-
Evaluation and Monitoring of the Natural Toxin Ptaquiloside in Bracken Fern, Meat, and Dairy Products
-
Artificial Substrates Coupled with qPCR (AS-qPCR) Assay for the Detection of the Toxic Benthopelagic Dinoflagellate Vulcanodinium rugosum
-
Montane Rattlesnakes in México: Venoms of Crotalus tancitarensis and Related Species within the Crotalus intermedius Group
-
Localization of Multiple Jellyfish Toxins Shows Specificity for Functionally Distinct Polyps and Nematocyst Types in a Colonial Hydrozoan
Journal Description
Toxins
Toxins
is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to toxinology and all kinds of toxins (biotoxins) from animals, microbes and plants. Toxins is published monthly online by MDPI. The French Society on Toxinology (SFET), International Society for Mycotoxicology (ISM), Japanese Society of Mycotoxicology (JSMYCO) and European Uremic Toxins (EUTox) Work Group are affiliated with Toxins and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, CAPlus / SciFinder, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Toxicology) / CiteScore - Q1 (Health, Toxicology and Mutagenesis)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.6 days after submission; acceptance to publication is undertaken in 3.4 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 6 topical sections.
Impact Factor:
5.075 (2021);
5-Year Impact Factor:
5.305 (2021)
Latest Articles
Evaluation of Tropane Alkaloids in Teas and Herbal Infusions: Effect of Brewing Time and Temperature on Atropine and Scopolamine Content
Toxins 2023, 15(6), 362; https://doi.org/10.3390/toxins15060362 - 27 May 2023
Abstract
Atropine and scopolamine belong to the tropane alkaloid (TA) family of natural toxins. They can contaminate teas and herbal teas and appear in infusions. Therefore, this study focused on analyzing atropine and scopolamine in 33 samples of tea and herbal tea infusions purchased
[...] Read more.
Atropine and scopolamine belong to the tropane alkaloid (TA) family of natural toxins. They can contaminate teas and herbal teas and appear in infusions. Therefore, this study focused on analyzing atropine and scopolamine in 33 samples of tea and herbal tea infusions purchased in Spain and Portugal to determine the presence of these compounds in infusions brewed at 97 °C for 5 min. A rapid microextraction technique (µSPEed®) followed by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) was used to analyze the selected TAs. The results showed that 64% of the analyzed samples were contaminated by one or both toxins. White and green teas were generally more contaminated than black and other herbal teas. Of the 21 contaminated samples, 15 had concentrations above the maximum limit for liquid herbal infusions (0.2 ng/mL) set by Commission Regulation (EU) 2021/1408. In addition, the effects of heating conditions (time and temperature) on atropine and scopolamine standards and naturally contaminated samples of white, green, and black teas were evaluated. The results showed that at the concentrations studied (0.2 and 4 ng/mL), there was no degradation in the standard solutions. Brewing with boiling water (decoction) for 5 and 10 min allowed for higher extraction of TAs from dry tea to infusion water.
Full article
(This article belongs to the Section Plant Toxins)
►
Show Figures
Open AccessArticle
Handheld Fluorescence Spectrometer Enabling Sensitive Aflatoxin Detection in Maize
Toxins 2023, 15(6), 361; https://doi.org/10.3390/toxins15060361 - 27 May 2023
Abstract
Aflatoxins are among the main carcinogens threatening food and feed safety while imposing major detection challenges to the agrifood industry. Today, aflatoxins are typically detected using destructive and sample-based chemical analysis that are not optimally suited to sense their local presence in the
[...] Read more.
Aflatoxins are among the main carcinogens threatening food and feed safety while imposing major detection challenges to the agrifood industry. Today, aflatoxins are typically detected using destructive and sample-based chemical analysis that are not optimally suited to sense their local presence in the food chain. Therefore, we pursued the development of a non-destructive optical sensing technique based on fluorescence spectroscopy. We present a novel compact fluorescence sensing unit, comprising both ultraviolet excitation and fluorescence detection in a single handheld device. First, the sensing unit was benchmarked against a validated research-grade fluorescence setup and demonstrated high sensitivity by spectrally separating contaminated maize powder samples with aflatoxin concentrations of 6.6 µg/kg and 11.6 µg/kg. Next, we successfully classified a batch of naturally contaminated maize kernels within three subsamples showing a total aflatoxin concentration of 0 µg/kg, 0.6 µg/kg and 1647.8 µg/kg. Consequently, our novel sensing methodology presents good sensitivity and high potential for integration along the food chain, paving the way toward improved food safety.
