Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (989)

Search Parameters:
Keywords = epigallocatechin gallate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 953 KiB  
Review
Influence of Matcha and Tea Catechins on the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)—A Review of Patient Trials and Animal Studies
by Danuta I. Kosik-Bogacka and Katarzyna Piotrowska
Nutrients 2025, 17(15), 2532; https://doi.org/10.3390/nu17152532 - 31 Jul 2025
Viewed by 501
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic, non-communicable spectrum of diseases characterized by lipid accumulation. It is often asymptomatic, and its prevalence varies by region, age, gender, and economic status. It is estimated that 25% of the world’s population currently suffer [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MASLD) is a chronic, non-communicable spectrum of diseases characterized by lipid accumulation. It is often asymptomatic, and its prevalence varies by region, age, gender, and economic status. It is estimated that 25% of the world’s population currently suffer from MAFLD, and 20 million patients will die from MAFLD-related diseases. In the last 20 years, tea and anti-obesity research have indicated that regularly consuming tea decreases the risk of cardiovascular disease, stroke, obesity, diabetes, and metabolic syndrome (MeS). In this review, we aimed to present studies concerning the influence of matcha extracts and epigallocatechin-3 gallate (EGCG) supplements on metabolic functions in the context of MAFLD in human and animal studies. The published data show promise. In both human and animal studies, the beneficial effects on body weight, cholesterol levels, and liver metabolism and function were noted, even in short-period experiments. The safety levels for EGCG and green tea extract consumption are marked. More experiments are needed to confirm the results observed in animal studies and to show the mechanisms by which green tea exerts its effects. The preliminary data from research concerning microbiota or epigenetic changes observed after polyphenols and green tea consumption need to be expanded. To improve the efficiency and availability of green tea or supplement consumption as a treatment for MAFLD patients, more research with larger groups and longer study durations is needed. Full article
(This article belongs to the Special Issue Phytonutrients in Diseases of Affluence)
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

26 pages, 3684 KiB  
Article
Creation of Zinc (II)-Complexed Green Tea and Its Effects on Gut Microbiota by Daily Green Tea Consumption
by Tsukasa Orita, Daichi Ijiri, De-Xing Hou and Kozue Sakao
Molecules 2025, 30(15), 3191; https://doi.org/10.3390/molecules30153191 - 30 Jul 2025
Viewed by 388
Abstract
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation [...] Read more.
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation of Zn-EGCg complex within the tea matrix. We then investigated how the formation of Zn-complexed green tea extract (Zn-GTE) influences the gut microbiota in a Western diet (WD)-fed mouse model. Structural analyses using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and powder X-ray diffraction (PXRD) suggested that Zn (II) interacted with hydroxyl groups of polyphenols within the extract, consistent with Zn-EGCg formation, although the complex could not be unequivocally identified. Under intake levels equivalent to daily consumption, Zn-GTE administration restored WD-induced reductions in alpha-diversity and resulted in a distinct microbial composition compared to treatment with green tea extract (GTE) or Zn alone, as shown by beta-diversity analysis. Linear discriminant analysis Effect Size (LEfSe) analysis revealed increased abundances of bacterial taxa belonging to o_Clostridiales, o_Bacteroidales, and f_Rikenellaceae, and decreased abundances of g_Akkermansia in the Zn-GTE group compared to the GTE group. These findings highlight that Zn-GTE, prepared via Zn (II) supplementation to green tea, may exert distinct microbiota-modulating effects compared to its individual components. This study provides new insights into the role of dietary metal–polyphenol complexes, offering a food-based platform for studying metal–polyphenol interactions under physiologically relevant conditions. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Graphical abstract

