2019, 14, e0221880. [Google Scholar] [CrossRef]
- Kumari, S.; Das, P.; Pande, K.K.; Roshan, R.K.; Chavan, D.D.; Khaton, H.; Ujjwal, R.; Singh, S. Advance Breeding Technology in Citrus for Genetic Improvement: A Review. Int. J. Adv. Biochem. Res. 2024, 8, 198–204. [Google Scholar] [CrossRef]
- Minamikawa, M.F.; Nonaka, K.; Kaminuma, E.; Kajiya-Kanegae, H.; Onogi, A.; Goto, S.; Yoshioka, T.; Imai, A.; Hamada, H.; Hayashi, T.; et al. Genome-Wide Association Study and Genomic Prediction in Citrus: Potential of Genomics-Assisted Breeding for Fruit Quality Traits. Sci. Rep. 2017, 7, 4721. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-López, A.; Montesinos-López, O.A.; Ramos-Pulido, S.; Mosqueda-González, B.A.; Guerrero-Arroyo, E.A.; Crossa, J.; Ortiz, R. Artificial Intelligence Meets Genomic Selection: Comparing Deep Learning and GBLUP across Diverse Plant Datasets. Front. Genet. 2025, 16, 1568705. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Gois, I.B.; Borém, A.; Cristofani-Yaly, M.; De Resende, M.D.V.; Azevedo, C.F.; Bastianel, M.; Novelli, V.M.; Machado, M.A. Genome Wide Selection in Citrus Breeding. Genet. Mol. Res. 2016, 15, gmr15048863. [Google Scholar] [CrossRef]
- Raveh, E.; Goldenberg, L.; Porat, R.; Carmi, N.; Gentile, A.; La Malfa, S. Conventional Breeding of Cultivated Citrus Varieties. In The Citrus Genome; Gentile, A., La Malfa, S., Deng, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–48. ISBN 978-3-030-15308-3. [Google Scholar]
- Resende, M.F.R., Jr.; Muñoz, P.; Resende, M.D.V.; Garrick, D.J.; Fernando, R.L.; Davis, J.M.; Jokela, E.J.; Martin, T.A.; Peter, G.F.; Kirst, M. Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.). Genetics 2012, 190, 1503–1510. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Li, Z.; Zhang, Y.; Riera, N.; Xiong, Z.; Ouyang, Z.; Liu, X.; Lu, Z.; Seymour, D.; et al. Citrus Genomic Resources Unravel Putative Genetic Determinants of Huanglongbing Pathogenicity. iScience 2023, 26, 106024. [Google Scholar] [CrossRef]
- Machado, M.A.; Cristofani-Yaly, M.; Bastianel, M. Breeding, Genetic and Genomic of Citrus for Disease Resistance. Rev. Bras. Frutic. 2011, 33, 158–172. [Google Scholar] [CrossRef]
- Dutt, M.; Mou, Z.; Zhang, X.; Tanwir, S.E.; Grosser, J.W. Efficient CRISPR/Cas9 Genome Editing with Citrus Embryogenic Cell Cultures. BMC Biotechnol. 2020, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering Canker-Resistant Plants through CRISPR/Cas9-Targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Peng, A.; Xie, Z.; He, Y.; Zou, X. CRISPR/Cas9-Mediated Editing of CsWRKY22 Reduces Susceptibility to Xanthomonas citri subsp. Citri in Wanjincheng Orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol. Rep. 2019, 13, 501–510. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome Editing of the Disease Susceptibility Gene CsLOB1 in Citrus Confers Resistance to Citrus Canker. Plant Biotechnol. J. 2017, 15, 817–823. [Google Scholar] [CrossRef]
- Tiwari, T.; Robertson, C.; El-Mohtar, C.; Grosser, J.; Vashisth, T.; Mou, Z.; Dutt, M. Genetic and Physiological Characteristics of CsNPR3 Edited Citrus and Their Impact on HLB Tolerance. Front. Genome Ed. 2024, 6, 1485529. [Google Scholar] [CrossRef]
- Salonia, F.; Ciacciulli, A.; Pappalardo, H.D.; Poles, L.; Pindo, M.; Larger, S.; Caruso, P.; Caruso, M.; Licciardello, C. A Dual sgRNA-Directed CRISPR/Cas9 Construct for Editing the Fruit-Specific β-Cyclase 2 Gene in Pigmented Citrus Fruits. Front. Plant Sci. 2022, 13, 975917. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Wang, N. Base Editors for Citrus Gene Editing. Front. Genome Ed. 2022, 4, 852867. [Google Scholar] [CrossRef]
- Alquézar, B.; Bennici, S.; Carmona, L.; Gentile, A.; Peña, L. Generation of Transfer-DNA-Free Base-Edited Citrus Plants. Front. Plant Sci. 2022, 13, 835282. [Google Scholar] [CrossRef]
- Conti, G.; Xoconostle-Cázares, B.; Marcelino-Pérez, G.; Hopp, H.E.; Reyes, C.A. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. Front. Plant Sci. 2021, 12, 768197. [Google Scholar] [CrossRef]
- European Commission. European Commission Study on the Status of New Genomic Techniques Under Union Law and in Light of the Court of Justice Ruling in Case C-528/16; Commission Staff Working Document; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- United States Department of Agriculture. Animal and Plant Health Inspection Service Biotechnology Regulatory Services. Available online: https://www.aphis.usda.gov/aphis/ourfocus/biotechnology (accessed on 19 August 2025).
