Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1880 KiB  
Article
Occurrence and Ear Damage of Helicoverpa zea on Transgenic Bacillus thuringiensis Maize in the Field in Texas, U.S. and Its Susceptibility to Vip3A Protein
by Fei Yang, José C. Santiago González, Jayme Williams, Donald C. Cook, Ryan T. Gilreath and David L. Kerns
Toxins 2019, 11(2), 102; https://doi.org/10.3390/toxins11020102 - 9 Feb 2019
Cited by 81 | Viewed by 5607
Abstract
The corn earworm, Helicoverpa zea (Boddie), is a major pest of Bacillus thuringiensis (Bt) maize and cotton in the U.S. Reduced efficacy of Bt plants expressing Cry1 and Cry2 against H. zea has been reported in some areas of the U.S. In this [...] Read more.
The corn earworm, Helicoverpa zea (Boddie), is a major pest of Bacillus thuringiensis (Bt) maize and cotton in the U.S. Reduced efficacy of Bt plants expressing Cry1 and Cry2 against H. zea has been reported in some areas of the U.S. In this study, we evaluated the occurrence and ear damage of H. zea on transgenic Bt maize expressing Cry proteins or a combination of Vip3A and Cry proteins in the field in Texas in 2018. We found that the occurrence of H. zea larvae and the viable kernel damage area on the ear were not different between non-Bt maize and Bt maize expressing Cry1A.105+Cry2Ab2 and Cry1Ab+Cry1F proteins. A total of 67.5% of the pyramided Bt maize expressing Cry1Ab+Cry1F+Vip3A was damaged by 2nd–4th instar larvae of H. zea. Diet bioassays showed that the resistance ratio against Vip3Aa51 for H. zea obtained from Cry1Ab+Cry1F+Vip3A maize was 20.4 compared to a field population collected from Cry1F+Cry1A.105+Cry2Ab2 maize. Leaf tissue bioassays showed that 7-day survivorship on WideStrike3 (Cry1F+Cry1Ac+Vip3A) cotton leaves was significantly higher for the H. zea population collected from Cry1Ab+Cry1F+Vip3A maize than for a Bt-susceptible laboratory population. The results generated from this study suggest that H. zea has evolved practical resistance to Cry1 and Cry2 proteins. Therefore, it is crucial to ensure the sustainable use of the Vip3A technology in Bt maize and cotton. Full article
(This article belongs to the Special Issue Insecticidal Toxins from Bacillus thuringiensis)
Show Figures

Figure 1

15 pages, 521 KiB  
Article
De Novo Assessment and Review of Pan-American Pit Viper Anticoagulant and Procoagulant Venom Activities via Kinetomic Analyses
by Vance G. Nielsen, Nathaniel Frank and Sam Afshar
Toxins 2019, 11(2), 94; https://doi.org/10.3390/toxins11020094 - 6 Feb 2019
Cited by 19 | Viewed by 3614
Abstract
Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. [...] Read more.
Snakebite with hemotoxic venom continues to be a major source of morbidity and mortality worldwide. Our laboratory has characterized the coagulopathy that occurs in vitro in human plasma via specialized thrombelastographic methods to determine if venoms are predominantly anticoagulant or procoagulant in nature. Further, the exposure of venoms to carbon monoxide (CO) or O-phenylhydroxylamine (PHA) modulate putative heme groups attached to key enzymes has also provided mechanistic insight into the multiple different activities contained in one venom. The present investigation used these techniques to characterize fourteen different venoms obtained from snakes from North, Central, and South America. Further, we review and present previous thrombelastographic-based analyses of eighteen other species from the Americas. Venoms were found to be anticoagulant and procoagulant (thrombin-like activity, thrombin-generating activity). All prospectively assessed venom activities were determined to be heme-modulated except two, wherein both CO and its carrier molecule were found to inhibit activity, while PHA did not affect activity (Bothriechis schlegelii and Crotalus organus abyssus). When divided by continent, North and Central America contained venoms with mostly anticoagulant activities, several thrombin-like activities, with only two thrombin-generating activity containing venoms. In contrast, most venoms with thrombin-generating activity were located in South America, derived from Bothrops species. In conclusion, the kinetomic profiles of venoms obtained from thirty-two Pan-American Pit Viper species are presented. It is anticipated that this approach will be utilized to identify clinically relevant hemotoxic venom enzymatic activity and assess the efficacy of locally delivered CO or systemically administered antivenoms. Full article
(This article belongs to the Special Issue Assessment of Animal Toxin Function with Novel Viscoelastic Methods)
Show Figures

Figure 1

18 pages, 2372 KiB  
Article
Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights into Venom Proteome, Toxicity and Neutralization of Antivenom
by Choo Hock Tan, Kae Yi Tan, Tzu Shan Ng, Evan S.H. Quah, Ahmad Khaldun Ismail, Sumana Khomvilai, Visith Sitprija and Nget Hong Tan
Toxins 2019, 11(2), 95; https://doi.org/10.3390/toxins11020095 - 6 Feb 2019
Cited by 42 | Viewed by 7138
Abstract
Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron’s Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected [...] Read more.
Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron’s Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected to nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic profiling. Snake venom metalloproteinases (SVMP) dominated the venom proteome by 48.42% of total venom proteins, with a characteristic distribution of P-III: P-II classes in a ratio of 2:1, while P-I class was undetected. Snaclecs constituted the second most venomous protein family (19.43%), followed by snake venom serine proteases (SVSP, 14.27%), phospholipases A2 (5.40%), disintegrins (5.26%) and minor proteins including cysteine-rich secretory proteins, L-amino acid oxidases, phosphodiesterases, 5′-nucleotidases. The venomic profile correlates with local (painful progressive edema) and systemic (hemorrhage, coagulopathy, thrombocytopenia) manifestation of T. nebularis envenoming. As specific antivenom is unavailable for T. nebularis, the hetero-specific Thai Green Pit viper Monovalent Antivenom (GPVAV) was examined for immunological cross-reactivity. GPVAV exhibited good immunoreactivity to T. nebularis venom and the antivenom effectively cross-neutralized the hemotoxic and lethal effects of T. nebularis (lethality neutralizing potency = 1.6 mg venom per mL antivenom). The findings supported GPVAV use in treating T. nebularis envenoming. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

21 pages, 5071 KiB  
Article
Chronic In Vivo Effects of Repeated Exposure to Low Oral Doses of Tetrodotoxin: Preliminary Evidence of Nephrotoxicity and Cardiotoxicity
by Andrea Boente-Juncal, Carmen Vale, Manuel Cifuentes, Paz Otero, Mercedes Camiña, Mercedes Rodriguez-Vieytes and Luis Miguel Botana
Toxins 2019, 11(2), 96; https://doi.org/10.3390/toxins11020096 - 6 Feb 2019
Cited by 19 | Viewed by 4434
Abstract
Tetrodotoxin (TTX) is one of the most potent naturally occurring neurotoxins. Initially TTX was associated with human food intoxications in Japan, but nowadays, concerns about the human health risks posed by TTX have increased in Europe after the identification of the toxin in [...] Read more.
Tetrodotoxin (TTX) is one of the most potent naturally occurring neurotoxins. Initially TTX was associated with human food intoxications in Japan, but nowadays, concerns about the human health risks posed by TTX have increased in Europe after the identification of the toxin in fish, marine gastropods, and bivalves captured in European waters. Even when TTX monitoring is not currently performed in Europe, an acute oral no observable effect level (NOAEL) of 75 μg/kg has been recently established but, to date, no studies evaluating the chronic oral toxicity of TTX have been released, even when EFSA has highlighted the need for them. Thus, in this work, the chronic effects of low oral TTX doses (below the acute lethal dose 50) were evaluated following internationally adopted guidelines. The results presented here demonstrate that low oral doses of TTX have deleterious effects on renal and cardiac tissues. Moreover, alterations in blood biochemistry parameters, urine production, and urinalysis data were already detected at the oral dose of 75 µg/kg after the 28 days exposure. Thus, the data presented here constitute an initial approach for the chronic evaluation of the in vivo toxicity of tetrodotoxin after its ingestion through contaminated fishery products. Full article
(This article belongs to the Special Issue Marine Toxins Affecting Neuronal Function)
Show Figures

