Climate Change and Viticulture in Liguria: Regional Perceptions, Impacts, and Adaptive Responses
Abstract
1. Introduction
2. Methodology
2.1. Data Collection and Field Study
2.2. Data Analysis
3. Results
3.1. Adaptation Strategies: Rootstocks and Training Systems
3.1.1. Rootstocks Selection
3.1.2. Training Systems
3.2. Regional Variability in Rootstock Selection and Training Systems
3.3. Key Factors Influencing Climate Change and Impacts on Viticulture
4. Discussion
4.1. Climate Change Impacts on Ligurian Viticulture
4.2. Analysis of Rootstocks Used
4.3. Analysis of Training Systems Used
4.4. Local Differences in Adaptation Strategies
4.5. Implications for the Future of Ligurian Viticulture
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harutyunyan, M.; Ferreira, M. The Rise of Wine among Ancient Civilizations across the Mediterranean Basin. Heritage 2022, 5, 788–812. [Google Scholar] [CrossRef]
- Pioletti, A.M. Viticulture and Landscape in the Italian Northwestern Alpine Region. Geogr. Noteb. 2019, 2, 53–67. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Pulighe, G.; Di Fonzo, A.; Gaito, M.; Giuca, S.; Lupia, F.; Bonati, G.; De Leo, S. Climate Change Impact on Yield and Income of Italian Agriculture System: A Scoping Review. Agric. Food Econ. 2024, 12, 23. [Google Scholar] [CrossRef]
- Doro, C. Sustainable Development Goals e Agenda 2030. Applicazioni, Sfide e Best Practice a Livello Regionale. 2019. Available online: https://thesis.unipd.it/handle/20.500.12608/21859 (accessed on 17 August 2025).
- Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Dominguez, D.L.E.; Cirrincione, M.A.; Deis, L.; Martínez, L.E. Impacts of Climate Change-Induced Temperature Rise on Phenology, Physiology, and Yield in Three Red Grape Cultivars: Malbec, Bonarda, and Syrah. Plants 2024, 13, 3219. [Google Scholar] [CrossRef] [PubMed]
- Palliotti, A. Manuale Di Viticoltura; Edagricole: Milan, Italy, 2018; 415p, ISBN 978-88-506-5533-5. Available online: https://tecnichenuove.com/libri/manuale-di-viticoltura (accessed on 7 September 2025).
- Battaglini, A.; Barbeau, G.; Bindi, M.; Badeck, F.-W. European Winegrowers’ Perceptions of Climate Change Impact and Options for Adaptation. Reg. Environ. Change 2008, 9, 61–73. [Google Scholar] [CrossRef]
- Pascale, A.D.; Giannetto, C.; Zirilli, A.; Alibrandi, A.; Lanfranchi, M.; Pascale, A.D.; Giannetto, C.; Zirilli, A.; Alibrandi, A.; Lanfranchi, M. How Mediterranean Winegrowers Perceive Climate Change. AIMS Agric. Food 2023, 8, 440–460. [Google Scholar] [CrossRef]
- Chieco, C.; Morrone, L.; Magli, M.; Gelmetti, A.; Pedo, S.; Roman, T.; Stefanini, M.; Battistel, F.; Battistel, G.; Eccel, E. Italian Winegrowers’ and Wine Makers’ Attitudes toward Climate Hazards and Their Strategy of Adaptation to the Change. Ital. J. Agrometeorol.-Riv. Ital. Agrometeorol. 2023, 1, 47–65. [Google Scholar] [CrossRef]
- Massano, M.; Gerace, E.; Borsari, M.; Marti, M.; Tirri, M.; Ververi, C.; Alladio, E.; Vincenti, M.; Salomone, A. Metabolic Study of New Psychoactive Substance Methoxpropamine in Mice by UHPLC-QTOF-HRMS. Drug Test. Anal. 2023, 15, 586–594. [Google Scholar] [CrossRef]
- Berkes, F. Sacred Ecology, 3rd ed.; Routledge: New York, NY, USA, 2012; ISBN 978-0-203-12384-3. [Google Scholar]
- ISTAT Il Benessere Equo e Sostenibile Dei Territori—Infografiche—Anno 2024. Available online: https://www.istat.it/?s=&limit=10&sort=&page=1&debug=0&filter_category%5B%5D=4099&filter_regione%5B%5D=4001&from=&to= (accessed on 24 July 2025).