- Ishii, T.; Araki, M. Consumer Acceptance of Food Crops Developed by Genome Editing. Plant Cell Rep. 2016, 35, 1507–1518. [Google Scholar] [CrossRef]
- Sprink, T.; Eriksson, D.; Schiemann, J.; Hartung, F. Regulatory Hurdles for Genome Editing: Process- vs. Product-Based Approaches in Different Regulatory Contexts. Plant Cell Rep. 2016, 35, 1493–1506. [Google Scholar] [CrossRef]
- Buchholzer, M.; Frommer, W.B. An Increasing Number of Countries Regulate Genome Editing in Crops. New Phytol. 2023, 237, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wang, Y.; Xu, J.; Omar, A.A.; Grosser, J.W.; Calovic, M.; Zhang, L.; Feng, Y.; Vakulskas, C.A.; Wang, N. Generation of the Transgene-Free Canker-Resistant Citrus Sinensis Using Cas12a/crRNA Ribonucleoprotein in the T0 Generation. Nat. Commun. 2023, 14, 3957. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D. Two Genome-Edited Trees Are Approved—HLB Management Citrus Industry Magazine. Citrus Industry Magazine, 2 July 2025. [Google Scholar]
- Kelly, G.; Plesser, E.; Bdolach, E.; Arroyave, M.; Belausov, E.; Doron-Faigenboim, A.; Rozen, A.; Zemach, H.; Zach, Y.Y.; Goldenberg, L.; et al. In Planta Genome Editing in Citrus Facilitated by Co-Expression of CRISPR/Cas and Developmental Regulators. Plant J. 2025, 122, e70155. [Google Scholar] [CrossRef] [PubMed]
- Grosser, J.W.; Chandler, J.L. Somatic Hybridization of High Yield, Cold-Hardy and Disease Resistant Parents for Citrus Rootstock Improvement. J. Hortic. Sci. Biotechnol. 2000, 75, 641–644. [Google Scholar] [CrossRef]
- Grosser, J.W.; Ćalović, M.; Louzada, E.S. Protoplast Fusion Technology—Somatic Hybridization and Cybridization. In Plant Cell Culture; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 175–198. ISBN 978-0-470-68652-2. [Google Scholar]
- Grosser, J.W.; Gmitter, F.G., Jr. Protoplast Fusion and Citrus Improvement. In Plant Breeding Reviews; John Wiley & Sons, Ltd.: Chichester, UK, 1990; pp. 339–374. ISBN 978-1-118-06105-3. [Google Scholar]
- Guo, W.W.; Prasad, D.; Cheng, Y.J.; Serrano, P.; Deng, X.X.; Grosser, J.W. Targeted Cybridization in Citrus: Transfer of Satsuma Cytoplasm to Seedy Cultivars for Potential Seedlessness. Plant Cell Rep. 2004, 22, 752–758. [Google Scholar] [CrossRef]
- Dambier, D.; Barantin, P.; Boulard, G.; Costantino, G.; Mournet, P.; Perdereau, A.; Morillon, R.; Ollitrault, P. Genomic Instability in Somatic Hybridization between Poncirus and Citrus Species Aiming to Create New Rootstocks. Agriculture 2022, 12, 134. [Google Scholar] [CrossRef]
- Grosser, J.W.; Gmitter, F.G., Jr.; Castle, W.S.; Chandler, J.L. Somatic Hybridization: A New Approach to Citrus Rootstock Improvement. Fruits 1998, 53, 331–334. [Google Scholar]
- Dutt, M.; Mahmoud, L.M.; Chamusco, K.; Stanton, D.; Chase, C.D.; Nielsen, E.; Quirico, M.; Yu, Q.; Gmitter, F.G., Jr.; Grosser, J.W. Utilization of Somatic Fusion Techniques for the Development of HLB Tolerant Breeding Resources Employing the Australian Finger Lime (Citrus australasica). PLoS ONE 2021, 16, e0255842. [Google Scholar] [CrossRef]
- Grosser, J.W.; Ollitrault, P.; Olivares-Fuster, O. Somatic Hybridization in Citrus: An Effective Tool to Facilitate Variety Improvement. Vitro Cell. Dev. Biol.—Plant 2000, 36, 434–449. [Google Scholar] [CrossRef]