10 pages, 2236 KiB  
Communication
The Anti-Myogenic Role of Tetranectin and Its Inhibition by Epigallocatechin-3-Gallate Enhances Myogenesis
by Amar Akash and Jihoe Kim
Cells 2025, 14(15), 1160; https://doi.org/10.3390/cells14151160 - 28 Jul 2025
Viewed by 215
Abstract
Tetranectin (TN) is a plasminogen-binding protein found in human serum. Although it has been suggested to be closely related to various stem cell differentiation, including myogenesis, the role of TN in muscle development remains unclear. In this study, we identified TN as an [...] Read more.
Tetranectin (TN) is a plasminogen-binding protein found in human serum. Although it has been suggested to be closely related to various stem cell differentiation, including myogenesis, the role of TN in muscle development remains unclear. In this study, we identified TN as an anti-myogenic factor during the differentiation of C2C12 satellite cells. The exogenous supplementation of TN inhibited myogenic differentiation, whereas differentiation was significantly enhanced in the TN-depleted medium. Epigallocatechin-3-gallate (EGCG), a catechin abundant in green tea, significantly enhanced myogenic differentiation by reducing TN levels in the medium and downregulating TN gene expression during the differentiation process. These results demonstrate that EGCG promotes myogenesis by inhibiting TN at both the transcriptional and functional levels, highlighting TN as a promising therapeutic target for muscle regeneration disorders. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

23 pages, 839 KiB  
Review
Catechins and Human Health: Breakthroughs from Clinical Trials
by Elena Ferrari and Valeria Naponelli
Molecules 2025, 30(15), 3128; https://doi.org/10.3390/molecules30153128 - 25 Jul 2025
Viewed by 275
Abstract
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated [...] Read more.
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated with various chronic conditions, including cardiovascular diseases, neurodegenerative disorders, metabolic diseases, and cancer. This review presents a comprehensive analysis of recent clinical studies focused on the therapeutic benefits and potential risks of interventions involving green tea extracts or EGCG. A systematic literature survey identified 17 relevant studies, classified into five key areas related to catechin interventions: toxicity and detoxification, drug pharmacokinetics, cognitive functions, anti-inflammatory and antioxidant properties, and obesity and metabolism. Findings from these clinical studies suggest that the health benefits of green tea catechins outweigh the potential risks. The review highlights the importance of subject genotyping for enzymes involved in catechin metabolism to aid in interpreting liver injury biomarkers, the necessity of assessing drug–catechin interactions in clinical contexts, and the promising effects of topical EGCG in reducing inflammation. This analysis underscores the need for further research to refine therapeutic applications while ensuring the safe and effective use of green tea catechins. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

31 pages, 1902 KiB  
Review
Effects of Epigallocatechin-3-O-Gallate on Bone Health
by Patrycja Wróbel, Beata Czarczynska-Goslinska, Kyrylo Chornovolenko, Julia Liwarska, Jakub Kubiak, Tomasz Koczorowski, Agnieszka Malinska, Tomasz Goslinski and Magdalena Waszyk-Nowaczyk
Appl. Sci. 2025, 15(15), 8182; https://doi.org/10.3390/app15158182 - 23 Jul 2025
Viewed by 219
Abstract
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). [...] Read more.
Tea is one of the most consumed beverages in the world, belonging to the category of compounds known as tannins and flavonoids. One of the polyphenols found in large amounts in green tea leaves (Camellia sinensis) is epigallocatechin-3-O-gallate (EGCG). Though EGCG has shown some pharmacological effects, to date, it has not been utilised as a therapeutic agent. This is attributed to the fact that EGCG lacks adequate stability, and it is known to degrade through epimerization or auto-oxidation processes, especially when it is exposed to light, temperature fluctuations, some pH values, or the presence of oxygen. Consuming green tea with EGCG can alleviate the effects of bone diseases, such as osteoporosis, and support faster bone regeneration in the case of fractures. Therefore, this review focuses on the current state of research, highlighting the effects of EGCG on bone biology, such as enhancing osteoblast differentiation, promoting bone mineralisation, improving bone microarchitecture, and inhibiting osteoclastogenesis through the modulation of the RANK/RANKL/OPG pathway. Additionally, EGCG exerts antioxidant, anti-inflammatory, and dose-dependent effects on bone cells. It also downregulates inflammatory markers (TNF-α, IL-1β, and COX-2) and reduces oxidative stress via the inhibition of reactive oxygen species generation and the activation of protective signalling pathways (e.g., MAPK and NF-κB). Studies in animal models confirm that EGCG supplementation leads to increased bone mass and strength. These findings collectively support the further exploration of EGCG as an adjunct in the treatment and prevention of metabolic bone diseases. The authors aim to present the relationship between EGCG and bone health, highlighting issues for future research and clinical applications. Full article
Show Figures