Figure 1

26 pages, 3562 KiB  
Article
RNA-Seq Transcriptome Profiling of the Queen Scallop (Aequipecten opercularis) Digestive Gland after Exposure to Domoic Acid-Producing Pseudo-nitzschia
by Pablo Ventoso, Antonio J. Pazos, M. Luz Pérez-Parallé, Juan Blanco, Juan C. Triviño and José L. Sánchez
Toxins 2019, 11(2), 97; https://doi.org/10.3390/toxins11020097 - 6 Feb 2019
Cited by 20 | Viewed by 6396
Abstract
Some species of the genus Pseudo-nitzschia produce the toxin domoic acid, which causes amnesic shellfish poisoning (ASP). Given that bivalve mollusks are filter feeders, they can accumulate these toxins in their tissues. To elucidate the transcriptional response of the queen scallop Aequipecten opercularis [...] Read more.
Some species of the genus Pseudo-nitzschia produce the toxin domoic acid, which causes amnesic shellfish poisoning (ASP). Given that bivalve mollusks are filter feeders, they can accumulate these toxins in their tissues. To elucidate the transcriptional response of the queen scallop Aequipecten opercularis after exposure to domoic acid-producing Pseudo-nitzschia, the digestive gland transcriptome was de novo assembled using an Illumina HiSeq 2000 platform. Then, a differential gene expression analysis was performed. After the assembly, 142,137 unigenes were obtained, and a total of 10,144 genes were differentially expressed in the groups exposed to the toxin. Functional enrichment analysis found that 374 Pfam (protein families database) domains were significantly enriched. The C1q domain, the C-type lectin, the major facilitator superfamily, the immunoglobulin domain, and the cytochrome P450 were among the most enriched Pfam domains. Protein network analysis showed a small number of highly connected nodes involved in specific functions: proteasome components, mitochondrial ribosomal proteins, protein translocases of mitochondrial membranes, cytochromes P450, and glutathione S-transferases. The results suggest that exposure to domoic acid-producing organisms causes oxidative stress and mitochondrial dysfunction. The transcriptional response counteracts these effects with the up-regulation of genes coding for some mitochondrial proteins, proteasome components, and antioxidant enzymes (glutathione S-transferases, thioredoxins, glutaredoxins, and copper/zinc superoxide dismutases). Full article
(This article belongs to the Collection Toxicological Challenges of Aquatic Toxins)
Show Figures

Graphical abstract

13 pages, 18236 KiB  
Article
Venom in Furs: Facial Masks as Aposematic Signals in a Venomous Mammal
by K. Anne-Isola Nekaris, Ariana Weldon, Muhammad Ali Imron, Keely Q. Maynard, Vincent Nijman, Stephanie A. Poindexter and Thais Queiroz Morcatty
Toxins 2019, 11(2), 93; https://doi.org/10.3390/toxins11020093 - 5 Feb 2019
Cited by 22 | Viewed by 10087
Abstract
The function of colouration in animals includes concealment, communication and signaling, such as the use of aposematism as a warning signal. Aposematism is unusual in mammals, and exceptions help us to understand its ecology and evolution. The Javan slow loris is a highly [...] Read more.
The function of colouration in animals includes concealment, communication and signaling, such as the use of aposematism as a warning signal. Aposematism is unusual in mammals, and exceptions help us to understand its ecology and evolution. The Javan slow loris is a highly territorial venomous mammal that has a distinctive facial mask and monochromatic vision. To help understand if they use aposematism to advertise their venom to conspecifics or predators with different visual systems, we studied a population in Java, Indonesia. Using ImageJ, we selected colours from the facial masks of 58 individuals, converted RBG colours into monochromatic, dichromatic and trichromatic modes, and created a contrast index. During 290 captures, we recorded venom secretion and aggressiveness. Using Non-metric Multidimensional Scaling and generalised additive models for location, scale and shape, we found that young slow lorises differ significantly from adults, being both more contrasting and more aggressive, with aggressive animals showing fewer wounds. We suggest aposematic facial masks serve multiple purposes in slow lorises based on age. Change in colouration through development may play a role in intraspecific competition, and advertise toxicity or aggressiveness to competitors and/or predators in juveniles. Aposematic signals combined with intraspecific competition may provide clues to new venomous taxa among mammals. Full article
(This article belongs to the Special Issue Evolutionary Ecology of Venom)
Show Figures

Graphical abstract

24 pages, 1542 KiB  
Article
Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes
by Anita Mikołajczyk and Dagmara Złotkowska
Toxins 2019, 11(2), 91; https://doi.org/10.3390/toxins11020091 - 2 Feb 2019
Cited by 12 | Viewed by 3514
Abstract
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single [...] Read more.
Bacterial lipopolysaccharide (LPS) can contribute to the pathogenesis and the clinical symptoms of many diseases such as cancer, mental disorders, neurodegenerative as well as metabolic diseases. The asymptomatic carrier state of Salmonella spp. is a very important public health problem. A subclinical single dose of LPS obtained from S. Enteritidis (5 μg/kg, i.v.) was administered to discern the consequences of changes of various brain peptides such as corticotropin-releasing hormone (CRH), gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), galanin (GAL), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal polypeptide (VIP) in selected clinically important brain sections and endocrine glands of the hypothalamic-pituitary-adrenal (HPA), -thyroid (HPT), -ovarian (HPO) axes. The study was conducted on ten immature crossbred female pigs. The brain peptides were extracted from the hypothalamus (medial basal hypothalamus, preoptic area, lateral hypothalamic area, mammillary bodies, and the stalk median eminence), and pituitary gland (adenohypophysis and neurohypophysis) sections and from the ovaries and adrenal and thyroid glands. There was no difference in health status between LPS and the control groups during the period of the experiment. Nevertheless, even a low single dose of LPS from S. Enteritidis that did not result in any clinical symptoms of disease induced dysregulation of various brain peptides, such as CRH, GnRH, TRH, GAL, NPY, SOM, SP, and VIP in selected brain sections of hypothalamus, pituitary gland and in the endocrine glands of the HPA, HPO, and HPT axes. In conclusion, the obtained results clearly show that subclinical LPS from S. Enteritidis can affect the brain chemistry structure and dysregulate bioactive substance from selected brain sections and glands of the neuroendocrine axes. The exact mechanisms by which LPS can influence major neuroendocrine axes are not fully understood and require further studies. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

14 pages, 1281 KiB  
Article
Comparative Proteomics of Peritrophic Matrix Provides an Insight into its Role in Cry1Ac Resistance of Cotton Bollworm Helicoverpa armigera
by Minghui Jin, Chongyu Liao, Swapan Chakrabarty, Kongming Wu and Yutao Xiao
Toxins 2019, 11(2), 92; https://doi.org/10.3390/toxins11020092 - 2 Feb 2019
Cited by 15 | Viewed by 4465
Abstract
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are widely used in sprays and transgenic crops to control insect pests, but the evolution of insect resistance threatens their long-term use. Different resistance mechanisms have been identified, but some have not been completely elucidated. Here, [...] Read more.
Crystalline (Cry) proteins from Bacillus thuringiensis (Bt) are widely used in sprays and transgenic crops to control insect pests, but the evolution of insect resistance threatens their long-term use. Different resistance mechanisms have been identified, but some have not been completely elucidated. Here, the transcriptome of the midgut and proteome of the peritrophic matrix (PM) were comparatively analyzed to identify potential mechanism of resistance to Cry1Ac in laboratory-selected strain XJ10 of Helicoverpa armigera. This strain had a 146-fold resistance to Cry1Ac protoxin and 45-fold resistance to Cry1Ac activated toxin compared with XJ strain. The mRNA and protein levels for several trypsin genes were downregulated in XJ10 compared to the susceptible strain XJ. Furthermore, 215 proteins of the PM were identified, and nearly all had corresponding mRNAs in the midgut. These results provide new insights that the PM may participate in Bt resistance. Full article
(This article belongs to the Special Issue Insecticidal Toxins from Bacillus thuringiensis)
Show Figures

Graphical abstract

22 pages, 2880 KiB  
Article
Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids
by Qian Wang, Yangdong Zhang, Nan Zheng, Liya Guo, Xiaoming Song, Shengguo Zhao and Jiaqi Wang
Toxins 2019, 11(2), 77; https://doi.org/10.3390/toxins11020077 - 1 Feb 2019
Cited by 50 | Viewed by 5143
Abstract
Research on mycotoxins now requires a systematic study of post-exposure organisms. In this study, the effects of aflatoxin B1 (AFB1) on biofluids biomarkers were examined with metabolomics and biochemical tests. The results showed that milk concentration of aflatoxin M1 changed with the addition [...] Read more.
Research on mycotoxins now requires a systematic study of post-exposure organisms. In this study, the effects of aflatoxin B1 (AFB1) on biofluids biomarkers were examined with metabolomics and biochemical tests. The results showed that milk concentration of aflatoxin M1 changed with the addition or removal of AFB1. AFB1 significantly affected serum concentrations of superoxide dismutase (SOD) and malon dialdehyde (MDA), SOD/MDA, and the total antioxidant capacity. Significant differences of volatile fatty acids and NH3-N were detected in the rumen fluid. Eighteen rumen fluid metabolites, 11 plasma metabolites, and 9 milk metabolites were significantly affected by the AFB1. These metabolites are mainly involved in the pathway of amino acids metabolism. Our results suggest that not only is the study of macro-indicators (milk composition and production) important, but that more attention should be paid to micro-indicators (biomarkers) when assessing the risks posed by mycotoxins to dairy cows. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Graphical abstract