Full article
(This article belongs to the Special Issue Non-destructive Optical Sensing of Toxins in Agrifood Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Mycochemicals against Cancer Stem Cells
Toxins 2023, 15(6), 360; https://doi.org/10.3390/toxins15060360 - 25 May 2023
Abstract
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven
[...] Read more.
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, β-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between β-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.
Full article
(This article belongs to the Special Issue Advances in Research for the Potential Use of Plant Toxins)
►▼
Show Figures

Figure 1
Open AccessArticle
Genomic Insights into Virulence Factors and Multi-Drug Resistance in Clostridium perfringens IRMC2505A
by
, , , , and
Toxins 2023, 15(6), 359; https://doi.org/10.3390/toxins15060359 - 25 May 2023
Abstract
Clostridium perfringens is a spore-forming, Gram-positive anaerobic pathogen that causes several disorders in humans and animals. A multidrug-resistant Clostridium strain was isolated from the fecal sample of a patient who was clinically suspected of gastrointestinal infection and had a recent history of antibiotic
[...] Read more.
Clostridium perfringens is a spore-forming, Gram-positive anaerobic pathogen that causes several disorders in humans and animals. A multidrug-resistant Clostridium strain was isolated from the fecal sample of a patient who was clinically suspected of gastrointestinal infection and had a recent history of antibiotic exposure and diarrhea. The strain was identified by 16s rRNA sequencing as Clostridium perfringens. The strain’s pathogenesis was analyzed through its complete genome, specifically antimicrobial resistance-related genes. The Clostridium perfringens IRMC2505A genome contains 19 (Alr, Ddl, dxr, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, and S12p) antibiotic-susceptible genetic species according to the k-mer-based detection of antimicrobial resistance genes. Genome mapping using CARD and VFDB databases revealed significant (p-value = 1 × 10−26) genes with aligned reads against antibiotic-resistant genes or virulence factors, including phospholipase C, perfringolysin O, collagenase, hyaluronidase, alpha-clostripain, exo-alpha-sialidase, and sialidase activity. In conclusion, this is the first report on C. perfringens from Saudi Arabia that conducted whole genome sequencing of IRMC2505A and confirmed the strain as an MDR bacterium with several virulence factors. Developing control strategies requires a detailed understanding of the epidemiology of C. perfringens, its virulence factors, and regional antimicrobial resistance patterns.
Full article
(This article belongs to the Special Issue Toxin-Host Interaction of Clostridium Toxins)
►▼
Show Figures

Figure 1
Open AccessArticle
Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations
by
, , , , , , , , , , , , and
Toxins 2023, 15(6), 358; https://doi.org/10.3390/toxins15060358 - 25 May 2023
Abstract
Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased
[...] Read more.
Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased risk for endometrial adenocarcinomas or hyperplasia, breast cancer, and oxidative damage, although the underlying mechanisms remain unclear. Previous studies have monitored cellular processes through levels of transcripts associated with Phase I Xenobiotic Metabolism (Cyp6g1 and Cyp6a2), oxidative stress (hsp60 and hsp70), apoptosis (hid, grim, and reaper), and DNA damage genes (Dmp53). In this study, we evaluated the survival and genotoxicity of ZEN, as well as its effects on emergence rate and fecundity in Drosophila melanogaster. Additionally, we determined levels of reactive oxygen species (ROS) using the D. melanogaster flare and Oregon R(R)-flare strains, which differ in levels of Cyp450 gene expression. Our results showed that ZEN toxicity did not increase mortality by more than 30%. We tested three ZEN concentrations (100, 200, and 400 μM) and found that none of the concentrations were genotoxic but were cytotoxic. Taking into account that it has previously been demonstrated that ZEN administration increased hsp60 expression levels and apoptosis gene transcripts in both strains, the data agree with an increase in ROS and development and fecundity alterations. Since Drosophila lacks homologous genes for mammalian estrogen receptors alpha and beta, the effects of this mycotoxin can be explained by a mechanism different from estrogenic activity.
