Phase Transition Behaviors of Poly(N-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Nanogels
2.2. Thermo-Responsive Properties of Nanogels with Different Compositions
2.3. Dynamic Isothermal Volume Change of Nanogels Induced by EG and EGCG
2.4. Thermo-Responsive Phase Transition Behaviors of Nanogels at Different Concentrations of EG and EGCG
3. Experimental Section
3.1. Materials
3.2. Preparation of Thermos-Sensitive Nanogels with Different Monomer Ratios
3.3. Scanning Electron Microscopy (SEM)
3.4. Fourier-Transform Infrared (FTIR) Spectroscopy
3.5. Thermogravimetric Analysis of Nanogels
3.6. DSC
3.7. Phase Transition Behaviors of Nanogels at Different Temperatures
3.8. Dynamic Isothermal Volume Changes of Nanogels Induced by EG and EGCG
3.9. Thermo-Responsive Phase Transition Behaviors of Nanogels in EG and EGCG Solutions with Different Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truong, V.-L.; Jeong, W.-S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. Food Sci. Hum. Wellness 2022, 11, 502–511. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013, 38, 236–270. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef]
- Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Seo, E.-J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine 2018, 47, 192–200. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Gędas, A.; Simões, M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res. Int. 2020, 134, 109214. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, C.; Zou, Y.; Hu, J.; Li, Y.; Cheng, Y. Natural polyphenols in drug delivery systems: Current status and future challenges. Giant 2020, 3, 100022. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Zhao, Y.; Pu, M.; Song, X.; Yu, L.; Yan, X.; Wu, J.; He, Z. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res. 2022, 15, 8156–8184. [Google Scholar] [CrossRef]
- Chen, S.; Fan, J.-X.; Zheng, D.-W.; Liu, F.; Zeng, X.; Yan, G.-P.; Zhang, X.-Z. A multi-functional drug delivery system based on polyphenols for efficient tumor inhibition and metastasis prevention. Biomater. Sci. 2020, 8, 702–711. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yang, P.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Polyphenol scaffolds in tissue engineering. Mater. Horiz. 2021, 8, 145–167. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Dai, J.; Wei, X.; Zhong, Y.; Liu, X.; Guo, D.; Wang, L.; Huang, Y.; Zhang, C.; Liu, Y. Characterization of recombinant GRIP32 as a novel haze protein for protein-polyphenol haze models and prevention of haze formation with polysaccharides in the models. LWT 2021, 136, 110317. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, Z.; Ju, Y.; Rahim, M.A.; Richardson, J.J.; Caruso, F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res. 2020, 53, 1269–1278. [Google Scholar] [CrossRef]
- Hu, G.; Luo, F.; Han, J.; Li, J.; Zhou, C.; Yang, C.; Wang, Z.; Yang, W.; Hu, Y. EGCG/HP-β-CD inclusion complexes integrated into PCL/Chitosan oligosaccharide nanofiber membranes developed by ELS for fruit packaging. Food Hydrocoll. 2023, 144, 108992. [Google Scholar] [CrossRef]
- Dridi, W.; Bordenave, N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohyd. Polym. 2021, 274, 118670. [Google Scholar] [CrossRef]
- Asadi, M.; Salehi, Z.; Akrami, M.; Hosseinpour, M.; Jockenhövel, S.; Ghazanfari, S. 3D printed pH-responsive tablets containing N-acetylglucosamine-loaded methylcellulose hydrogel for colon drug delivery applications. Int. J. Pharm. 2023, 645, 123366. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.T.; Haddow, P.; Kirton, S.B.; McAuley, W.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater. 2021, 31, 2008123. [Google Scholar] [CrossRef]