- WMO. World Meteorological Organization. Available online: https://wmo.int/ (accessed on 2 April 2025).
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.-T.; Luzio, A.; Machado, N.; Gonçalves, A.; Vives-Peris, V.; Pitarch-Bielsa, M.; López-Climent, M.F.; Malheiro, A.C.; Correia, C.; et al. Optimising Grapevine Summer Stress Responses and Hormonal Balance by Applying Kaolin in Two Portuguese Demarcated Regions. OENO One 2021, 55, 207–222. [Google Scholar] [CrossRef]
- Valentini, G.; Pastore, C.; Allegro, G.; Muzzi, E.; Seghetti, L.; Filippetti, I. Application of Kaolin and Italian Natural Chabasite-Rich Zeolitite to Mitigate the Effect of Global Warming in Vitis Vinifera, L. Cv. Sangiovese. Agronomy 2021, 11, 1035. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thach, L. The Impact of Climate Change on the Global Wine Industry: Challenges & Solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. Plants 2022, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Muchaku, S.; Magaiza, G.; Hamandawana, H. Translating Indigenous Knowledge into Actionable Climate-Change Adaption Strategies: A Case Study of Maluti-a-Phofung Local Municipality, Free State Province, South Africa. Sustainability 2023, 15, 1558. [Google Scholar] [CrossRef]
- Lombardini, M.; Varuzza, P.; Meriggi, A. Influence of Weather and Phenotypic Characteristics on Pregnancy Rates of Female Roe Deer in Central Italy. Popul. Ecol. 2017, 59, 131–137. [Google Scholar] [CrossRef]
- Benelli, G.; Andrea, L.; Anfora, G.; Bagnoli, B.; Botton, M.; Campos-Herrera, R.; Carlos, C.; Daugherty, M.; Gemeno, C.; Harari, A.; et al. European Grapevine Moth, Lobesia Botrana Part II: Prevention and Management. Entomol. Gen. 2023, 43, 281–304. [Google Scholar] [CrossRef]
- Barata, A.; Ferreira, M.; Loureiro, V. Changes in Sour Rotten Grape Berry Microbiota during Ripening and Wine Fermentation. Int. J. Food Microbiol. 2012, 154, 152–161. [Google Scholar] [CrossRef]
- Blank, M.; Samer, S.; Stoll, M. Grapevine Rootstock Genotypes Influences Berry and Wine Phenolic Composition (Vitis Vinifera L. Cv. Pinot Noir). OENO One 2022, 56, 133–144. [Google Scholar] [CrossRef]
- Chen, Y.; Fei, Y.; Pang, A.; Krstic, M.; Clingeleffer, P.; Howell, K.; Chen, D.; Zhang, P. The Influences of Rootstock on the Performance of Pinot Noir (Vitis vinifera L.): Phenological Progress, Physiological Performance, and Petiole Nutrient Status. Aust. J. Grape Wine Res. 2024, 2024, 5655916. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The Physiology of Drought Stress in Grapevine: Towards an Integrative Definition of Drought Tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Corazzina, E. Coltivare la Vite. Tradizione, Innovazione, Sostenibilità. Con DVD Video—Enzo Corazzina—Libro—L’Informatore Agrario—Viticoltura ed Enologia|IBS. Available online: https://www.ibs.it/coltivare-vite-tradizione-innovazione-sostenibilita-libro-enzo-corazzina/e/9788872204054?inventoryId=290199256&queryId=ff4eb3a2af5858c9984b494c9d25094b (accessed on 2 April 2025).