Full article
(This article belongs to the Special Issue Toxicology of Mycotoxins: Experimental Forward)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Next-Generation Sequencing for Venomics: Application of Multi-Enzymatic Limited Digestion for Inventorying the Snake Venom Arsenal
by
, , , , , , , and
Toxins 2023, 15(6), 357; https://doi.org/10.3390/toxins15060357 - 25 May 2023
Abstract
To improve the characterization of snake venom protein profiles, we report the application of a new generation of proteomic methodology to deeply characterize complex protein mixtures. The new approach, combining a synergic multi-enzymatic and a time-limited digestion (MELD), is a versatile and straightforward
[...] Read more.
To improve the characterization of snake venom protein profiles, we report the application of a new generation of proteomic methodology to deeply characterize complex protein mixtures. The new approach, combining a synergic multi-enzymatic and a time-limited digestion (MELD), is a versatile and straightforward protocol previously developed by our group. The higher number of overlapping peptides generated during MELD increases the quality of downstream peptide sequencing and of protein identification. In this context, this work aims at applying the MELD strategy to a venomics purpose for the first time, and especially for the characterization of snake venoms. We used four venoms as the test models for this proof of concept: two Elapidae (Dendroaspis polylepis and Naja naja) and two Viperidae (Bitis arietans and Echis ocellatus). Each venom was reduced and alkylated before being submitted to two different protocols: the classical bottom-up proteomics strategy including a digestion step with trypsin only, or MELD, which combines the activities of trypsin, Glu-C and chymotrypsin with a limited digestion approach. The resulting samples were then injected on an M-Class chromatographic system, and hyphenated to a Q-Exactive Mass Spectrometer. Toxins and protein identification were performed by Peaks Studio X+. The results show that MELD considerably improves the number of sequenced (de novo) peptides and identified peptides from protein databases, leading to the unambiguous identification of a greater number of toxins and proteins. For each venom, MELD was successful, not only in terms of the identification of the major toxins (increasing of sequence coverage), but also concerning the less abundant cellular components (identification of new groups of proteins). In light of these results, MELD represents a credible methodology to be applied as the next generation of proteomics approaches dedicated to venomic analysis. It may open new perspectives for the sequencing and inventorying of the venom arsenal and should expand global knowledge about venom composition.
Full article
(This article belongs to the Special Issue Omics Approaches to Study Toxins)
►▼
Show Figures

Figure 1
Open AccessReview
Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies
Toxins 2023, 15(6), 356; https://doi.org/10.3390/toxins15060356 - 24 May 2023
Abstract
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins,
[...] Read more.
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins, lectins, protease inhibitors, α-amylase inhibitors, canatoxin-like proteins and ureases, arcelins, antimicrobial peptides, and pore-forming toxins, are found in different plant parts, such as the roots, tubers, stems, fruits, buds, and foliage. Several investigations have been conducted to explore the potential applications of these plant proteins by analyzing their toxic effects and modes of action. In biomedical applications, such as crop protection, drug development, cancer therapy, and genetic engineering, toxic plant proteins have been utilized as potentially useful instruments due to their biological activities. However, these noxious metabolites can be detrimental to human health and cause problems when consumed in high amounts. This review focuses on different plant toxic proteins, their biological activities, and their mechanisms of action. Furthermore, possible usage and removal strategies for these proteins are discussed.
Full article
(This article belongs to the Special Issue Toxicity of Plant Toxins in Medicinal Herbs: What’s New?)
►▼
Show Figures

Figure 1
Open AccessArticle
MicotoXilico: An Interactive Database to Predict Mutagenicity, Genotoxicity, and Carcinogenicity of Mycotoxins
by
, , , , , and
Toxins 2023, 15(6), 355; https://doi.org/10.3390/toxins15060355 - 24 May 2023
Abstract
Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of
[...] Read more.
Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as Quantitative Structure–Activity Relationship (QSAR) models, can be used to rapidly assess chemical hazards by predicting different toxicological endpoints. In this work, for the first time, a comprehensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then, specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted that the developed QSAR models are compliant with the OECD regulatory criteria, and they can be used for regulatory purposes. Finally, all data were integrated into a web server that allows the exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity, genotoxicity, and carcinogenicity of non-regulated mycotoxins.
Full article
(This article belongs to the Special Issue Mycotoxins and Fungal Toxins: Current Status and Future Perspectives)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina (Limnospira sp.)