Figure 1

20 pages, 6490 KiB  
Article
Impact of Chitooligosaccharide Conjugated Epigallocatechin Gallate and Non-Thermal High-Voltage Atmospheric Cold Plasma on Vibrio parahaemolyticus: An In Vitro Study and the Use in Blood Clam Meat
by Mruganxi Harshad Sharma, Avtar Singh, Ankita Singh, Soottawat Benjakul, Suriya Palamae, Ajay Mittal and Jirayu Buatong
Foods 2025, 14(15), 2577; https://doi.org/10.3390/foods14152577 - 23 Jul 2025
Viewed by 290
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study [...] Read more.
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study aimed to determine the effect of chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) at different concentrations (200 and 400 ppm) combined with high-voltage atmospheric cold plasma (HVACP) on inhibiting V. parahaemolyticus in vitro and in challenged blood clam meat. Firstly, HVACP conditions were optimized for gas composition and treatment time (20 and 60 s); a 70% Ar and 30% O2 gas mixture resulted in the highest ozone formation and a treatment time of 60 s was used for further study. COS-EGCG conjugate at 400 ppm with HVACP (ACP-CE400) completely killed V. parahaemolyticus after incubation at 37 °C for 6 h. Furthermore, an antibacterial ability of ACP-CE400 treatment against bacterial cells was advocated due to the increased cell membrane damage, permeability, and leakage of proteins and nucleic acids. Scanning electron microscopy (SEM) showed cell elongation and pore formation, while confocal microscopy revealed disrupted biofilm formation. Additionally, the shelf life of challenged blood clam meat treated with ACP-CE400 was extended to nine days. SEM analysis revealed damaged bacterial cells on the meat surface after ACP-CE400 treatment, indicating the antibacterial activity of the combined treatment. Thus, HVACP combined with COS-EGCG conjugate, especially at a highest concentration (400 ppm), effectively inhibited microbial growth and extended the shelf life of contaminated blood clam meat. Full article
(This article belongs to the Special Issue Research on Aquatic Product Processing and Quality Control)
Show Figures

Graphical abstract

21 pages, 2144 KiB  
Article
In Vitro Release and In Vivo Study of Recombinant TGF-β and EGCG from Dual Self-Cross-Linked Alginate-Di-Aldehyde In Situ Injectable Hydrogel for the Repair of a Degenerated Intervertebral Disc in a Rat Tail
by Bushra Begum, Seema Mudhol, Baseera Begum, Syeda Noor Madni, Sharath Honganoor Padmanabha, Vazir Ashfaq Ahmed and N. Vishal Gupta
Gels 2025, 11(8), 565; https://doi.org/10.3390/gels11080565 - 22 Jul 2025
Viewed by 268
Abstract
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are [...] Read more.
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are hindered by rapid degradation and uncontrolled release by direct administration. Additionally, mechanical stress elevates heat shock protein 90 (HSP-90), impairing cell function and extracellular matrix (ECM) production. This study aimed to investigate a dual self-cross-linked alginate di-aldehyde (ADA) hydrogel system for the sustained delivery of Rh-TGF-β and epigallocatechin gallate (EGCG) to enhance protein stability, regulate release, and promote disc regeneration by targeting both regenerative and stress-response pathways. Methods: ELISA and UV-Vis spectrophotometry assessed Rh-TGF-β and EGCG release profiles. A rat tail IVDD model was established with an Ilizarov-type external fixator for loading, followed by hydrogel treatment with or without bioactive agents. Disc height, tissue structure, and protein expression were evaluated via radiography, histological staining, immunohistochemistry, and Western blotting. Results: The hydrogel demonstrated a biphasic release profile with 100% Rh-TGF-β released over 60 days and complete EGCG release achieved within 15 days. Treated groups showed improved disc height, structural integrity, and proteoglycan retention revealed by histological analysis and elevated HSP-90 expression by immunohistochemistry. In contrast, Western blot analysis confirmed that EGCG effectively downregulated HSP-90 expression, suggesting a reduction in mechanical stress-induced degeneration. Conclusions: ADA hydrogel effectively delivers therapeutic agents, offering a promising strategy for IVDD treatment. Full article
Show Figures