- Zombardo, A.; Mica, E.; Puccioni, S.; Perria, R.; Valentini, P.; Mattii, G.B.; Cattivelli, L.; Storchi, P. Berry Quality of Grapevine under Water Stress as Affected by Rootstock–Scion Interactions through Gene Expression Regulation. Agronomy 2020, 10, 680. [Google Scholar] [CrossRef]
- WALKER, R.R.; Blackmore, D. Potassium Concentration and pH Inter-relationships in Grape Juice and Wine of Chardonnay and Shiraz from a Range of Rootstocks in Different Environments. Aust. J. Grape Wine Res. 2012, 18, 183–193. [Google Scholar] [CrossRef]
- Cameron, W.; Petrie, P.R.; Bonada, M. Effects of Vineyard Management Practices on Winegrape Composition. A Review Using Meta-Analysis. Am. J. Enol. Vitic. 2024, 75, 0750022. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Ravanello, C. Vini e Storie Di Liguria. I Vitigni Liguri. Ligurian Grape Varieties—LibroCo.It. Available online: https://www.libroco.it/english/dl/Ravanello-Carlo/Sagep-Editori/9788863732757/Vini-e-Storie-di-Liguria-I-Vitigni-Liguri-Ligurian-Grape-Varieties/cw813282813362772.html (accessed on 24 July 2025).
- CIMA the Regional Climate Change Adaptation Strategy for Liguria and CIMA Research Foundation’s Contribution—CIMA Research Foundation 2023. Available online: https://www.cimafoundation.org/news/la-strategia-regionale-di-adattamento-al-cambiamento-climatico-per-la-liguria-e-il-contributo-di-fondazione-cima/ (accessed on 7 September 2025).
- Naigeon, N.; Picardat, S.; Auguste, P. DATA for Decision-Making in Viticulture in the Face of Climate Change: Looking beyond Production Issues. BIO Web Conf. 2023, 68, 01040. [Google Scholar] [CrossRef]
- Santos, K.R.; Souza, F.N.; Ramos-Sanchez, E.M.; Batista, C.F.; Reis, L.C.; Fotoran, W.L.; Heinemann, M.B.; Cunha, A.F.; Rocha, M.C.; Faria, A.R.; et al. Staphylococcus Aureus-Cure-Associated Antigens Elicit Type 3 Immune Memory T Cells. Antibiotics 2022, 11, 1831. [Google Scholar] [CrossRef]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. An Overview of Climate Change Impacts on European Viticulture. Food Energy Secur. 2012, 1, 94–110. [Google Scholar] [CrossRef]
- Martins, J.; Fraga, H.; Fonseca, A.; Santos, J.A. Climate Projections for Precipitation and Temperature Indicators in the Douro Wine Region: The Importance of Bias Correction. Agronomy 2021, 11, 990. [Google Scholar] [CrossRef]
- Baltazar, M.; Castro, I.; Gonçalves, B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review. Plants 2025, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Marín, D.; Armengol, J.; Carbonell-Bejerano, P.; Escalona, J.M.; Gramaje, D.; Hernández-Montes, E.; Intrigliolo, D.S.; Martínez-Zapater, J.M.; Medrano, H.; Mirás-Avalos, J.M.; et al. Challenges of Viticulture Adaptation to Global Change: Tackling the Issue from the Roots. Aust. J. Grape Wine Res. 2021, 27, 8–25. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Bernardo, S.; Dinis, L.-T.; Machado, N.; Moutinho-Pereira, J. Grapevine Abiotic Stress Assessment and Search for Sustainable Adaptation Strategies in Mediterranean-like Climates. A Review. Agron. Sustain. Dev. 2018, 38, 66. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Bernardo, S.; Yang, C.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Mediterranean Viticulture in the Context of Climate Change. Ciênc. E Téc. Vitivinícola 2022, 37, 139–158. [Google Scholar] [CrossRef]