- Deng, K.; Du, P.; Liu, K.; Tao, X.; Harati, J.; Jhang, J.-W.; Kim, J.; Wang, P.-Y. Programming Colloidal Self-Assembled Patterns (cSAPs) into Thermo-Responsible Hybrid Surfaces for Controlling Human Stem Cells and Macrophages. ACS Appl. Mater. Interfaces 2021, 13, 18563–18580. [Google Scholar] [CrossRef]
- Koga, S.; Sasaki, S.; Maeda, H. Effect of hydrophobic substances on the volume-phase transition of N-isopropylacrylamide gels. J. Phys. Chem. B 2001, 105, 4105–4110. [Google Scholar] [CrossRef]
- Dhara, D.; Chatterji, P.R. Effect of hydrotropes on the volume phase transition in poly (N-isopropylacrylamide) hydrogel. Langmuir 1999, 15, 930–935. [Google Scholar] [CrossRef]
- Manek, E.; Domján, A.; Menyhárd, A.; László, K. Host–guest interactions in poly (N-isopropylacrylamide) gel: A thermoanalytical approach. J. Therm. Anal. Calorim. 2015, 120, 1273–1281. [Google Scholar] [CrossRef]
- László, K.; Manek, E.; Vavra, S.; Geissler, E.; Domján, A. Host–guest interactions in poly (N-isopropylacrylamide) hydrogels. Chem. Lett. 2012, 41, 1055–1056. [Google Scholar] [CrossRef]
- Kosik, K.; Wilk, E.; Geissler, E.; László, K. Distribution of phenols in thermoresponsive hydrogels. Macromolecules 2007, 40, 2141–2147. [Google Scholar] [CrossRef]
- Chen, G.; Niu, C.H.; Zhou, M.-Y.; Ju, X.-J.; Xie, R.; Chu, L.-Y. Phase transition behaviors of poly (N-isopropylacrylamide) microgels induced by tannic acid. J. Colloid. Interf. Sci. 2010, 343, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Mou, C.-L.; He, X.-H.; Ju, X.-J.; Xie, R.; Liu, Z.; Liu, L.; Zhang, Z.; Chu, L.-Y. Change in size and structure of monodisperse poly (N-isopropylacrylamide) microcapsules in response to varying temperature and ethyl gallate concentration. Chem. Eng. J. 2012, 210, 212–219. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, Y.; Gao, J.; Deng, Q.; Wan, C.; Li, B.; Zhou, B. Desalted duck egg white nanogels combined with κ-carrageenan as stabilisers for food-grade Pickering emulsion. Int. J. Food Sci. Technol. 2022, 57, 2819–2829. [Google Scholar] [CrossRef]
- Li, X.-M.; Wu, Z.-Z.; Zhang, B.; Pan, Y.; Meng, R.; Chen, H.-Q. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chem. 2019, 293, 197–203. [Google Scholar] [CrossRef]
- Pu, X.-Q.; Ju, X.-J.; Zhang, L.; Cai, Q.-W.; Liu, Y.-Q.; Peng, H.-Y.; Xie, R.; Wang, W.; Liu, Z.; Chu, L.-Y. Novel multifunctional stimuli-responsive nanoparticles for synergetic chemo–photothermal therapy of tumors. ACS Appl. Mater. Interfaces 2021, 13, 28802–28817. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liu, Y.; Zhang, H.; Zou, M.; Yan, D.; Chen, D.; Zhao, Y. A responsive porous hydrogel particle-based delivery system for oncotherapy. Nanoscale 2019, 11, 2687–2693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, H.; Abali, B.E.; Li, M.; Xia, Y.; Haag, R. Dynamic mechanics-modulated hydrogels to regulate the differentiation of stem-cell spheroids in soft microniches and modeling of the nonlinear behavior. Small 2019, 15, 1901920. [Google Scholar] [CrossRef]