15 pages, 320 KiB  
Article
Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches
by Susana Viegas, Ricardo Assunção, Carla Martins, Carla Nunes, Bernd Osteresch, Magdalena Twarużek, Robert Kosicki, Jan Grajewski, Edna Ribeiro and Carla Viegas
Toxins 2019, 11(2), 78; https://doi.org/10.3390/toxins11020078 - 1 Feb 2019
Cited by 55 | Viewed by 5873
Abstract
Swine production workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 (AFB1) in Portuguese swine production farms has already been reported. However, besides AFB1, data regarding fungal contamination showed that exposure to other mycotoxins could [...] Read more.
Swine production workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 (AFB1) in Portuguese swine production farms has already been reported. However, besides AFB1, data regarding fungal contamination showed that exposure to other mycotoxins could be expected in this setting. The present study aimed to characterize the occupational exposure to multiple mycotoxins of swine production workers. To provide a broad view on the burden of contamination by mycotoxins and the workers’ exposure, biological (urine) samples from workers (n = 25) and 38 environmental samples (air samples, n = 23; litter samples, n = 5; feed samples, n = 10) were collected. The mycotoxins biomarkers detected in the urine samples of the workers group were the deoxynivalenol-glucuronic acid conjugate (60%), aflatoxin M1 (16%), enniatin B (4%), citrinin (8%), dihydrocitrinone (12%) and ochratoxin A (80%). Results of the control group followed the same pattern, but in general with a lower number of quantifiable results (<LOQ). Besides air samples, all the other environmental samples collected presented high and diverse contamination, and deoxynivalenol (DON), like in the biomonitoring results, was the most prominent mycotoxin. The results demonstrate that the occupational environment is adding and contributing to the workers’ total exposure to mycotoxins, particularly in the case of DON. This was confirmed by the biomonitoring data and the high contamination found in feed and litter samples. Furthermore, he followed multi-biomarker approach allowed to conclude that workers and general population are exposed to several mycotoxins simultaneously. Moreover, occupational exposure is probably described as being intermittent and with very high concentrations for short durations. This should be reflected in the risk assessment process. Full article
(This article belongs to the Special Issue Mycotoxin Exposure and Related Diseases)
19 pages, 1616 KiB  
Article
Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from Gambierdiscus belizeanus
by Andrea Boente-Juncal, Mercedes Álvarez, Álvaro Antelo, Inés Rodríguez, Kevin Calabro, Carmen Vale, Olivier P. Thomas and Luis M. Botana
Toxins 2019, 11(2), 79; https://doi.org/10.3390/toxins11020079 - 1 Feb 2019
Cited by 44 | Viewed by 9013
Abstract
Gambierdiscus species are the producers of the marine toxins ciguatoxins and maitotoxins which cause worldwide human intoxications recognized as Ciguatera Fish Poisoning. A deep chemical investigation of a cultured strain of G. belizeanus, collected in the Caribbean Sea, led to the identification [...] Read more.
Gambierdiscus species are the producers of the marine toxins ciguatoxins and maitotoxins which cause worldwide human intoxications recognized as Ciguatera Fish Poisoning. A deep chemical investigation of a cultured strain of G. belizeanus, collected in the Caribbean Sea, led to the identification of a structural homologue of the recently described gambierone isolated from the same strain. The structure was elucidated mainly by comparison of NMR and MS data with those of gambierone and ascertained by 2D NMR data analyses. Gratifyingly, a close inspection of the MS data of the new 44-methylgambierone suggests that this toxin would actually correspond to the structure of maitotoxin-3 (MTX3, m/z 1039.4957 for the protonated adduct) detected in 1994 in a Pacific strain of Gambierdiscus and recently shown in routine monitoring programs. Therefore, this work provides for the first time the chemical identification of the MTX3 molecule by NMR. Furthermore, biological data confirmed the similar activities of both gambierone and 44-methylgambierone. Both gambierone and MTX3 induced a small increase in the cytosolic calcium concentration but only MTX3 caused cell cytotoxicity at micromolar concentrations. Moreover, chronic exposure of human cortical neurons to either gambierone or MTX3 altered the expression of ionotropic glutamate receptors, an effect already described before for the synthetic ciguatoxin CTX3C. However, even when gambierone and MTX3 affected glutamate receptor expression in a similar manner their effect on receptor expression differed from that of CTX3C, since both toxins decreased AMPA receptor levels while increasing N-methyl-d-aspartate (NMDA) receptor protein. Thus, further studies should be pursued to clarify the similarities and differences in the biological activity between the known ciguatoxins and the new identified molecule as well as its contribution to the neurological symptoms of ciguatera. Full article
(This article belongs to the Collection Toxicological Challenges of Aquatic Toxins)
Show Figures

Figure 1

13 pages, 709 KiB  
Review
Senescent Cells in Early Vascular Ageing and Bone Disease of Chronic Kidney Disease—A Novel Target for Treatment
by Sam Hobson, Samsul Arefin, Karolina Kublickiene, Paul G. Shiels and Peter Stenvinkel
Toxins 2019, 11(2), 82; https://doi.org/10.3390/toxins11020082 - 1 Feb 2019
Cited by 34 | Viewed by 5940
Abstract
Together with bone-mineral disorders, premature vascular ageing is a common feature of the uremic phenotype. A detailed understanding of mechanisms involved remains unclear and warrants further research. Available treatment options for end stage renal disease are principally dialysis and organ transplantation, as other [...] Read more.
Together with bone-mineral disorders, premature vascular ageing is a common feature of the uremic phenotype. A detailed understanding of mechanisms involved remains unclear and warrants further research. Available treatment options for end stage renal disease are principally dialysis and organ transplantation, as other treatment alternatives have proven insufficient. Chronic kidney disease (CKD) has been proposed as a model of early vascular and bone ageing, with accumulating evidence supporting the contribution of cellular senescence and the senescence-associated secretory phenotype (SASP) to cardiovascular pathology in CKD. Correspondingly, novel therapies based around the use of senolytic compounds and nuclear factor-erythroid-2-related factor 2 (Nrf2) agonists, have been suggested as attractive novel treatment options. In this review, we detail the contribution of the uremic environment to these processes underpinning ageing and how these relate to vascular health. Full article
(This article belongs to the Special Issue The Chronic Kidney Disease - Mineral Bone Disorder (CKD-MBD))
Show Figures

Figure 1

16 pages, 2034 KiB  
Review
Mandibular Bone Loss after Masticatory Muscles Intervention with Botulinum Toxin: An Approach from Basic Research to Clinical Findings
by Julián Balanta-Melo, Viviana Toro-Ibacache, Kornelius Kupczik and Sonja Buvinic
Toxins 2019, 11(2), 84; https://doi.org/10.3390/toxins11020084 - 1 Feb 2019
Cited by 39 | Viewed by 10208
Abstract
The injection of botulinum toxin type A (BoNT/A) in the masticatory muscles, to cause its temporary paralysis, is a widely used intervention for clinical disorders such as oromandibular dystonia, sleep bruxism, and aesthetics (i.e., masseteric hypertrophy). Considering that muscle contraction is required for [...] Read more.
The injection of botulinum toxin type A (BoNT/A) in the masticatory muscles, to cause its temporary paralysis, is a widely used intervention for clinical disorders such as oromandibular dystonia, sleep bruxism, and aesthetics (i.e., masseteric hypertrophy). Considering that muscle contraction is required for mechano-transduction to maintain bone homeostasis, it is relevant to address the bone adverse effects associated with muscle condition after this intervention. Our aim is to condense the current and relevant literature about mandibular bone loss in fully mature mammals after BoNT/A intervention in the masticatory muscles. Here, we compile evidence from animal models (mice, rats, and rabbits) to clinical studies, demonstrating that BoNT/A-induced masticatory muscle atrophy promotes mandibular bone loss. Mandibular bone-related adverse effects involve cellular and metabolic changes, microstructure degradation, and morphological alterations. While bone loss has been detected at the mandibular condyle or alveolar bone, cellular and molecular mechanisms involved in this process must still be elucidated. Further basic research could provide evidence for designing strategies to control the undesired effects on bone during the therapeutic use of BoNT/A. However, in the meantime, we consider it essential that patients treated with BoNT/A in the masticatory muscles be warned about a putative collateral mandibular bone damage. Full article
(This article belongs to the Special Issue Botulinum Toxin Treatment of Movement Disorders)
Show Figures

Figure 1

17 pages, 1036 KiB  
Article
Diverse Components of Resistance to Fusarium verticillioides Infection and Fumonisin Contamination in Four Maize Recombinant Inbred Families
by Laura Morales, Charles T. Zila, Danilo E. Moreta Mejía, Melissa Montoya Arbelaez, Peter J. Balint-Kurti, James B. Holland and Rebecca J. Nelson
Toxins 2019, 11(2), 86; https://doi.org/10.3390/toxins11020086 - 1 Feb 2019
Cited by 19 | Viewed by 5636
Abstract
The fungus Fusarium verticillioides can infect maize ears, causing Fusarium ear rot (FER) and contaminating the grain with fumonisins (FUM), which are harmful to humans and animals. Breeding for resistance to FER and FUM and post-harvest sorting of grain are two strategies for [...] Read more.
The fungus Fusarium verticillioides can infect maize ears, causing Fusarium ear rot (FER) and contaminating the grain with fumonisins (FUM), which are harmful to humans and animals. Breeding for resistance to FER and FUM and post-harvest sorting of grain are two strategies for reducing FUM in the food system. Kernel and cob tissues have been previously associated with differential FER and FUM. Four recombinant inbred line families from the maize nested associated mapping population were grown and inoculated with F. verticillioides across four environments, and we evaluated the kernels for external and internal infection severity as well as FUM contamination. We also employed publicly available phenotypes on innate ear morphology to explore genetic relationships between ear architecture and resistance to FER and FUM. The four families revealed wide variation in external symptomatology at the phenotypic level. Kernel bulk density under inoculation was an accurate indicator of FUM levels. Genotypes with lower kernel density—under both inoculated and uninoculated conditions—and larger cobs were more susceptible to infection and FUM contamination. Quantitative trait locus (QTL) intervals could be classified as putatively resistance-specific and putatively shared for ear and resistance traits. Both types of QTL mapped in this study had substantial overlap with previously reported loci for resistance to FER and FUM. Ear morphology may be a component of resistance to F. verticillioides infection and FUM accumulation. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Show Figures

