Next Article in Journal
Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice
Next Article in Special Issue
Dietary Natural Products for Prevention and Treatment of Breast Cancer
Previous Article in Journal
Calcium Intake and the Risk of Ovarian Cancer: A Meta-Analysis
Previous Article in Special Issue
Fruits for Prevention and Treatment of Cardiovascular Diseases
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle

Effects of Epigallocatechin-3-Gallate on Autophagic Lipolysis in Adipocytes

College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
Vital Beautie Division, Amorepacific R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 17074, Korea
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Nutrients 2017, 9(7), 680;
Received: 20 May 2017 / Revised: 19 June 2017 / Accepted: 22 June 2017 / Published: 30 June 2017
(This article belongs to the Special Issue Effects of Polyphenol-Rich Foods on Human Health)
PDF [7577 KB, uploaded 30 June 2017]


Previous studies demonstrated effects of green tea on weight loss; however, green tea-induced modulation of adipocyte function is not fully understood. Here, we investigated effects of the major green tea phytochemical, epigallocatechin-3-gallate (EGCG) on triglyceride contents, lipolysis, mitochondrial function, and autophagy, in adipocytes differentiated from C3H10T1/2 cells and immortalized pre-adipocytes in vitro. EGCG reduced the triglycerol content significantly in adipocytes by 25%, comparable to the nutrient starvation state. EGCG did not affect protein kinase A signaling or brown adipocyte marker expression in adipocytes; however, EGCG increased autophagy, as measured by autophagy flux analysis and immunoblot analysis of LC3B, ATG7, and Beclin1. EGCG treatment reduced mitochondrial membrane potential by 56.8% and intracellular ATP levels by 49.1% compared to controls. Although mammalian target of rapamycin signaling was not upregulated by EGCG treatment, EGCG treatment induced AMP-activated protein kinase phosphorylation, indicating an energy-depleted state. In addition, EGCG increased the association between RAB7 and lipid droplets, suggesting that lipophagy was activated. Finally, knockdown of Rab7 attenuated the EGCG-dependent reduction in lipid contents. Collectively, these results indicated that EGCG upregulated autophagic lipolysis in adipocytes, supporting the therapeutic potential of EGCG as a caloric restriction mimetic to prevent obesity and obesity-related metabolic diseases. View Full-Text
Keywords: green tea; adipocytes; autophagy; epigallocatechin-3-gallate green tea; adipocytes; autophagy; epigallocatechin-3-gallate

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

Printed Edition Available!
A printed edition of this Special Issue is available here.

Share & Cite This Article

MDPI and ACS Style

Kim, S.-N.; Kwon, H.-J.; Akindehin, S.; Jeong, H.W.; Lee, Y.-H. Effects of Epigallocatechin-3-Gallate on Autophagic Lipolysis in Adipocytes. Nutrients 2017, 9, 680.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top