Toxins 2023, 15(6), 354; https://doi.org/10.3390/toxins15060354 - 24 May 2023
Abstract
Spirulina is consumed worldwide, in the form of food or dietary supplements, for its nutritional value and health potential. However, these products may contain cyanotoxins, including hepatotoxic microcystins (MCs), produced by cyanobacterial contaminants. The French spirulina market has the particularity of being supplied
[...] Read more.
Spirulina is consumed worldwide, in the form of food or dietary supplements, for its nutritional value and health potential. However, these products may contain cyanotoxins, including hepatotoxic microcystins (MCs), produced by cyanobacterial contaminants. The French spirulina market has the particularity of being supplied half-locally by approximately 180 small-scale spirulina production farms. Data about this particular production and possible contaminations with other cyanobacteria and MCs are scarce. Thus, we collected the results of MC analyses and total cyanobacteria counts, carried out between 2013 and 2021, from 95 French spirulina producers who agreed to share their data. These data consisted of MC concentrations determined with an enzyme-linked immunosorbent assay (ELISA) using 623 dry spirulina samples and 105 samples of spirulina cultures. In addition, potentially unsafe samples of dry spirulina were further investigated through mass spectrometry, as duplicate analysis. We confirmed that the situation of the French spirulina production stayed within the safe regulatory level in terms of MC levels. On the other hand, the inventory of cyanobacterial contaminants, based on 539 count results, included 14 taxa. We present their prevalence, interannual evolution and geographical distribution. We also suggested improvements in cultivation practices to limit their propagation.
Full article
(This article belongs to the Special Issue Cyanotoxins in the Food Chain)
►▼
Show Figures

Figure 1
Open AccessArticle
Pooled Safety Analysis of IncobotulinumtoxinA in the Treatment of Neurological Disorders in Adults
by
, , , , and
Toxins 2023, 15(6), 353; https://doi.org/10.3390/toxins15060353 - 23 May 2023
Abstract
►▼
Show Figures
The pooled incidences of treatment-emergent adverse events (TEAEs) were examined by indication using the integrated clinical database of Merz-sponsored, placebo-controlled, or repeat-dose studies of incobotulinumtoxinA in adults with cervical dystonia, blepharospasm, limb spasticity, sialorrhea, or essential tremor of the upper limb. Overall incidences
[...] Read more.
The pooled incidences of treatment-emergent adverse events (TEAEs) were examined by indication using the integrated clinical database of Merz-sponsored, placebo-controlled, or repeat-dose studies of incobotulinumtoxinA in adults with cervical dystonia, blepharospasm, limb spasticity, sialorrhea, or essential tremor of the upper limb. Overall incidences of TEAEs, serious TEAEs, TEAEs leading to discontinuation, fatal TEAEs, TEAEs of special interest (TEAESIs; indicating possible toxin spread), and treatment-related (TR) events were determined for incobotulinumtoxinA and placebo after a single injection and for repeated dose cycles of incobotulinumtoxinA. The most frequent events after a single dose of incobotulinumtoxinA are summarized. After a single cycle, incidences of overall TEAEs were similar between incobotulinumtoxinA and the placebo in most indications, although between-indication differences were observed. Few TEAEs led to incobotulinumtoxinA discontinuation; there were no fatal TEAEs with incobotulinumtoxinA. In general, repeated cycles did not increase the incidence of any event. The most frequent TR-TEAEs were indication-dependent, including dysphagia for indications affecting the head or neck. The TR-TEAESIs across all indications were most commonly muscular weakness, dysphagia and dry mouth. Overall, the results of this pooled analysis support and extend the favorable safety and tolerability profile of incobotulinumtoxinA for the treatment of adult neurological disorders established by individual clinical studies.
Full article

Figure 1
Open AccessCase Report
Children Growing Up with Severe Disabilities as a Result of Snakebite Envenomations in Indigenous Villages of the Brazilian Amazon: Three Cases and Narratives
by
, , , , , , , , , and
Toxins 2023, 15(6), 352; https://doi.org/10.3390/toxins15060352 (registering DOI) - 23 May 2023
Abstract
Snakebites are a major public health problem in the Brazilian Amazon and may lead to local complications and physical deficiencies. Access to antivenom treatment is poorer in indigenous populations compared to other populations. In this study, we report three cases of long-term severe
[...] Read more.