Graphical abstract

13 pages, 3633 KiB  
Article
Development of a QuEChERS-Based UHPLC-MS/MS Method for Simultaneous Determination of Six Alternaria Toxins in Grapes
by Wenbo Guo, Kai Fan, Dongxia Nie, Jiajia Meng, Qingwen Huang, Junhua Yang, Yuanyuan Shen, Emmanuel K. Tangni, Zhihui Zhao, Yongjiang Wu and Zheng Han
Toxins 2019, 11(2), 87; https://doi.org/10.3390/toxins11020087 - 1 Feb 2019
Cited by 35 | Viewed by 4358
Abstract
A simple and reliable analytical method for the simultaneous determination of alternariol (AOH), altenuene (ALT), tentoxin (TEN), altenusin (ALS), tenuazonic acid (TeA), and alternariol monomethyl ether (AME) in grapes was developed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS (quick, easy, [...] Read more.
A simple and reliable analytical method for the simultaneous determination of alternariol (AOH), altenuene (ALT), tentoxin (TEN), altenusin (ALS), tenuazonic acid (TeA), and alternariol monomethyl ether (AME) in grapes was developed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure with the extraction by acetonitrile and purification by sodium chloride (0.5 g) and anhydrous magnesium sulfate (0.5 g) was established to recover the six Alternaria toxins. After validation by determining the linearity (R2 > 0.99), recovery (77.8–101.6%), sensitivity (limit of detection in the range of 0.03–0.21 μg kg−1, and limit of quantification in the range of 0.09–0.48 μg kg−1), and precision (relative standard deviation (RSD) ≤ 12.9%), the analytical method was successfully applied to reveal the contamination state of Alternaria toxins in grapes. Among 56 grape samples, 40 (incidence of 71.4%) were contaminated with Alternaria toxins. TEN was the most frequently found mycotoxin (37.5%), with a concentration range of 0.10–1.64 μg kg−1, followed by TeA (28.6%) and AOH (26.8%). ALT (10.7%), AME (3.6%), and ALS (5.4%) were also detected in some samples. To the best of our knowledge, this is the first report about the Alternaria toxins contamination in grapes in China. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in the Mycotoxins Studies)
Show Figures

Figure 1

16 pages, 1771 KiB  
Article
Contamination of Wheat Cultivated in Various Regions of Poland during 2017 and 2018 Agricultural Seasons with Selected Trichothecenes and Their Modified Forms
by Marcin Bryła, Edyta Ksieniewicz-Woźniak, Tomoya Yoshinari, Agnieszka Waśkiewicz and Krystyna Szymczyk
Toxins 2019, 11(2), 88; https://doi.org/10.3390/toxins11020088 - 1 Feb 2019
Cited by 19 | Viewed by 4144
Abstract
Cross-interaction of antibodies within the immunoaffinity columns used in this study facilitated the simultaneous determination of nivalenol (NIV), deoxynivalenol (DON), their glucoside derivatives (NIV-3G, DON-3G), and 3-acetyl-deoxynivalenol (3-AcDON) in wheat grain harvested in various regions of Poland. In Poland, 2018 was a warm, [...] Read more.
Cross-interaction of antibodies within the immunoaffinity columns used in this study facilitated the simultaneous determination of nivalenol (NIV), deoxynivalenol (DON), their glucoside derivatives (NIV-3G, DON-3G), and 3-acetyl-deoxynivalenol (3-AcDON) in wheat grain harvested in various regions of Poland. In Poland, 2018 was a warm, dry agricultural season, and hence, was relatively less favourable for cereal cultivation than 2017. Data on the natural occurrence of NIV-3G in wheat grain are among the first published in the literature. DON was the most frequently found mycotoxin in the tested samples; the percentage occurrence of DON-positive samples was 92% in 2017 and 61% in 2018. Moreover, DON concentrations were generally higher in 2017 samples (5.2–1670.7 µg/kg) than those in 2018 samples (range 5.0–461.7 µg/kg). A similar pattern was found for DON-3G. However, no statistically significant differences between the samples from the two agricultural seasons were observed for the other three mycotoxins that were analysed, and their concentrations were generally considerably lower. DON was strongly correlated with DON-3G (correlation coefficient r = 0.9558), while NIV was strongly correlated with NIV-3G (r = 0.9442). The percentage occurrence of NIV-3G- and DON-3G-positive samples was 14% in 2017 and 49% in 2018. The NIV-3G/NIV ratio was 5.9–35.7%, while the DON-3G/DON ratio range was 3.2–53.6%. In 2018, wheat samples from Southern Poland exhibited statistically significantly higher levels of DON than those from Northern Poland. The dry and hot summer of 2018 not only reduced wheat yields, but also limited development of Fusarium spp. Therefore, grain harvested that year was generally contaminated with relatively low levels of mycotoxins. Lower levels of DON were also accompanied by lesser amounts of DON-derivatives. Full article
(This article belongs to the Collection Fusarium Toxins – Relevance for Human and Animal Health)
Show Figures

Figure 1

14 pages, 1233 KiB  
Article
Vipera berus berus Venom from Russia: Venomics, Bioactivities and Preclinical Assessment of Microgen Antivenom
by Ruslan I. Al-Shekhadat, Ksenia S. Lopushanskaya, Álvaro Segura, José María Gutiérrez, Juan J. Calvete and Davinia Pla
Toxins 2019, 11(2), 90; https://doi.org/10.3390/toxins11020090 - 1 Feb 2019
Cited by 32 | Viewed by 9041
Abstract
The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition [...] Read more.
The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition of its venom. Phospholipases A2 (PLA2, 25.3% of the venom proteome), serine proteinases (SVSP, 16.2%), metalloproteinases (SVMP, 17.2%), vasoactive peptides (bradykinin-potentiating peptides (BPPs), 9.5% and C-type natriuretic peptides (C-NAP, 7.8%), cysteine-rich secretory protein (CRISP, 8%) and L-amino acid oxidase (LAO, 7.3%) represent the major toxin classes found in V. b. berus (Russia) venom. This study was also designed to assess the in vivo and in vitro preclinical efficacy of the Russian Microgen antivenom in neutralizing the main effects of V. b. berus venom. The results show that this antivenom is capable of neutralizing the lethal, hemorrhagic and PLA2 activities. Third-generation antivenomics was applied to quantify the toxin-recognition landscape and the maximal binding capacity of the antivenom for each component of the venom. The antivenomics analysis revealed that 6.24% of the anti-V. b. berus F(ab’)2 molecules fraction are toxin-binding antibodies, 60% of which represent clinically relevant antivenom molecules. Full article
(This article belongs to the Special Issue Discovery of Antibodies and Novel Antivenoms against Envenoming)
Show Figures