- Kalaivani, T.; Rajasekaran, C.; Mathew, L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. Indica (Benth.) Brenan. J. Food Sci. 2011, 76, T144–T149. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, P.; Ling, T.; Wang, Y.; Dong, R.; Zhang, C.; Zhang, L.; Han, M.; Wang, D.; Wan, X. Certain (−)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chem. 2016, 204, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ma, D.; Luo, X.; Zhang, Z.; He, L.; Gao, Y.; McClements, D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018, 79, 450–461. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Xie, R.; Ju, X.-J.; Wang, W.; Pan, D.-W.; Chu, L.-Y. Poly (N-isopropylmethacrylamide-co-4-acrylamidobenzo-18-crown-6) microgels with expanded networks for excellent adsorption of lead (II) ions. Particuology 2023, 77, 105–115. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Ma, J.; Vancso, G.J. Thermoresponsive semi-IPN hydrogel microfibers from continuous fluidic processing with high elasticity and fast actuation. ACS Appl. Mater. Interfaces 2017, 9, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, P.K.; Krishnamoorthi, S.; Ganesan, V. Synthesis, characterization, and ion exchange voltammetry study on 2-acrylamido-2-methylpropane sulphonic acid and N-(hydroxymethyl) acrylamide-based copolymer. J. Appl. Polym. Sci. 2012, 123, 929–935. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, S.J.; Kim, I.Y.; Chung, T.D.; Kim, H.C.; Kim, S.I. Thermal characteristics of interpenetrating polymer networks composed of poly (vinyl alcohol) and poly (N-isopropylacrylamide). J. Appl. Polym. Sci. 2003, 90, 881–885. [Google Scholar] [CrossRef]
- Campora, S.; Mohsen, R.; Passaro, D.; Samir, H.; Ashraf, H.; Al-Mofty, S.E.-D.; Diab, A.A.; El-Sherbiny, I.M.; Snowden, M.J.; Ghersi, G. Functionalized poly (N-isopropylacrylamide)-based microgels in tumor targeting and drug delivery. Gels 2021, 7, 203. [Google Scholar] [CrossRef]
- Hirokawa, Y.; Tanaka, T. Volume phase transition in a non-ionic gel. In Proceedings of the AIP Conference Proceedings, 24–25 October 1984; American Institute of Physics: College Park, MD, USA, 1984; pp. 203–208. [Google Scholar]
- Kosik, K.; Wilk, E.; Geissler, E.; László, K. Interaction of phenols with thermo-responsive hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2008, 319, 159–164. [Google Scholar] [CrossRef]
NIPAM: NMAM | NIPAM (g) | NMAM (g) | MBA (g) | SDS (g) |
---|---|---|---|---|
10:1 | 1.132 | 0.1011 | 0.077 | 0.025 |
9:1 | 1.017 | 0.1011 | 0.077 | 0.025 |
8:1 | 0.905 | 0.1011 | 0.077 | 0.025 |
NIPAM: HEMA | NIPAM (g) | HEMA (μL) | MBA (g) | SDS (g) |
---|---|---|---|---|
99:1 | 1.1201 | 13 | 0.0314 | 0.0579 |
95:5 | 1.0705 | 65 | 0.0310 | 0.0579 |
90:10 | 1.0202 | 130 | 0.0311 | 0.0579 |
80:20 | 0.9053 | 243 | 0.0311 | 0.0579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, K.; Wang, Y.; Wang, L.; Fan, X.; Wu, Z.; Wen, X.; Xie, W.; Wang, H.; Zhou, Z.; Chen, P.; et al. Phase Transition Behaviors of Poly(N-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate. Molecules 2023, 28, 7823. https://doi.org/10.3390/molecules28237823
Deng K, Wang Y, Wang L, Fan X, Wu Z, Wen X, Xie W, Wang H, Zhou Z, Chen P, et al. Phase Transition Behaviors of Poly(N-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate. Molecules. 2023; 28(23):7823. https://doi.org/10.3390/molecules28237823
Chicago/Turabian StyleDeng, Ke, Yafei Wang, Lei Wang, Xianli Fan, Zhenyu Wu, Xue Wen, Wen Xie, Hong Wang, Zheng Zhou, Pengfei Chen, and et al. 2023. "Phase Transition Behaviors of Poly(N-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate" Molecules 28, no. 23: 7823. https://doi.org/10.3390/molecules28237823
APA StyleDeng, K., Wang, Y., Wang, L., Fan, X., Wu, Z., Wen, X., Xie, W., Wang, H., Zhou, Z., Chen, P., & Chen, X. (2023). Phase Transition Behaviors of Poly(N-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate. Molecules, 28(23), 7823. https://doi.org/10.3390/molecules28237823