Figure 1

21 pages, 13833 KiB  
Article
Machine Learning-Based Prognostic Signature in Breast Cancer: Regulatory T Cells, Stemness, and Deep Learning for Synergistic Drug Discovery
by Samina Gul, Jianyu Pang, Yongzhi Chen, Qi Qi, Yuheng Tang, Yingjie Sun, Hui Wang, Wenru Tang and Xuhong Zhou
Int. J. Mol. Sci. 2025, 26(14), 6995; https://doi.org/10.3390/ijms26146995 - 21 Jul 2025
Viewed by 342
Abstract
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast [...] Read more.
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast cancer stemness was calculated using one-class logistic regression. Twelve main cell clusters were identified, and the subsequent three subsets of Regulatory T cells with different differentiation states were identified as being closely related to immune regulation and metabolic pathways. A prognostic risk model including MEA1, MTFP1, PASK, PSENEN, PSME2, RCC2, and SH2D2A was generated through the intersection between Regulatory T cell differentiation-related genes and stemness-related genes using LASSO and univariate Cox regression. The patient’s total survival times were predicted and validated with AUC of 0.96 and 0.831 in both training and validation sets, respectively; the immunotherapeutic predication efficacy of prognostic signature was confirmed in four ICI RNA-Seq cohorts. Seven drugs, including Ethinyl Estradiol, Epigallocatechin gallate, Cyclosporine, Gentamicin, Doxorubicin, Ivermectin, and Dronabinol for prognostic signature, were screened through molecular docking and found a synergistic effect among drugs with deep learning. Our prognostic signature potentially paves the way for overcoming immune resistance, and blocking the interaction between cancer stemness and Tregs may be a new approach in the treatment of breast cancer. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 6631 KiB  
Article
Green Tea Extract Containing Epigallocatechin-3-Gallate Facilitates Bone Formation and Mineralization by Alleviating Iron-Overload-Induced Oxidative Stress in Human Osteoblast-like (MG-63) Cells
by Honghong Xu, Orawan Khantamat, Woranontee Korsieporn, Narisara Paradee, Jin Li, Yanping Zhong, Somdet Srichairatanakool and Pimpisid Koonyosying
Antioxidants 2025, 14(7), 874; https://doi.org/10.3390/antiox14070874 - 17 Jul 2025
Viewed by 355
Abstract
Secondary iron overload exacerbates osteoporosis by elevating reactive oxygen species (ROS), which suppress osteoblast function and enhance osteoclast activity, disrupting bone remodeling. Reducing iron overload and oxidative stress may improve bone health. Epigallocatechin-3-gallate (EGCG), the main bioactive compound in green tea extract (GTE), [...] Read more.
Secondary iron overload exacerbates osteoporosis by elevating reactive oxygen species (ROS), which suppress osteoblast function and enhance osteoclast activity, disrupting bone remodeling. Reducing iron overload and oxidative stress may improve bone health. Epigallocatechin-3-gallate (EGCG), the main bioactive compound in green tea extract (GTE), is recognized for its antioxidant and iron-chelating properties. This study examined the effect of GTE on bone formation and mineralization in iron-overloaded human osteoblast-like MG-63 cells. An iron-overloaded model was established using ferric ammonium citrate (FAC), followed by treatment with GTE, deferiprone (DFP), or their combination. GTE significantly reduced intracellular iron, ROS levels, and lipid peroxidation while upregulating the osteogenic marker BGLAP, the anti-resorptive marker OPG, and osteogenic mineralization, indicating restored bone health. These results suggest that EGCG-containing GTE mitigates iron-induced oxidative stress and promotes osteogenesis, highlighting its potential as a natural therapeutic supplement for managing iron-overload-associated osteoporosis. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