Graphical abstract

12 pages, 1442 KiB  
Article
Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly
by Mina Nan, Yang Bi, Huali Xue, Sulin Xue, Haitao Long, Lumei Pu and Guorui Fu
Toxins 2019, 11(2), 71; https://doi.org/10.3390/toxins11020071 - 28 Jan 2019
Cited by 31 | Viewed by 3818
Abstract
A simple and sensitive label-free impedimetric aptasensor for rapid determination of ochratoxin A (OTA) has been developed, which was based on the combination between thiolated aptamer and gold nanoparticles by layer-by-layer self-assembly. Because of the interaction between aptamer and OTA, the relative normalized [...] Read more.
A simple and sensitive label-free impedimetric aptasensor for rapid determination of ochratoxin A (OTA) has been developed, which was based on the combination between thiolated aptamer and gold nanoparticles by layer-by-layer self-assembly. Because of the interaction between aptamer and OTA, the relative normalized electron-transfer resistance (ΔRct) values obtained by electrochemical impedance spectroscopy (EIS) was proportional to the concentration of OTA and showed a good linear relationship from 0.1 to 10.0 ng/mL, with a lower detection limit (0.030 ng/mL) than one-step thiolated DNA aptasensor. The established method was successfully applied to detect and analyze OTA in table wine and grape juice, and the recovery was 90.56%–104.21% when PVP effective removed of phenolic substances. The label-free impedimetric aptasensor was used for rapid detection and quantitation of OTA in the inoculated grapes with the Aspergillus Nigri (H1), and the production of OTA (62.4 μg/kg, 20 μg/kg) far exceeded the maximum levels of 2 μg/kg after inoculation for three days. The developed method exhibited a good specificity, high sensitivity, time-efficient, and it could be applied to detect the OTA concentration in grape and its commodities. Full article
(This article belongs to the Special Issue Advanced Methods for Mycotoxins Detection)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
The Effects of Endophytic Beauveria bassiana Inoculation on Infestation Level of Planococcus ficus, Growth and Volatile Constituents of Potted Greenhouse Grapevine (Vitis vinifera L.)
by Siphokazi Moloinyane and Felix Nchu
Toxins 2019, 11(2), 72; https://doi.org/10.3390/toxins11020072 - 28 Jan 2019
Cited by 43 | Viewed by 5336
Abstract
Endophytic entomopathogenic fungi are being explored for the management of phytophagous insect pests. The effects of Beauveria bassiana (Hypocreales) inoculation of grape plants on the infestation level of P. ficus, tissue nutrient contents, and growth and volatile constituents of potted grape plants [...] Read more.
Endophytic entomopathogenic fungi are being explored for the management of phytophagous insect pests. The effects of Beauveria bassiana (Hypocreales) inoculation of grape plants on the infestation level of P. ficus, tissue nutrient contents, and growth and volatile constituents of potted grape plants were assessed. Grapevine plants were individually inoculated with a suspension of 1 × 108 conidia mL−1 of B. bassiana by drenching before experimentally infesting each of them with thirty adult females of P. ficus. At four weeks post-treatment, the fungus was re-isolated from leaves of 50% of the fungus-exposed plants. However, no significant difference (p > 0.05) was observed in all the plant growth parameters measured in the fungus-treated and control plants. Plant tissue analysis revealed markedly higher contents of calcium (Ca) and magnesium (Mg) in the leaf tissue of plants exposed to the B. bassiana relative to the control. Gas chromatography mass spectrometry (GC-MS) analyses showed that a significantly (X2 = 5.1; p < 0.02) higher number of known anti-insect volatile compounds (nine) were present among fungus treated plants compared to the control plants (five). Naphthalene, which is toxic to insects and humans, was detected only in the volatiles of the fungus-exposed plants. B. bassiana did not have any significant effect on total polyphenol, alkaloid, and flavonoids. Overall, treatment with fungus did not inhibit the infestation by P. ficus. In conclusion, these findings shed light on some of the mechanisms involved in endophytic fungus-plant-insect interactions. Full article
(This article belongs to the Special Issue Fungal Infestations in Humans, Animals, Crops)
20 pages, 1666 KiB  
Review
Mycotoxins and Mycotoxin Producing Fungi in Pollen: Review
by Aleksandar Ž. Kostić, Danijel D. Milinčić, Tanja S. Petrović, Vesna S. Krnjaja, Sladjana P. Stanojević, Miroljub B. Barać, Živoslav Lj. Tešić and Mirjana B. Pešić
Toxins 2019, 11(2), 64; https://doi.org/10.3390/toxins11020064 - 24 Jan 2019
Cited by 52 | Viewed by 8010
Abstract
Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can [...] Read more.
Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can synthesize mycotoxins as a part of their metabolic pathways. Furthermore, favorable conditions that enable the synthesis of mycotoxins (adequate temperature, relative humidity, pH, and aw values) are found frequently during pollen collection and/or production process. Internationally, several different mycotoxins have been identified in pollen samples, with a noted predominance of aflatoxins, ochratoxins, fumonisins, zearalenone, deoxynivalenol, and T-2 toxin. Mycotoxins are, generally speaking, extremely harmful for humans and other mammals. Current EU legislation contains guidelines on the permissible content of this group of compounds, but without information pertaining to the content of mycotoxins in pollen. Currently only aflatoxins have been researched and discussed in the literature in regard to proposed limits. Therefore, the aim of this review is to give information about the presence of different mycotoxins in pollen samples collected all around the world, to propose possible aflatoxin contamination pathways, and to emphasize the importance of a regular mycotoxicological analysis of pollen. Furthermore, a suggestion is made regarding the legal regulation of pollen as a food supplement and the proposed tolerable limits for other mycotoxins. Full article
(This article belongs to the Special Issue Food Safety and Natural Toxins)
Show Figures

Graphical abstract

10 pages, 1329 KiB  
Article
Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer
by Han Zhao, Xinying Xiang, Mingjian Chen and Changbei Ma
Toxins 2019, 11(2), 65; https://doi.org/10.3390/toxins11020065 - 24 Jan 2019
Cited by 29 | Viewed by 4165
Abstract
This study describes a novel quencher-free fluorescent method for ochratoxin A (OTA) detection based on the photoinduced electron transfer (PIET) between guanine and fluorophore. In the absence of OTA, carboxyfluorescein (FAM)-labeled aptamer can partly hybridize with the complementary strand of OTA aptamer (OTA-cAPT), [...] Read more.
This study describes a novel quencher-free fluorescent method for ochratoxin A (OTA) detection based on the photoinduced electron transfer (PIET) between guanine and fluorophore. In the absence of OTA, carboxyfluorescein (FAM)-labeled aptamer can partly hybridize with the complementary strand of OTA aptamer (OTA-cAPT), which contains four guanines at its 3′-end. As a result, the fluorescence of FAM is quenched due to PIET and stacked guanines. In the presence of OTA, FAM-labeled OTA aptamer can bind specifically to OTA, and thereby the high fluorescence intensity of the dye can be maintained. Under the optimal conditions, the method had a detection limit of 1.3 nM. In addition, the method we proposed is highly sensitive and specific for OTA. Furthermore, the method was proven to be reliable based on its successful application in the detection of OTA in red wine samples. Therefore, this promising, facile, and quencher-free method may be applied to detect other toxins by using other appropriate aptamers. Full article
(This article belongs to the Special Issue Advanced Methods for Mycotoxins Detection)
Show Figures

Graphical abstract

23 pages, 4453 KiB  
Review
Serotherapy against Voltage-Gated Sodium Channel-Targeting α-Toxins from Androctonus Scorpion Venom
by Marie-France Martin-Eauclaire, Sonia Adi-Bessalem, Djelila Hammoudi-Triki, Fatima Laraba-Djebari and Pierre E. Bougis
Toxins 2019, 11(2), 63; https://doi.org/10.3390/toxins11020063 - 23 Jan 2019
Cited by 19 | Viewed by 7377
Abstract
Because of their venom lethality towards mammals, scorpions of the Androctonus genus are considered a critical threat to human health in North Africa. Several decades of exploration have led to a comprehensive inventory of their venom components at chemical, pharmacological, and immunological levels. [...] Read more.
Because of their venom lethality towards mammals, scorpions of the Androctonus genus are considered a critical threat to human health in North Africa. Several decades of exploration have led to a comprehensive inventory of their venom components at chemical, pharmacological, and immunological levels. Typically, these venoms contain selective and high affinity ligands for the voltage-gated sodium (Nav) and potassium (Kv) channels that dictate cellular excitability. In the well-studied Androctonus australis and Androctonus mauretanicus venoms, almost all the lethality in mammals is due to the so-called α-toxins. These peptides commonly delay the fast inactivation process of Nav channels, which leads to increased sodium entry and a subsequent cell membrane depolarization. Markedly, their neutralization by specific antisera has been shown to completely inhibit the venom’s lethal activity, because they are not only the most abundant venom peptide but also the most fatal. However, the structural and antigenic polymorphisms in the α-toxin family pose challenges to the design of efficient serotherapies. In this review, we discuss past and present accomplishments to improve serotherapy against Androctonus scorpion stings. Full article
(This article belongs to the Special Issue Toxins and Immunology)
Show Figures

Graphical abstract

17 pages, 4265 KiB  
Article
Functional Analysis of FgNahG Clarifies the Contribution of Salicylic Acid to Wheat (Triticum aestivum) Resistance against Fusarium Head Blight
by Peng-Fei Qi, Ya-Zhou Zhang, Cai-Hong Liu, Qing Chen, Zhen-Ru Guo, Yan Wang, Bin-Jie Xu, Yun-Feng Jiang, Ting Zheng, Xi Gong, Cui-Hua Luo, Wang Wu, Li Kong, Mei Deng, Jian Ma, Xiu-Jin Lan, Qian-Tao Jiang, Yu-Ming Wei, Ji-Rui Wang and You-Liang Zheng
Toxins 2019, 11(2), 59; https://doi.org/10.3390/toxins11020059 - 22 Jan 2019
Cited by 34 | Viewed by 5502
Abstract
Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat– [...] Read more.
Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat–F. graminearum interaction. In this study, we identified a salicylate hydroxylase gene (FG05_08116; FgNahG) in F. graminearum. This gene encodes a protein that catalyzes the conversion of SA to catechol. Additionally, FgNahG was widely distributed within hyphae. Disrupting the FgNahG gene (ΔFgNahG) led to enhanced sensitivity to SA, increased accumulation of SA in wheat spikes during the early infection stage and inhibited development of head blight symptoms. However, FgNahG did not affect mycotoxin production. Re-introducing a functional FgNahG gene into the ΔFgNahG mutant recovered the wild-type phenotype. Moreover, the expression of FgNahG in transgenic Arabidopsis thaliana decreased the SA concentration and the resistance of leaves to F. graminearum. These results indicate that the endogenous SA in wheat influences the resistance against F. graminearum. Furthermore, the capacity to metabolize SA is an important factor affecting the ability of F. graminearum to infect wheat plants. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Show Figures

Figure 1

21 pages, 2392 KiB  
Review
Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System
by Richard J. Harris and Ronald A. Jenner
Toxins 2019, 11(2), 60; https://doi.org/10.3390/toxins11020060 - 22 Jan 2019
Cited by 47 | Viewed by 12829
Abstract
Research on venomous animals has mainly focused on the molecular, biochemical, and pharmacological aspects of venom toxins. However, it is the relatively neglected broader study of evolutionary ecology that is crucial for understanding the biological relevance of venom systems. As fish have convergently [...] Read more.
Research on venomous animals has mainly focused on the molecular, biochemical, and pharmacological aspects of venom toxins. However, it is the relatively neglected broader study of evolutionary ecology that is crucial for understanding the biological relevance of venom systems. As fish have convergently evolved venom systems multiple times, it makes them ideal organisms to investigate the evolutionary ecology of venom on a broader scale. This review outlines what is known about how fish venom systems evolved as a result of natural enemy interactions and about the ecological consequences of evolving a venom system. This review will show how research on the evolutionary ecology of venom in fish can aid in understanding the evolutionary ecology of animal venoms more generally. Further, understanding these broad ecological questions can shed more light on the other areas of toxinology, with applications across multiple disciplinary fields. Full article
(This article belongs to the Special Issue Evolutionary Ecology of Venom)
Show Figures