Snakebites are a major public health problem in the Brazilian Amazon and may lead to local complications and physical deficiencies. Access to antivenom treatment is poorer in indigenous populations compared to other populations. In this study, we report three cases of long-term severe disabilities as a result of Bothrops atrox snakebites in indigenous children, according to the narratives of the parents. The three cases evolved to compartment syndrome, secondary bacterial infection and extensive necrosis. The cases are associated with delayed antivenom treatment due to very fragmented therapeutic itineraries, which are marked by several changes in means of transport along the route. The loss of autonomy at such an early stage of life due to a disability caused by a snakebite, as observed in this study, may deprive children of sensory and social experiences and of learning their future roles in the community. In common to all cases, there was precarious access to rehabilitation services, which are generally centralized in the state capital, and which leads to a prolonged hospitalization of patients with severe snakebite, and distances them from their territory and family and community ties. Prospective studies should be conducted in the Amazon that estimate the burden of disabilities from snakebites in order to formulate public policies for the treatment and rehabilitation of patients through culturally tailored interventions.
Full article
(This article belongs to the Special Issue Venoms and Toxin-Mediated Local Manifestations)
►▼
Show Figures

Figure 1
Open AccessArticle
Multicolor Visual Detection of Deoxynivalenol in Grain Based on Magnetic Immunoassay and Enzymatic Etching of Plasmonic Gold Nanobipyramids
Toxins 2023, 15(6), 351; https://doi.org/10.3390/toxins15060351 (registering DOI) - 23 May 2023
Abstract
In this study, a multicolor visual method based on a magnetic immunoassay and enzyme-induced gold nanobipyramids (Au NBPs) etching was developed for deoxynivalenol (DON) detection. The magnetic beads modified with high affinity DON monoclonal antibodies were used as a carrier for target enrichment
[...] Read more.
In this study, a multicolor visual method based on a magnetic immunoassay and enzyme-induced gold nanobipyramids (Au NBPs) etching was developed for deoxynivalenol (DON) detection. The magnetic beads modified with high affinity DON monoclonal antibodies were used as a carrier for target enrichment and signal transformation and the Au NBPs with excellent plasmonic optical properties were served as enzymatic etching substrates. The oxidation state TMB, which was generated through catalysis of horseradish peroxidase (HRP), induced the etching of plasmonic Au NBPs, resulting in the longitudinal peak blue-shift of local surface plasmon resonance (LSPR). Correspondingly, Au NBPs with various aspect ratios displayed a variety of individual colors which were visualized by the naked eye. The LSPR peak shift was linearly related to the DON concentration in the range of 0~2000 ng/mL and the detection limit was 57.93 ng/mL. The recovery for naturally contaminated wheat and maize at different concentrations ranged from 93.7% to 105.7% with a good relative standard deviation below 11.8%. Through observing the color change in Au NBPs, samples with overproof DON could be screened preliminarily by the naked eye. The proposed method has the potential to be applied in on-site rapid screening of mycotoxins in grain. In addition, the current multicolor visual method only used for the simultaneous detection of multiple mycotoxins is in urgent need of a breakthrough to overcome the limitation of single mycotoxin detection.
Full article
(This article belongs to the Special Issue Last Studies on Mycotoxins’ Fate during Food and Herbal Medicine Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
Phylogeny-Related Variations in Venomics: A Test in a Subset of Habu Snakes (Protobothrops)
by
, , , , , , and
Toxins 2023, 15(5), 350; https://doi.org/10.3390/toxins15050350 - 21 May 2023
Abstract
We conducted a comparative analysis to unveil the divergence among venoms from a subset of Old World habu snakes (Protobothrops) in terms of venomic profiles and toxicological and enzymatic activities. A total of 14 protein families were identified in the venoms
[...] Read more.
We conducted a comparative analysis to unveil the divergence among venoms from a subset of Old World habu snakes (Protobothrops) in terms of venomic profiles and toxicological and enzymatic activities. A total of 14 protein families were identified in the venoms from these habu snakes, and 11 of them were shared among these venoms. The venoms of five adult habu snakes were overwhelmingly dominated by SVMP (32.56 ± 13.94%), PLA2 (22.93 ± 9.26%), and SVSP (16.27 ± 4.79%), with a total abundance of over 65%, while the subadult P. mangshanensis had an extremely low abundance of PLA2 (1.23%) but a high abundance of CTL (51.47%), followed by SVMP (22.06%) and SVSP (10.90%). Apparent interspecific variations in lethality and enzymatic activities were also explored in habu snake venoms, but no variations in myotoxicity were found. Except for SVSP, the resemblance of the relatives within Protobothrops in other venom traits was estimated to deviate from Brownian motion evolution based on phylogenetic signals. A comparative analysis further validated that the degree of covariation between phylogeny and venom variation is evolutionarily labile and varies among clades of closely related snakes. Our findings indicate a high level of interspecific variation in the venom proteomes of habu snakes, both in the presence or absence and the relative abundance of venom protein families, and that these venoms might have evolved under a combination of adaptive and neutral mechanisms.