25 pages, 9865 KiB  
Article
Microencapsulation of Propolis by Complex Coacervation with Chia Mucilage and Gelatin: Antioxidant Stability and Functional Potential
by Carlos A. Ligarda-Samanez, David Choque-Quispe, Henry Palomino-Rincón, Elibet Moscoso-Moscoso, Rodrigo J. Guzmán Gutiérrez and Ismael Banda Mozo
Antioxidants 2025, 14(7), 845; https://doi.org/10.3390/antiox14070845 - 10 Jul 2025
Viewed by 466
Abstract
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation [...] Read more.
Propolis is a bee-derived resin rich in phenolic compounds known for their antioxidant, anti-inflammatory, and antimicrobial properties; however, its limited solubility and stability hinder its incorporation into food matrices. This study aimed to optimize the microencapsulation of ethanolic propolis extract through complex coacervation using chia mucilage and gelatin as wall materials, followed by spray drying. A 32 factorial design was applied to evaluate the effects of coacervate concentration and inlet temperature on various microcapsule properties. The optimal formulation (3.13% coacervate and 120 °C) exhibited high phenolic retention (15.36 mg GAE/g), notable antioxidant capacity (60.10 µmol TE/g), good solubility, thermal stability, and sustained in vitro release. Phenolic compounds were identified and quantified by UPLC-PDA-QDa, including gallic acid, catechin, epicatechin, epigallocatechin gallate, rutin, myricetin, resveratrol, quercetin, and kaempferol. Incorporating the microcapsules into functional gummy candies significantly enhanced their antioxidant activity without compromising sensory attributes. These findings support the use of complex coacervation as an effective strategy for stabilizing propolis bioactives, with promising applications in the development of functional foods that offer potential health benefits. Full article
Show Figures

Graphical abstract

17 pages, 8301 KiB  
Article
Composites of Pea Protein Nanofibril and Epigallocatechin Gallate: Formation Mechanism, Structural Characterization, and Antioxidant Activity
by Hailing Zhang, Yangxuan Yang, Yuting Fan and Jiang Yi
Foods 2025, 14(14), 2418; https://doi.org/10.3390/foods14142418 - 9 Jul 2025
Viewed by 316
Abstract
The EGCG/PPN composite, prepared by combining pea protein nanofibrils (PPNs) with epigallocatechin gallate (EGCG), could be used as a multifunctional nanocarrier. Compared to pea protein isolate (PPI), EGCG/PPN composites exhibited remarkably higher turbidity and zeta potential, along with similar UV spectra. Intrinsic fluorescence [...] Read more.
The EGCG/PPN composite, prepared by combining pea protein nanofibrils (PPNs) with epigallocatechin gallate (EGCG), could be used as a multifunctional nanocarrier. Compared to pea protein isolate (PPI), EGCG/PPN composites exhibited remarkably higher turbidity and zeta potential, along with similar UV spectra. Intrinsic fluorescence spectroscopy, ThT fluorescence spectroscopy, and surface hydrophobicity analysis suggested that the interactions between EGCG and PPN were primarily driven by hydrophobic forces. UV spectra indicated that the microenvironment of amino acid residues in the tertiary structure of the protein changes upon complexation, and circular dichroism (CD) revealed that the incorporation of EGCG increases the β-sheet content in the protein’s secondary structure. Analyses of DPPH and ABTS radical scavenging activity, as well as reducing power, demonstrated that the synergistic effect between EGCG and PPN did not hinder the inherent antioxidant properties of EGCG but rather enhanced them significantly. Transmission electron microscopy (TEM) images showed that the addition of EGCG reconstructed the fibril morphology, thereby affecting the properties of PPNs. Overall, the composite fabricated through the interaction between PPN and EGCG shows great potential as a nanocarrier in the processing of functional foods. Full article
Show Figures