Figure 1

19 pages, 9709 KiB  
Review
Review of DSP Toxicity in Ireland: Long-Term Trend Impacts, Biodiversity and Toxin Profiles from a Monitoring Perspective
by Rafael Salas and Dave Clarke
Toxins 2019, 11(2), 61; https://doi.org/10.3390/toxins11020061 - 22 Jan 2019
Cited by 13 | Viewed by 5791
Abstract
The purpose of this work is to review all the historical monitoring data gathered by the Marine Institute, the national reference laboratory for marine biotoxins in Ireland, including all the biological and chemical data from 2005 to 2017, in relation to diarrheic shellfish [...] Read more.
The purpose of this work is to review all the historical monitoring data gathered by the Marine Institute, the national reference laboratory for marine biotoxins in Ireland, including all the biological and chemical data from 2005 to 2017, in relation to diarrheic shellfish poisoning (DSP) toxicity in shellfish production. The data reviewed comprises over 25,595 water samples, which were preserved in Lugol’s iodine and analysed for the abundance and composition of marine microalgae by light microscopy, and 18,166 records of shellfish flesh samples, which were analysed using LC-MS/MS for the presence and concentration of the compounds okadaic acid (OA), dinophysistoxins-1 (DTX-1), dinophysistoxins-2 (DTX-2) and their hydrolysed esters, as well as pectenotoxins (PTXs). The results of this review suggest that DSP toxicity events around the coast of Ireland occur annually. According to the data reviewed, there has not been an increase in the periodicity or intensity of such events during the study period. Although the diversity of the Dinophysis species on the coast of Ireland is large, with 10 species recorded, the two main species associated with DSP events in Ireland are D. acuta and D. acuminata. Moreover, the main toxic compounds associated with these species are OA and DTX-2, but concentrations of the hydrolysed esters are generally found in higher amounts than the parent compounds in the shellfish samples. When D. acuta is dominant in the water samples, the DSP toxicity increases in intensity, and DTX-2 becomes the prevalent toxin. Pectenotoxins have only been analysed and reported since 2012, and these compounds had not been associated with toxic events in Ireland; however, in 2014, concentrations of these compounds were quantitated for the first time, and the data suggest that this toxic event was associated with an unusually high number of observations of D. tripos that year. The areas of the country most affected by DSP outbreaks are those engaging in long-line mussel (Mytilus edulis) aquaculture. Full article
(This article belongs to the Special Issue Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts)
Show Figures

Figure 1

50 pages, 6194 KiB  
Review
The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea
by Isidro José Tamele, Marisa Silva and Vitor Vasconcelos
Toxins 2019, 11(1), 58; https://doi.org/10.3390/toxins11010058 - 21 Jan 2019
Cited by 36 | Viewed by 11382
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish [...] Read more.
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region. Full article
(This article belongs to the Special Issue Toxins:10th Anniversary)
Show Figures

Figure 1

11 pages, 3361 KiB  
Article
Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation
by Du Wang, Jianguo Zhu, Zhaowei Zhang, Qi Zhang, Wen Zhang, Li Yu, Jun Jiang, Xiaomei Chen, Xuefang Wang and Peiwu Li
Toxins 2019, 11(1), 56; https://doi.org/10.3390/toxins11010056 - 20 Jan 2019
Cited by 51 | Viewed by 4668
Abstract
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, [...] Read more.
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, a lateral flow immunoassay via time-resolved fluorescence was developed for the rapid, on-site, simultaneous, and quantitative sensing aflatoxin B1 (AFB1), zearalenone (ZEA), and chlorothalonil (CTN) in maize and peanut. The sample preparation was optimized to a single step, combining the grinding and extraction. Under optimal conditions, the sensing method lowered the limits of detection (LOD) to 0.16, 0.52, and 1.21 µg/kg in maize and 0.18, 0.57, and 1.47 µg/kg in peanut with an analytical range of 0.48–20, 1.56–200, and 3.63–300 µg/kg for AFB1, ZEA and CTN, respectively. The protocol could be completed within 15 min, including sample preparation and lateral flow immunoassay. The recovery range was 83.24–110.80%. An excellent correlation was observed between this approach and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for mycotoxins and gas chromatography-tandem mass spectrometry (GC-MS/MS) for pesticide in maize and peanut. This work could be applied in on-site multi-class sensing for food safety. Full article
(This article belongs to the Special Issue Advanced Methods for Mycotoxins Detection)
Show Figures

Figure 1

16 pages, 2819 KiB  
Article
Gut Microbiota Profiling of Aflatoxin B1-Induced Rats Treated with Lactobacillus casei Shirota
by Winnie-Pui-Pui Liew, Sabran Mohd-Redzwan and Leslie Thian Lung Than
Toxins 2019, 11(1), 49; https://doi.org/10.3390/toxins11010049 - 17 Jan 2019
Cited by 34 | Viewed by 6085
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous carcinogenic food contaminant. Gut microbiota is of vital importance for the host’s health, regrettably, limited studies have reported the effects of xenobiotic toxins towards gut microbiota. Thus, the present study aims to investigate the interactions between AFB1 [...] Read more.
Aflatoxin B1 (AFB1) is a ubiquitous carcinogenic food contaminant. Gut microbiota is of vital importance for the host’s health, regrettably, limited studies have reported the effects of xenobiotic toxins towards gut microbiota. Thus, the present study aims to investigate the interactions between AFB1 and the gut microbiota. Besides, an AFB1-binding microorganism, Lactobacillus casei Shirota (Lcs) was tested on its ability to ameliorate the changes on gut microbiota induced by AFB1. The fecal contents of three groups of rats included an untreated control group, an AFB1 group, as well as an Lcs + AFB1 group, were analyzed. Using the MiSeq platform, the PCR products of 16S rDNA gene extracted from the feces were subjected to next-generation sequencing. The alpha diversity index (Shannon) showed that the richness of communities increased significantly in the Lcs + AFB1 group compared to the control and AFB1 groups. Meanwhile, beta diversity indices demonstrated that AFB1 group significantly deviated from the control and Lcs + AFB1 groups. AFB1-exposed rats were especially high in Alloprevotella spp. abundance. Such alteration in the bacterial composition might give an insight on the interactions of AFB1 towards gut microbiota and how Lcs plays its role in detoxification of AFB1. Full article
(This article belongs to the Special Issue Mycotoxin Exposure and Related Diseases)
Show Figures

Figure 1

15 pages, 2534 KiB  
Article
Mass Spectrometry Analysis and Biological Characterization of the Predatory Ant Odontomachus monticola Venom and Venom Sac Components
by Naoki Tani, Kohei Kazuma, Yukio Ohtsuka, Yasushi Shigeri, Keiichi Masuko, Katsuhiro Konno and Hidetoshi Inagaki
Toxins 2019, 11(1), 50; https://doi.org/10.3390/toxins11010050 - 17 Jan 2019
Cited by 14 | Viewed by 4805
Abstract
We previously identified 92 toxin-like peptides and proteins, including pilosulin-like peptides 1–6 from the predatory ant Odontomachus monticola, by transcriptome analysis. Here, to further characterize venom components, we analyzed the venom and venom sac extract by ESI-MS/MS with or without trypsin digestion [...] Read more.
We previously identified 92 toxin-like peptides and proteins, including pilosulin-like peptides 1–6 from the predatory ant Odontomachus monticola, by transcriptome analysis. Here, to further characterize venom components, we analyzed the venom and venom sac extract by ESI-MS/MS with or without trypsin digestion and reducing agent. As the low-molecular-mass components, we found amino acids (leucine/isoleucine, phenylalanine, and tryptophan) and biogenic amines (histamine and tyramine) in the venom and venom sac extract. As the higher molecular mass components, we found peptides and proteins such as pilosulin-like peptides, phospholipase A2s, hyaluronidase, venom dipeptidyl peptidases, conotoxin-like peptide, and icarapin-like peptide. In addition to pilosulin-like peptides 1–6, we found three novel pilosulin-like peptides that were overlooked by transcriptome analysis. Moreover, pilosulin-like peptides 1–6 were chemically synthesized, and some of them displayed antimicrobial, hemolytic, and histamine-releasing activities. Full article
(This article belongs to the Special Issue Arthropod Venom Components and Their Potential Usage)
Show Figures