Full article
(This article belongs to the Section Animal Venoms)
►▼
Show Figures

Figure 1
Open AccessArticle
Bioactives Overproduction through Operational Strategies in the Ichthyotoxic Microalga Heterosigma akashiwo Culture
by
, , , , , , and
Toxins 2023, 15(5), 349; https://doi.org/10.3390/toxins15050349 - 20 May 2023
Abstract
The red tide-forming microalga Heterosigma akashiwo has been associated with massive events of fish deaths, both wild and cultured. Culture conditions are responsible for the synthesis or accumulation of some metabolites with different interesting bioactivities. H. akashiwo LC269919 strain was grown in a
[...] Read more.
The red tide-forming microalga Heterosigma akashiwo has been associated with massive events of fish deaths, both wild and cultured. Culture conditions are responsible for the synthesis or accumulation of some metabolites with different interesting bioactivities. H. akashiwo LC269919 strain was grown in a 10 L bubble column photobioreactor artificially illuminated with multi-coloured LED lights. Growth and production of exopolysaccharides, polyunsaturated fatty acids (PUFAs), and carotenoids were evaluated under different culture modes (batch, fed-batch, semicontinuous, and continuous) at two irradiance levels (300 and 700 µE·s−1·m−2). Continuous mode at the dilution rate of 0.2·day−1 and 700 µE·s−1·m−2 provided the highest production of biomass, PUFAs (132.6 and 2.3 mg·L−1·day−1), and maximum fucoxanthin productivity (0.16 mg·L−1·day−1). The fed-batch mode accumulated exopolysaccharides in a concentration (1.02 g·L−1) 10-fold over the batch mode. An extraction process based on a sequential gradient partition with water and four water-immiscible organic solvents allowed the isolation of bioactive fucoxanthin from methanolic extracts of H. akashiwo. Metabolites present in H. akashiwo, fucoxanthin and polar lipids (i.e., eicosapentaenoic acid (EPA)), or probably such as phytosterol (β-Sitosterol) from other microalgae, were responsible for the antitumor activity obtained.
Full article
(This article belongs to the Section Marine and Freshwater Toxins)
►▼
Show Figures

Figure 1
Open AccessArticle
Biological Activity of Naphthoquinones Derivatives in the Search of Anticancer Lead Compounds
by
, , , , , , and
Toxins 2023, 15(5), 348; https://doi.org/10.3390/toxins15050348 - 20 May 2023
Abstract
Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it
[...] Read more.
Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it is also worth mentioning that many anticancer drugs possess a naphthoquinone backbone in their structure. Considering this background, the work described herein reports the evaluation of the cytotoxicity of different acyl and alkyl derivatives from juglone and lawsone that showed the best activity results from a etiolated wheat coleoptile bioassay. This bioassay is rapid, highly sensitive to a wide spectrum of activities, and is a powerful tool for detecting biologically active natural products. A preliminary cell viability bioassay was performed on cervix carcinoma (HeLa) cells for 24 h. The most promising compounds were further tested for apoptosis on different tumoral (IGROV-1 and SK-MEL-28) and non-tumoral (HEK-293) cell lines by flow cytometry. Results reveal that derivatives from lawsone (particularly derivative 4) were more cytotoxic on tumoral than in non-tumoral cells, showing similar results to those obtained with of etoposide, which is used as a positive control for apoptotic cell death. These findings encourage further studies on the development of new anticancer drugs for more directed therapies and reduced side effects with naphthoquinone skeleton.
Full article
(This article belongs to the Special Issue Biological Activities and Potential Applications of Phytotoxins)
►▼
Show Figures

Figure 1
Open AccessArticle
The Potent Antitumor Activity of Smp43 against Non-Small-Cell Lung Cancer A549 Cells via Inducing Membranolysis and Mitochondrial Dysfunction
by
, , , , , , , and
Toxins 2023, 15(5), 347; https://doi.org/10.3390/toxins15050347 - 19 May 2023
Abstract
Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its
[...] Read more.