- Fraga, H. Climate Change: A New Challenge for the Winemaking Sector. Agronomy 2020, 10, 1465. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M.D. Climate Change Impacts and Adaptive Strategies: Lessons from the Grapevine. Glob. Change Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Amâncio, S. Cutting the Gordian Knot of Abiotic Stress in Grapevine: From the Test Tube to Climate Change Adaptation. Physiol. Plant. 2019, 165, 330–342. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; García de Cortázar-Atauri, I.; Ollat, N.; van Leeuwen, C. The Impact of Possible Decadal-Scale Cold Waves on Viticulture over Europe in a Context of Global Warming. Agronomy 2019, 9, 397. [Google Scholar] [CrossRef]
- Sgubin, G.; Swingedouw, D.; Mignot, J.; Gambetta, G.A.; Bois, B.; Loukos, H.; Noël, T.; Pieri, P.; García de Cortázar-Atauri, I.; Ollat, N.; et al. Non-Linear Loss of Suitable Wine Regions over Europe in Response to Increasing Global Warming. Glob. Change Biol. 2023, 29, 808–826. [Google Scholar] [CrossRef]
- Fraga, H.; Atauri, I.G. de C.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A Review of Recent Trends and Climate Change Projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Canas, S.; Cunha, J.; Eiras-Dias, J.E. Advances in Viticulture, Enology and Vitivinicultural Economy: Ciência e Técnica Vitivinícola 2020. Ciênc. E Téc. Vitivinícola 2020, 35, 176–178. [Google Scholar] [CrossRef]
Research Question | Response Format | Type of Answer |
---|---|---|
History of the Company and the Interviewee | ||
Brief description of the company and the producer | Open-ended | String (Text) |
Acres of property and the number of bottles produced | Numeric | Integer |
General characteristics of the production area | Open-ended | String (Text) |
Documenting the impacts of climate change | ||
Changes over time in the characteristics of the production area | Open-ended | String (Text) |
Harvest period in the past versus today | Numeric (years) | Integer |
Documenting adaptations to climate change | ||
Agronomic practices used (treatments, pruning, leaf thinning, topping, irrigation, etc.) | Multiple-choice | Categorical (Checkbox: Yes/No for each practice) |
Changes in agronomic practices compared to the past | Open-ended | String (Text) |
Changes in winemaking (fermentation issues, alcohol/acid ratio of wines) | Open-ended | String (Text) |
Changes in flora and fauna in the vineyard | Open-ended | String (Text) |
Rootstocks used: the relationship between rootstocks and climate change | Multiple-choice | Categorical (List of rootstocks with selection) |
Training systems used: the relationship between training systems and climate change | Multiple-choice | Categorical (List of systems with selection) |
Identifying regional similarities and differences | ||
Comparison of practices and adaptations observed in Levante and Ponente Liguria | Open-ended | String (Text) |
Perceived differences between the two regions in terms of impacts and adaptations to climate change | Open-ended | String (Text) |
The Aspects Analyzed Using the LICCI | Criteria | Number of Interviewees | p-Value | |||
---|---|---|---|---|---|---|
Yes | No | |||||
Number | (%) | Number | (%) | |||
Changes related to the vine | ||||||
Changes in crop maturation time | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Changes in crop growing pattern (crop morphology) | 8 | 16.7 | 40 | 83.3 | 0.23 | |
Changes in crop fruiting time | 40 | 83.3 | 8 | 16.7 | <0.01 | |