Figure 1

18 pages, 2322 KiB  
Article
Botulinum Neurotoxin Therapy for Lingual Dystonia Using an Individualized Injection Method Based on Clinical Features
by Kazuya Yoshida
Toxins 2019, 11(1), 51; https://doi.org/10.3390/toxins11010051 - 17 Jan 2019
Cited by 30 | Viewed by 15912
Abstract
Lingual dystonia is a debilitating type of oromandibular dystonia characterized by involuntary, often task-specific, contractions of the tongue muscle activated by speaking or eating. Botulinum neurotoxin (BoNT) has been used to treat lingual dystonia; however, it is known to cause serious complications, such [...] Read more.
Lingual dystonia is a debilitating type of oromandibular dystonia characterized by involuntary, often task-specific, contractions of the tongue muscle activated by speaking or eating. Botulinum neurotoxin (BoNT) has been used to treat lingual dystonia; however, it is known to cause serious complications, such as dysphasia and aspiration. The purpose of this study was to evaluate the efficacy and adverse effects of individualized BoNT therapy for lingual dystonia. One-hundred-and-seventy-two patients (102 females and 70 males, mean age: 46.2 years) with lingual dystonia were classified into four subtypes based on symptoms of involuntary tongue movements: protrusion (68.6%), retraction (16.9%), curling (7.6%), and laterotrusion (7.0%). Patients were treated with BoNT injection into the genioglossus and/or intrinsic muscles via individualized submandibular and/or intraoral routes. Results were compared before and after BoNT therapy. Botulinum neurotoxin was injected in 136 patients (mean: 4.8 injections). Clinical sub-scores (mastication, speech, pain, and discomfort) in a disease-specific rating scale were reduced significantly (p < 0.001) after administration. Comprehensive improvement after BoNT injection, assessed using the rating scale, was 77.6%. The curling type (81.9%) showed the greatest improvement, while the retraction type showed the least improvement (67.9%). Mild and transient dysphasia occurred in 12.5% of patients (3.7% of total injections) but disappeared spontaneously within several days to two weeks. No serious side effects were observed. With careful diagnosis of subtypes and a detailed understanding of lingual muscle anatomy, individualized BoNT injection into dystonic lingual muscles can be effective and safe. Full article
(This article belongs to the Special Issue Botulinum Toxin Treatment of Movement Disorders)
Show Figures

Graphical abstract

28 pages, 6180 KiB  
Review
Toxin Neutralization Using Alternative Binding Proteins
by Timothy Patrick Jenkins, Thomas Fryer, Rasmus Ibsen Dehli, Jonas Arnold Jürgensen, Albert Fuglsang-Madsen, Sofie Føns and Andreas Hougaard Laustsen
Toxins 2019, 11(1), 53; https://doi.org/10.3390/toxins11010053 - 17 Jan 2019
Cited by 38 | Viewed by 10539
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and [...] Read more.
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms. Full article
(This article belongs to the Special Issue Snakebite – From Science to Society. Selected papers)
Show Figures

Figure 1

23 pages, 916 KiB  
Article
Regional Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria Reveals the Presence of 164 Mycotoxins and Other Secondary Metabolites in Foods
by Luc Ingenbleek, Michael Sulyok, Abimbola Adegboye, Sètondji Epiphane Hossou, Abdoulaye Zié Koné, Awoyinka Dada Oyedele, Chabi Sika K. J. Kisito, Yara Koreissi Dembélé, Sara Eyangoh, Philippe Verger, Jean-Charles Leblanc, Bruno Le Bizec and Rudolf Krska
Toxins 2019, 11(1), 54; https://doi.org/10.3390/toxins11010054 - 17 Jan 2019
Cited by 51 | Viewed by 8730
Abstract
In the framework of the first multi-centre Sub-Saharan Africa Total Diet Study (SSA-TDS), 2328 commonly consumed foods were purchased, prepared as consumed and pooled into 194 composite samples of cereals, tubers, legumes, vegetables, nuts and seeds, dairy, oils, beverages and miscellaneous. Those core [...] Read more.
In the framework of the first multi-centre Sub-Saharan Africa Total Diet Study (SSA-TDS), 2328 commonly consumed foods were purchased, prepared as consumed and pooled into 194 composite samples of cereals, tubers, legumes, vegetables, nuts and seeds, dairy, oils, beverages and miscellaneous. Those core foods were tested for mycotoxins and other fungal, bacterial and plant secondary metabolites by liquid chromatography, coupled with tandem mass spectrometry. The highest aflatoxin concentrations were quantified in peanuts, peanut oil and maize. The mean concentration of the sum of aflatoxins AFB1, AFB2, AFG1 and AFG2 (AFtot) in peanut samples (56.4 µg/kg) exceeded EU (4 µg/kg) and Codex (15 µg/kg) standards. The AFtot concentration (max: 246.0 µg/kg) was associated with seasonal and geographic patterns and comprised, on average, 80% AFB1, the most potent aflatoxin. Although ochratoxin A concentrations rarely exceeded existing Codex standards, it was detected in unregulated foods. One palm oil composite sample contained 98 different metabolites, including 35.4 µg/kg of ochratoxin A. In total, 164 different metabolites were detected, with unspecific metabolites like asperglaucide, cyclo(L-pro-L-val), cyclo (L-pro-L-tyr), flavoglaucin, emodin and tryptophol occurring in more than 50% of composite samples. Aflatoxin B1 (AFB1), fumonisin B1 (FB1), sterigmatocystin (STC), ochratoxin A (OTA), citrinin (CIT) and many other secondary fungal metabolites are frequent co-contaminants in staple foods, such as maize and sorghum. Populations from North Cameroon and from Benin may, therefore, suffer chronic and simultaneous exposure to AFB1, FB1, STC, OTA and CIT, which are prevalent in their diet. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in the Mycotoxins Studies)
Show Figures

Graphical abstract

11 pages, 1156 KiB  
Article
Differences in Dialysis Efficacy Have Limited Effects on Protein-Bound Uremic Toxins Plasma Levels over Time
by Detlef H. Krieter, Simon Kerwagen, Marieke Rüth, Horst-Dieter Lemke and Christoph Wanner
Toxins 2019, 11(1), 47; https://doi.org/10.3390/toxins11010047 - 16 Jan 2019
Cited by 27 | Viewed by 4108
Abstract
The protein-bound uremic toxins para-cresyl sulfate (pCS) and indoxyl sulfate (IS) are associated with cardiovascular disease in chronic renal failure, but the effect of different dialysis procedures on their plasma levels over time is poorly studied. The present prospective, randomized, cross-over trial tested [...] Read more.
The protein-bound uremic toxins para-cresyl sulfate (pCS) and indoxyl sulfate (IS) are associated with cardiovascular disease in chronic renal failure, but the effect of different dialysis procedures on their plasma levels over time is poorly studied. The present prospective, randomized, cross-over trial tested dialysis efficacy and monitored pre-treatment pCS and IS concentrations in 15 patients on low-flux and high-flux hemodialysis and high-convective volume postdilution hemodiafiltration over six weeks each. Although hemodiafiltration achieved by far the highest toxin removal, only the mean total IS level was decreased at week three (16.6 ± 12.1 mg/L) compared to baseline (18.9 ± 13.0 mg/L, p = 0.027) and to low-flux dialysis (20.0 ± 12.7 mg/L, p = 0.021). At week six, the total IS concentration in hemodiafiltration reached the initial values again. Concentrations of free IS and free and total pCS remained unaltered. Highest beta2-microglobulin elimination in hemodiafiltration (p < 0.001) led to a persistent decrease of the plasma levels at week three and six (each p < 0.001). In contrast, absent removal in low-flux dialysis resulted in rising beta2-microglobulin concentrations (p < 0.001). In conclusion, this trial demonstrated that even large differences in instantaneous protein-bound toxin removal by current extracorporeal dialysis techniques may have only limited impact on IS and pCS plasma levels in the longer term. Full article
(This article belongs to the Section Uremic Toxins)
Show Figures

Figure 1

17 pages, 3362 KiB  
Article
The Individual and Combined Effects of the Cyanotoxins, Anatoxin-a and Microcystin-LR, on the Growth, Toxin Production, and Nitrogen Fixation of Prokaryotic and Eukaryotic Algae
by Mathias Ahii Chia, Benjamin J. Kramer, Jennifer G. Jankowiak, Maria do Carmo Bittencourt-Oliveira and Christopher J. Gobler
Toxins 2019, 11(1), 43; https://doi.org/10.3390/toxins11010043 - 15 Jan 2019
Cited by 36 | Viewed by 6013
Abstract
Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, [...] Read more.
Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, their effects on phytoplankton communities are poorly understood. The individual and combined effects of microcystin-LR (MC-LR) and ATX on the cyanobacteria Microcystis spp., and Anabaena variabilis (a.k.a. Trichormus variabilis), and the chlorophyte, Selenastrum capricornutum were investigated in the present study. Cell density, chlorophyll-a content, and the maximum quantum efficiency of photosystem II (Fv/Fm) of Microcystis cells were generally lowered after exposure to ATX or MC-LR, while the combined treatment with MC-LR and ATX synergistically reduced the chlorophyll-a concentration of Microcystis strain LE-3. Intracellular levels of microcystin in Microcystis LE-3 significantly increased following exposure to MC-LR + ATX. The maximum quantum efficiency of photosystem II of Anabaena strain UTEX B377 declined during exposure to the cyanotoxins. Nitrogen fixation by Anabaena UTEX B377 was significantly inhibited by exposure to ATX, but was unaffected by MC-LR. In contrast, the combination of both cyanotoxins (MC-LR + ATX) caused a synergistic increase in the growth of S. capricornutum. While the toxins caused an increase in the activity of enzymes that scavenge reactive oxygen species in cyanobacteria, enzyme activity was unchanged or decreased in S. capricornutum. Collectively this study demonstrates that MC-LR and ATX can selectively promote and inhibit the growth and performance of green algae and cyanobacteria, respectively, and that the combined effect of these cyanotoxins was often more intense than their individual effects on some strains. This suggests that the release of multiple cyanotoxins in aquatic ecosystems, following the collapse of blooms, may influence the succession of plankton communities. Full article
(This article belongs to the Special Issue Harmful Algal Bloom Dynamics)
Show Figures