Research has been conducted to investigate the potential application of scorpion venom-derived peptides in cancer therapy. Smp43, a cationic antimicrobial peptide from Scorpio maurus palmatus venom, has been found to exhibit suppressive activity against the proliferation of multiple cancer cell lines. However, its impact on non-small-cell lung cancer (NSCLC) cell lines has not been previously investigated. This study aimed to determine the cytotoxicity of Smp43 towards various NSCLC cell lines, particularly A549 cells with an IC50 value of 2.58 μM. The results indicated that Smp43 was internalized into A549 cells through membranolysis and endocytosis, which caused cytoskeleton disorganization, a loss of mitochondrial membrane potential, an accumulation of reactive oxygen species (ROS), and abnormal apoptosis, cell cycle distribution, and autophagy due to mitochondrial dysfunction. Additionally, the study explored the in vivo protective effect of Smp43 in xenograft mice. The findings suggest that Smp43 has potential anticarcinoma properties exerted via the inducement of cellular processes related to cell membrane disruption and mitochondrial dysfunction.
Full article
(This article belongs to the Special Issue Animal Venom: Challenges and Perspectives in Drug Discovery)
►▼
Show Figures

Graphical abstract
Open AccessReview
Toxicity of House Plants to Pet Animals
Toxins 2023, 15(5), 346; https://doi.org/10.3390/toxins15050346 - 19 May 2023
Abstract
Cases of ingestion of indoor poisonous plants are relatively common among animals and lead to both acute cases of poisoning and long-term exposure to harmful substances and chronic damage to the animal’s health. Plants produce a large number of secondary metabolites, which serve
[...] Read more.
Cases of ingestion of indoor poisonous plants are relatively common among animals and lead to both acute cases of poisoning and long-term exposure to harmful substances and chronic damage to the animal’s health. Plants produce a large number of secondary metabolites, which serve to protect the plant from attacks by insects, parasitic plants, fungi or, for example, during reproduction. However, these metabolites can be toxic if ingested by animals or humans. Toxicologically effective components found in plants are mainly alkaloids, glycosides, saponins, terpenes and others. This review article describes in detail the most common and popular indoor poisonous plants grown in Europe, the mechanisms of action of their active substances and clinical signs of the respective poisonings. This manuscript is supplemented with rich photographic documentation of these plants not found in similar articles, and also includes a description of the treatment of individual types of poisoning.
Full article
(This article belongs to the Special Issue Animal Poisoning: Toxins from Plants or Feed)
►▼
Show Figures

Figure 1
Open AccessArticle
Antimicrobial Peptide Arsenal Predicted from the Venom Gland Transcriptome of the Tropical Trap-Jaw Ant Odontomachus chelifer
by
, , , , , and
Toxins 2023, 15(5), 345; https://doi.org/10.3390/toxins15050345 - 18 May 2023
Abstract
With about 13,000 known species, ants are the most abundant venomous insects. Their venom consists of polypeptides, enzymes, alkaloids, biogenic amines, formic acid, and hydrocarbons. In this study, we investigated, using in silico techniques, the peptides composing a putative antimicrobial arsenal from the
[...] Read more.
With about 13,000 known species, ants are the most abundant venomous insects. Their venom consists of polypeptides, enzymes, alkaloids, biogenic amines, formic acid, and hydrocarbons. In this study, we investigated, using in silico techniques, the peptides composing a putative antimicrobial arsenal from the venom gland of the neotropical trap-jaw ant Odontomachus chelifer. Focusing on transcripts from the body and venom gland of this insect, it was possible to determine the gland secretome, which contained about 1022 peptides with putative signal peptides. The majority of these peptides (75.5%) were unknown, not matching any reference database, motivating us to extract functional insights via machine learning-based techniques. With several complementary methodologies, we investigated the existence of antimicrobial peptides (AMPs) in the venom gland of O. chelifer, finding 112 non-redundant candidates. Candidate AMPs were predicted to be more globular and hemolytic than the remaining peptides in the secretome. There is evidence of transcription for 97% of AMP candidates across the same ant genus, with one of them also verified as translated, thus supporting our findings. Most of these potential antimicrobial sequences (94.8%) matched transcripts from the ant’s body, indicating their role not solely as venom toxins.