Changes in crop flowering time | 40 | 83.3 | 8 | 16.7 | <0.01 | |
Changes related to invasive species | ||||||
Changes in the abundance of terrestrial fauna | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Changes in the species composition of terrestrial fauna | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Changes related to vine diseases | ||||||
Changes in the frequency of crop diseases, viruses, and bacteria) | 40 | 83.3 | 8 | 16.7 | <0.01 | |
Analysis of temperature fluctuations | ||||||
Sunshine Intensity | 40 | 83.3 | 8 | 16.7 | <0.01 | |
Frequency of days with extreme temperatures | 45 | 93.8 | 3 | 6.2 | <0.01 | |
Frequency of extremely hot seasons | 34 | 70.8 | 14 | 29.2 | <0.05 | |
Level of extreme temperature | 40 | 83.3 | 8 | 16.7 | <0.01 | |
Frequency of hot/warm days | 42 | 87.5 | 6 | 12.5 | <0.05 | |
Frequency temperatures | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Frequency of cold days | 42 | 87.5 | 6 | 12.5 | <0.05 | |
Variation of temperature in the year | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Analysis of precipitation trends | ||||||
Changes in rainfall patterns | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Changes in the temporal distribution of rainfall | 48 | 100.0 | 0 | 0.0 | <0.001 | |
Changes in the frequency of dry spells | 40 | 83.3 | 8 | 16.7 | <0.01 | |
Changes in the frequency of heavy rainfall events | 44 | 91.7 | 4 | 8.3 | <0.01 |
Variable | Factor | Coefficient (β) | Standard Error | Odds Ratio | p-Value |
---|---|---|---|---|---|
Intercept | −0.562 | 0.201 | 0.570 | 0.012 | |
Temperature Changes | Frequency of days with extreme temperatures | 0.771 | 0.164 | 2.162 | 0.001 |
Frequency of hot/warm days | 0.318 | 0.128 | 1.374 | 0.012 | |
Frequency of cold days | 0.426 | 0.293 | 1.531 | 0.045 | |
Fauna Changes | The abundance of terrestrial fauna | 0.208 | 0.096 | 1.231 | 0.182 |
Species composition of terrestrial fauna | 0.271 | 0.121 | 1.311 | 0.399 | |
Disease Frequency | Changes in the frequency of crop diseases | 0.614 | 0.267 | 1.848 | 0.045 |
Precipitation Changes | Changes in rainfall patterns | 0.682 | 0.141 | 1.978 | 0.012 |
Frequency of dry spells | 0.206 | 0.157 | 1.229 | 0.182 | |
Frequency of heavy rainfall events | 0.924 | 0.138 | 2.519 | 0.416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrhmoun, M.; Sulaiman, N.; Castagna, A.; Massa, L.; Mattalia, G.; Aliotta, E.; Pieroni, A. Climate Change and Viticulture in Liguria: Regional Perceptions, Impacts, and Adaptive Responses. Horticulturae 2025, 11, 1104. https://doi.org/10.3390/horticulturae11091104
Alrhmoun M, Sulaiman N, Castagna A, Massa L, Mattalia G, Aliotta E, Pieroni A. Climate Change and Viticulture in Liguria: Regional Perceptions, Impacts, and Adaptive Responses. Horticulturae. 2025; 11(9):1104. https://doi.org/10.3390/horticulturae11091104
Chicago/Turabian StyleAlrhmoun, Mousaab, Naji Sulaiman, Andrea Castagna, Lorenzo Massa, Giulia Mattalia, Emilio Aliotta, and Andrea Pieroni. 2025. "Climate Change and Viticulture in Liguria: Regional Perceptions, Impacts, and Adaptive Responses" Horticulturae 11, no. 9: 1104. https://doi.org/10.3390/horticulturae11091104
APA StyleAlrhmoun, M., Sulaiman, N., Castagna, A., Massa, L., Mattalia, G., Aliotta, E., & Pieroni, A. (2025). Climate Change and Viticulture in Liguria: Regional Perceptions, Impacts, and Adaptive Responses. Horticulturae, 11(9), 1104. https://doi.org/10.3390/horticulturae11091104