- Bulbarela-Marini, J.E.; Gómez-Merino, F.C.; Galindo-Tovar, M.E.; Pastelín-Solano, M.C.; Murguía-González, J.; Núñez-Pastrana, R.; Castañeda-Castro, O. Ratio of Somaclonal Variation and the Phytohormonal Content of Citrus × Latifolia in Three In Vitro Culture Systems. J. Plant Growth Regul. 2023, 42, 3356–3364. [Google Scholar] [CrossRef]
- Kamatyanatt, M.; Singh, S.K.; Sekhon, B.S. Mutation Breeding in Citrus—A Review. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 1–8. [Google Scholar]
- Mesejo, C.; Muñoz-Fambuena, N.; Reig, C.; Martínez-Fuentes, A.; Agustí, M. Cell Division Interference in Newly Fertilized Ovules Induces Stenospermocarpy in Cross-Pollinated Citrus Fruit. Plant Sci. 2014, 225, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Eun, C.-H.; Kim, I.-J. The Citrus Mutant Jedae-Unshiu Induced by Gamma Irradiation Exhibits a Unique Fruit Shape and Increased Flavonoid Content. Plants 2022, 11, 1337. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Awasthi, O.P.; Pandey, R.; Dubey, A.K.; Sharma, R.M. Production Performance and Fruit Quality of Gamma-Irradiated Mutants of ‘Kinnow’ Mandarin (Citrus nobilis Loureiro × Citrus deliciosa Tenora). Erwerbs-Obstbau 2023, 65, 379–387. [Google Scholar] [CrossRef]
- Gulsen, O.; Uzun, A.; Pala, H.; Canihos, E.; Kafa, G. Development of Seedless and Mal Secco Tolerant Mutant Lemons through Budwood Irradiation. Sci. Hortic. 2007, 112, 184–190. [Google Scholar] [CrossRef]
- McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeting Induced LocalLesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiol. 2000, 123, 439–442. [Google Scholar] [CrossRef]
- Talon, M.; Gmitter, F.G., Jr. Citrus Genomics. Int. J. Plant Genom. 2008, 2008, 528361. [Google Scholar] [CrossRef]
- Sinn, J.P.; Held, J.B.; Vosburg, C.; Klee, S.M.; Orbovic, V.; Taylor, E.L.; Gottwald, T.R.; Stover, E.; Moore, G.A.; McNellis, T.W. Flowering Locus T Chimeric Protein Induces Floral Precocity in Edible Citrus. Plant Biotechnol. J. 2021, 19, 215–217. [Google Scholar] [CrossRef]
- Endo, T.; Shimada, T.; Fujii, H.; Kobayashi, Y.; Araki, T.; Omura, M. Ectopic Expression of an FT Homolog from Citrus Confers an Early Flowering Phenotype on Trifoliate Orange (Poncirus trifoliata L. Raf.). Transgenic Res. 2005, 14, 703–712. [Google Scholar] [CrossRef]
- Velázquez, K.; Agüero, J.; Vives, M.C.; Aleza, P.; Pina, J.A.; Moreno, P.; Navarro, L.; Guerri, J. Precocious Flowering of Juvenile Citrus Induced by a Viral Vector Based on Citrus Leaf Blotch Virus: A New Tool for Genetics and Breeding. Plant Biotechnol. J. 2016, 14, 1976–1985. [Google Scholar] [CrossRef]
- García-Luís, A.; Kanduser, M.; Santamarina, P.; Guardiola, J.L. Low Temperature Influence on Flowering in Citrus. The Separation of Inductive and Bud Dormancy Releasing Effects. Physiol. Plant. 1992, 86, 648–652. [Google Scholar] [CrossRef]