Full article
(This article belongs to the Special Issue Ant Venom)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effect of Monocerin, a Fungal Secondary Metabolite, on Endothelial Cells
by
, , , , , , and
Toxins 2023, 15(5), 344; https://doi.org/10.3390/toxins15050344 - 18 May 2023
Abstract
This study reports the isolation and identification of the endophytic fungus Exserohilum rostratum through molecular and morphological analysis using optical and transmission electron microscopy (TEM), as well as the procurement of its secondary metabolite monocerin, an isocoumarin derivative. Considering the previously observed biological
[...] Read more.
This study reports the isolation and identification of the endophytic fungus Exserohilum rostratum through molecular and morphological analysis using optical and transmission electron microscopy (TEM), as well as the procurement of its secondary metabolite monocerin, an isocoumarin derivative. Considering the previously observed biological activities of monocerin, this study was performed on human umbilical vein endothelial cells (HUVECs) that are widely used as an in vitro model for several different purposes. Important parameters, such as cell viability, senescence-associated β-galactosidase, cellular proliferation by using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CFSE), apoptosis analysis with annexin, cellular morphology through scanning electron microscopy (SEM), and laser confocal analysis were evaluated after exposing the cells to monocerin. After 24 h of exposure to monocerin at 1.25 mM, there was more than 80% of cell viability and a low percentage of cells in the early and late apoptosis and necrosis. Monocerin increased cell proliferation and did not induce cell senescence. Morphological analysis showed cellular integrity. The study demonstrates aspects of the mechanism of action of monocerin on endothelial cell proliferation, suggesting the possibility of its pharmaceutical application, such as in regenerative medicine.
Full article
(This article belongs to the Collection Editorial Board Members’ Collection Series: Fungal Metabolites: From Toxins to Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
Behavioral and Physiological Alterations in Angus Steers Grazing Endophyte-Infected Toxic Fescue during Late Fall
by
, , , , , and
Toxins 2023, 15(5), 343; https://doi.org/10.3390/toxins15050343 - 18 May 2023
Abstract
Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate
[...] Read more.
Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E−) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E− and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.
Full article
(This article belongs to the Section Mycotoxins)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Toxins Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Future Pharmacology, NeuroSci, Pharmaceuticals, Pharmaceutics, Toxins
Pharmacology and Toxicology of Amphetamine Type Stimulants
Topic Editors: João Paulo Capela, Vera Marisa CostaDeadline: 30 June 2023
Topic in
Agriculture, Animals, Fermentation, Microorganisms, Toxins
Fungi and Their Metabolites Affecting Quality, Safety and Functionality of Silage
Topic Editors: Siran Wang, Qing Zhang, Lin Sun, Huili Pang, Musen WangDeadline: 1 August 2023
Topic in
IJERPH, JoX, Pollutants, Toxics, Toxins
Environmental Exposure, Biomonitoring and Exposure Assessment
Topic Editors: Roel Vermeulen, Lauren Petrick, Maaike van GerwenDeadline: 30 September 2023
Topic in
Biology, CIMB, IJMS, Metabolites, Plants, Toxins
Metals in Plant Metabolism and Physiology
Topic Editors: Jozef Kovacik, Ildikó MatušíkováDeadline: 31 October 2023

Conferences
Special Issues
Special Issue in
Toxins
Botulinum Neurotoxin: Shared/Common Mechanisms in the Treatment of Pain, Spasticity and Movement Disorders
Guest Editors: Giorgio Sandrini, Stefano Tamburin, Roberto De IccoDeadline: 9 June 2023
Special Issue in
Toxins
Human Biomonitoring and Risk Assessment of Mycotoxins
Guest Editor: Marcel MengelersDeadline: 1 July 2023
Special Issue in
Toxins
Continental Toxic Algae and Their Ecological Impact
Guest Editor: Marina AboalDeadline: 15 July 2023
Topical Collections
Topical Collection in
Toxins
Leading Opinions (Closed)
Collection Editors: Holger Scheib, Gudula Schmidt, Marc Maresca
Topical Collection in
Toxins
Fusarium Toxins – Relevance for Human and Animal Health
Collection Editor: Sven Dänicke
Topical Collection in
Toxins
Immunotoxins 2016
Collection Editors: Tomas Girbes, David J. FitzgeraldConference Reports
Toxins 2023, 15(3), 174; https://doi.org/10.3390/toxins15030174
Toxins 2023, 15(2), 126; https://doi.org/10.3390/toxins15020126