Figure 1

11 pages, 4549 KiB  
Brief Report
Evidence of Time-Dependent Hepatic Cytotoxicity and Mitochondrial Remodelling Induced by Palmitoyl Epigallocatechin Gallate vs. Its Native (Poly)Phenol
by Concepción Medrano-Padial, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Molecules 2025, 30(13), 2889; https://doi.org/10.3390/molecules30132889 - 7 Jul 2025
Viewed by 427
Abstract
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability [...] Read more.
Lipophenols, combining phenolic and lipid characteristics in an amphiphilic molecule, offer unique bioactive properties with therapeutic potential, including anti-inflammatory and anti-oxidant effects. Thus, palmitoyl-epigallocatechin gallate (PEGCG), a lipophilic derivative of the extensively studied (poly)phenol epigallocatechin gallate (EGCG), has been stressed concerning enhanced stability in lipid-rich environments and bioavailability due to improved cellular uptake. Nonetheless, the effect of lipophilic esterification on some cellular processes, particularly at the mitochondrial level, remains underexplored. According to this knowledge gap, the present study uncovered the cytotoxic and mitochondrial effects of PEGCG, in vitro, upon the liver hepatocarcinoma cell line HepG2. The range of determinations developed, including the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, flow cytometry, and electron microscopy, allowed describing the distinct biological potential for both EGCG and PEGCG. Thus, while EGCG exhibited minimal cytotoxicity and apoptosis induction, PEGCG reduced cell viability dose-dependently at 24 h and triggered significant mitochondrial damage, including fragmentation and cristae loss, at 1 µmol/L. However, at 48 h, PEGCG-treated cells recovered viability and mitochondrial structure, suggesting the activation of adaptive mechanisms for the molecular changes induced by PEGCG. These findings underscore the dynamic interplay between lipophilic catechins and cellular stress responses, offering valuable insights into the PEGCG’s potential as a therapeutic agent and laying a foundation for further exploration of its biological power. Full article
Show Figures

Figure 1

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 947
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

16 pages, 811 KiB  
Systematic Review
The Impact of Green Tea and Its Bioactive Compounds on Mood Disorder Symptomology and Brain Derived Neurotrophic Factor: A Systematic Review of Randomized Controlled Trials
by Aidan M. Cavanah, Laura A. Robinson, Madison L. Mattingly and Andrew D. Frugé
Biomedicines 2025, 13(7), 1656; https://doi.org/10.3390/biomedicines13071656 - 7 Jul 2025
Viewed by 809
Abstract
Background/Objectives: Mood disorders include symptoms of depression, anxiety, and or stress, and have increased in prevalence. Green tea and its bioactive components (epigallocatechin gallate [EGCG] and L-theanine) have been investigated for their health benefits and neuroprotective properties. As adults seek integrative and [...] Read more.
Background/Objectives: Mood disorders include symptoms of depression, anxiety, and or stress, and have increased in prevalence. Green tea and its bioactive components (epigallocatechin gallate [EGCG] and L-theanine) have been investigated for their health benefits and neuroprotective properties. As adults seek integrative and alternative treatment modalities, it is relevant to determine the effects of natural and non-pharmacological treatments on humans. This study aimed to assess current evidence from published randomized controlled trials testing the effects of green tea, green tea extracts, or its bioactive compounds on mood disorder symptomology and brain-derived neurotrophic factor (BDNF). Methods: We searched PubMed, Cochrane Library, PsycINFO, Embase, Google Scholar, and ClinicalTrials.gov, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and utilizing predetermined inclusion and exclusion criteria. Results: A total of 445 studies were identified, 395 screened, and thirteen met inclusion criteria. Seven used one of the bioactive compounds found in green tea for intervention, while six used green tea extract, matcha, or traditional green tea. Mood disturbance was assessed with several tools, with studies reporting improvements in depressive (n = 4), anxiety (n = 6), stress (n = 5), and sleep (n = 1) symptoms. No studies found a statistically significant effect of green tea or its bioactive compounds on BDNF. Conclusions: Our findings suggest green tea, GTE, L-theanine, and EGCG may improve mood disorder symptomology, particularly symptoms of depression; no evidence to date reports effects on BDNF. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

Back to TopTop