- Muñoz-Fambuena, N.; Nicolás-Almansa, M.; Martínez-Fuentes, A.; Reig, C.; Iglesias, D.J.; Primo-Millo, E.; Mesejo, C.; Agustí, M. Genetic Inhibition of Flowering Differs between Juvenile and Adult Citrus Trees. Ann. Bot. 2019, 123, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ollitrault, P.; Terol, J.; Chen, C.; Federici, C.T.; Lotfy, S.; Hippolyte, I.; Ollitrault, F.; Bérard, A.; Chauveau, A.; Cuenca, J.; et al. A Reference Genetic Map of C. clementina Hort. Ex Tan.; Citrus Evolution Inferences from Comparative Mapping. BMC Genom. 2012, 13, 593. [Google Scholar] [CrossRef] [PubMed]
- Keremane, M.; Singh, K.; Ramadugu, C.; Krueger, R.R.; Skaggs, T.H. Next Generation Sequencing, and Development of a Pipeline as a Tool for the Detection and Discovery of Citrus Pathogens to Facilitate Safer Germplasm Exchange. Plants 2024, 13, 411. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, L.; Ghuge, S.A.; Doron-Faigenboim, A.; Carmeli-Weissberg, M.; Shaya, F.; Rozen, A.; Dahan, Y.; Plesser, E.; Kelly, G.; Yaniv, Y.; et al. A 2OGD Multi-Gene Cluster Encompasses Functional and Tissue Specificity That Direct Furanocoumarin and Pyranocoumarin Biosynthesis in Citrus. New Phytol. 2025, 245, 1547–1562. [Google Scholar] [CrossRef]
- Mathiazhagan, M.; Chidambara, B.; Hunashikatti, L.R.; Ravishankar, K.V. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes 2021, 12, 1881. [Google Scholar] [CrossRef]
- Sicilia, A.; Basu, S.; Lo Piero, A.R. Genomic Design for Abiotic Stress Resistant Citrus. In Genomic Designing for Abiotic Stress Resistant Fruit Crops; Kole, C., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 41–59. ISBN 978-3-031-09875-8. [Google Scholar]
- Nwugo, C.C.; Duan, Y.; Lin, H. Study on Citrus Response to Huanglongbing Highlights a Down-Regulation of Defense-Related Proteins in Lemon Plants Upon ‘Ca. Liberibacter Asiaticus’ Infection. PLoS ONE 2013, 8, e67442. [Google Scholar] [CrossRef]
- Fidel, L.; Carmeli-Weissberg, M.; Yaniv, Y.; Shaya, F.; Dai, N.; Raveh, E.; Eyal, Y.; Porat, R.; Carmi, N. Breeding and Analysis of Two New Grapefruit-Like Varieties with Low Furanocoumarin Content. Food Nutr. Sci. 2016, 7, 90–101. [Google Scholar] [CrossRef]
- Balfagón, D.; Zandalinas, S.I.; dos Reis de Oliveira, T.; Santa-Catarina, C.; Gómez-Cadenas, A. Omics Analyses in Citrus Reveal a Possible Role of RNA Translation Pathways and Unfolded Protein Response Regulators in the Tolerance to Combined Drought, High Irradiance, and Heat Stress. Hortic. Res. 2023, 10, uhad107. [Google Scholar] [CrossRef]
- Wang, X.; Ke, L.; Wang, S.; Fu, J.; Xu, J.; Hao, Y.; Kang, C.; Guo, W.; Deng, X.; Xu, Q. Variation Burst during Dedifferentiation and Increased CHH-Type DNA Methylation after 30 Years of in Vitro Culture of Sweet Orange. Hortic. Res. 2022, 9, uhab036. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Zhang, Z.; Mullasseri, S.; Kalendar, R.; Ahmad, Z.; Sharma, A.; Liu, G.; Zhou, M.; Wei, Q. Epigenetic Stress Memory: A New Approach to Study Cold and Heat Stress Responses in Plants. Front. Plant Sci. 2022, 13, 1075279. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Xu, X.-D.; Yang, L.; Wang, M.; Li, S.; Yang, H.; Ye, S.-Y.; Chen, L.-L.; Song, J.-M. Construction and analysis of telomere-to-telomere genomes for 2 sweet oranges: Longhuihong and Newhall (Citrus sinensis). GigaScience 2024, 13, giae084. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Huang, D.; Zhang, L.; Lv, Z.; Chen, W. Integrated metabolomics and transcriptomics reveal the tissue-specific distribution patterns and potential molecular mechanisms in flavonoids between Citrus reticulata ‘Shiyue Ju’ and its mutant C. reticulata ‘Denglong Ju’. Sci. Hortic. 2025, 350, 114315. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Shen, W.; Liao, B.; Liu, X.; Yang, Z.; Chen, J.; Zhao, C.; Liao, Z.; Cao, J.; et al. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. Mol. Plant 2024, 17, 1753–1772. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Hu, Y.; Huang, G. Analysis of huanglongbing-associated RNA-seq data reveals disturbances in biological processes within Citrus spp. triggered by Candidatus liberibacter asiaticus infection. Front. Plant Sci. 2024, 15, 1388163. [Google Scholar] [CrossRef]
- Osmani, Z.; Wang, L.; Xiao, W.; Kulka, M. Nanomaterials as tools in plant transformation: A protoplast-centric perspective. Plant Nano Biol. 2024, 10, 100100. [Google Scholar] [CrossRef]
Genome-Editing Target | Gene Edited | Improved Trait | References |
---|---|---|---|
LOB1 promoter | CRISPR/Cas9 | Canker resistance | [34] |
WRKY22 | CRISPR/Cas9 | Canker susceptibility | [35] |
NPR3 | CRISPR/Cas9 | HLB tolerance | [37] |
CitSWEET | CRISPR/Cas9 | Sugar accumulation (sweetness) | [38] |
ALS | Base editing | Herbicide resistance | [40] |
Technology | Application | Trait Types | Time Required | Challenges |
---|---|---|---|---|
MAS | Trait-linked marker Selection | Simple, known traits | Moderate | Requires prior knowledge of QTLs |
GS | Genome-wide trait Prediction | Complex/polygenic traits | Shorter breeding cycle | Requires a large training set and statistical models |
Genome editing | Precise gene targeting | Biotic/abiotic traits | Laboratory-to-field time | Regulatory and delivery hurdles |
SH | Whole-genome Combinations | Disease resistance, cytoplasmic male sterility | Long | Somaclonal variation, regeneration |
TILLING | No transgene involved | Limited to induced mutations; screening throughput | Medium | disease resistance |
Technology | Regulatory Status | Notes |
---|---|---|
Transgenic (GMO) | Strict regulation | GMO-labeling required |
CRISPR/Cas (DNA-free) | Non-GMO status (USDA/EPA) | Looser regulation if transgene-free |
Mutation Breeding | Exempt | Traditional method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezra, D.; Carmi, N. Advancing Citrus Breeding: Next- Genereation Tools for Resistance, Flavor and Health. Horticulturae 2025, 11, 1011. https://doi.org/10.3390/horticulturae11091011
Ezra D, Carmi N. Advancing Citrus Breeding: Next- Genereation Tools for Resistance, Flavor and Health. Horticulturae. 2025; 11(9):1011. https://doi.org/10.3390/horticulturae11091011
Chicago/Turabian StyleEzra, David, and Nir Carmi. 2025. "Advancing Citrus Breeding: Next- Genereation Tools for Resistance, Flavor and Health" Horticulturae 11, no. 9: 1011. https://doi.org/10.3390/horticulturae11091011
APA StyleEzra, D., & Carmi, N. (2025). Advancing Citrus Breeding: Next- Genereation Tools for Resistance, Flavor and Health. Horticulturae, 11(9), 1011. https://doi.org/10.3390/horticulturae11091011