Figure 1

18 pages, 2079 KiB  
Article
Spatial and Temporal Variation in Paralytic Shellfish Toxin Production by Benthic Microseira (Lyngbya) wollei in a Freshwater New York Lake
by Zacharias J. Smith, Robbie M. Martin, Bofan Wei, Steven W. Wilhelm and Gregory L. Boyer
Toxins 2019, 11(1), 44; https://doi.org/10.3390/toxins11010044 - 15 Jan 2019
Cited by 27 | Viewed by 6550
Abstract
Butterfield Lake is a mesotrophic lake in New York State where residents and pets have experienced unexplained health issues. Microseira wollei (basionym Lyngbya wollei) was found at two of 15 sites in Butterfield Lake and analyzed for microcystins, anatoxins, cylindrospermopsins, and paralytic [...] Read more.
Butterfield Lake is a mesotrophic lake in New York State where residents and pets have experienced unexplained health issues. Microseira wollei (basionym Lyngbya wollei) was found at two of 15 sites in Butterfield Lake and analyzed for microcystins, anatoxins, cylindrospermopsins, and paralytic shellfish poisoning toxins (PSTs). Only PSTs and trace levels of anatoxin-a were detected in these samples. This is the first published report of PSTs within a New York State lake. To evaluate the environmental and temporal drivers leading to the observed toxicity, PST content at the two sites was examined in detail. There were distinct differences in the total PST content, filament nutrient, filament chlorophyll, and relationship to environmental drivers between the sites, as well as distinct differences in the total PST content measured using different analytical techniques. A multivariate model containing site, temperature, and filament chlorophyll explained 85% of the variation in PSTs observed over the growing season. This work emphasizes the importance of proper site selection and choice of analytical technique in the development of monitoring programs to protect lake users from the occurrence of benthic cyanobacteria toxins. Full article
(This article belongs to the Special Issue Paralytic Shellfish Toxins)
Show Figures

Figure 1

14 pages, 3019 KiB  
Article
Autophagy and Apoptosis Interact to Modulate T-2 Toxin-Induced Toxicity in Liver Cells
by Jing Wu, Yu Zhou, Zhihang Yuan, Jine Yi, Jingshu Chen, Naidong Wang and Yanan Tian
Toxins 2019, 11(1), 45; https://doi.org/10.3390/toxins11010045 - 15 Jan 2019
Cited by 58 | Viewed by 6334
Abstract
T-2 toxin is a mycotoxin generated by Fusarium species which has been shown to be highly toxic to human and animals. T-2 toxin induces apoptosis in various tissues/organs. Apoptosis and autophagy are two closely interconnected processes, which are important for maintaining physiological homeostasis [...] Read more.
T-2 toxin is a mycotoxin generated by Fusarium species which has been shown to be highly toxic to human and animals. T-2 toxin induces apoptosis in various tissues/organs. Apoptosis and autophagy are two closely interconnected processes, which are important for maintaining physiological homeostasis as well as pathogenesis. Here, for the first time, we demonstrated that T-2 toxins induce autophagy in human liver cells (L02). We demonstrated that T-2 toxin induce acidic vesicular organelles formation, concomitant with the alterations in p62/SQSTM1 and LC3-phosphatidylethanolamine conjugate (LC3-II) and the enhancement of the autophagic flux. Using mRFP-GFP-LC3 by lentiviral transduction, we showed T-2 toxin-mediated lysosomal fusion and the formation of autophagosomes in L02 cells. The formation of autophagosomes was further confirmed by transmission electron microcopy. While T-2 toxin induced both autophagy and apoptosis, autophagy appears to be a leading event in the response to T-2 toxin treatment, reflecting its protective role in cells against cellular damage. Activating autophagy by rapamycin (RAPA) inhibited apoptosis, while suppressing autophagy by chloroquine greatly enhanced the T-2 toxin-induced apoptosis, suggesting the crosstalk between autophagy and apoptosis. Taken together, these results indicate that autophagy plays a role in protecting cells from T-2 toxin-induced apoptosis suggesting that autophagy may be manipulated for the alleviation of toxic responses induced by T-2 toxin. Full article
(This article belongs to the Special Issue Dietary Mycotoxin Exposure: Emerging Risks to Human Health)
Show Figures

Figure 1

25 pages, 2366 KiB  
Review
Selection of Fusarium Trichothecene Toxin Genes for Molecular Detection Depends on TRI Gene Cluster Organization and Gene Function
by Ria T. Villafana, Amanda C. Ramdass and Sephra N. Rampersad
Toxins 2019, 11(1), 36; https://doi.org/10.3390/toxins11010036 - 14 Jan 2019
Cited by 41 | Viewed by 7881
Abstract
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some [...] Read more.
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some Fusarium species depending on the host species. Although trichothecenes may differ in structure by their patterns of hydroxylation or acetylation, these small changes have a significant impact on toxicity and the biological activity of these compounds. Therefore, detecting and identifying which chemotype is present in a given population are important to predicting the specific toxins that may be produced and, therefore, to evaluating the risk of exposure. Due to the challenges of inducing trichothecene production by Fusarium isolates in vitro for subsequent chemical analysis, PCR assays using gene-specific primers, either singly or in combination, designed against specific genes of the trichothecene gene cluster of multiple species of Fusarium have been developed. The establishment of TRI genotypes that potentially correspond to a specific chemotype requires examination of an information and knowledge pipeline whose critical aspects in sequential order are: (i) understanding the TRI gene cluster organization which differs according to Fusarium species under study; (ii) knowledge of the re-arrangements to the core TRI gene cluster over evolutionary time, which also differs according to Fusarium species; (iii) the functions of the TRI genes in the biosynthesis of trichothecene analogs; and (iv) based on (i)–(iii), selection of appropriate target TRI gene(s) for primer design in PCR amplification for the Fusarium species under study. This review, therefore, explains this pipeline and its connection to utilizing TRI genotypes as a possible proxy to chemotype designation. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Show Figures

Figure 1

21 pages, 5601 KiB  
Article
Mesoscale Dynamics and Niche Segregation of Two Dinophysis Species in Galician-Portuguese Coastal Waters
by Patricio A. Díaz, Beatriz Reguera, Teresa Moita, Isabel Bravo, Manuel Ruiz-Villarreal and Santiago Fraga
Toxins 2019, 11(1), 37; https://doi.org/10.3390/toxins11010037 - 14 Jan 2019
Cited by 22 | Viewed by 4082
Abstract
Blooms of Dinophysis acuminata occur every year in Galicia (northwest Spain), between spring and autumn. These blooms contaminate shellfish with lipophilic toxins and cause lengthy harvesting bans. They are often followed by short-lived blooms of Dinophysis acuta, associated with northward longshore transport, [...] Read more.
Blooms of Dinophysis acuminata occur every year in Galicia (northwest Spain), between spring and autumn. These blooms contaminate shellfish with lipophilic toxins and cause lengthy harvesting bans. They are often followed by short-lived blooms of Dinophysis acuta, associated with northward longshore transport, at the end of the upwelling season. During the summers of 1989 and 1990, dense blooms of D. acuta developed in situ, initially co-occurring with D. acuminata and later with the paralytic shellfish toxin-producer Gymnodinium catenatum. Unexplored data from three cruises carried out before, during, and following autumn blooms (13–14, 27–28 September and 11–12 October) in 1990 showed D. acuta distribution in shelf waters within the 50 m and 130 m isobaths, delimited by the upwelling front. A joint review of monitoring data from Galicia and Portugal provided a mesoscale view of anomalies in SST and other hydroclimatic factors associated with a northward displacement of the center of gravity of D. acuta populations. At the microscale, re-examination of the vertical segregation of cell maxima in the light of current knowledge, improved our understanding of niche differentiation between the two species of Dinophysis. Results here improve local transport models and forecast of Dinophysis events, the main cause of shellfish harvesting bans in the most important mussel production area in Europe. Full article
(This article belongs to the Special Issue Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts)
Show Figures

Graphical abstract

15 pages, 1261 KiB  
Article
Combined Effect of Light and Temperature on the Production of Saxitoxins in Cylindrospermopsis raciborskii Strains
by Marcella C. B. Mesquita, Miquel Lürling, Fabiane Dorr, Ernani Pinto and Marcelo M. Marinho
Toxins 2019, 11(1), 38; https://doi.org/10.3390/toxins11010038 - 14 Jan 2019
Cited by 24 | Viewed by 5362
Abstract
Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables [...] Read more.
Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables on the saxitoxins production. This study evaluated the combined effect of light and temperature on saxitoxins production and cellular quota in C. raciborskii. Experiments were performed with three C. raciborskii strains in batch cultures under six light intensities (10, 40, 60, 100, 150, and 500 μmol of photons m−2 s−1) and four temperatures (15, 20, 25, and 30 °C). The growth of C. raciborskii strains was limited at lower temperatures and the maximum growth rates were obtained under higher light combined with temperatures equal or above 20 °C, depending on the strain. In general, growth was highest at 30 °C at the lower light intensities and equally high at 25 °C and 30 °C under higher light. Highest saxitoxins concentration and cell-quota occurred at 25 °C under high light intensities, but were much lower at 30 °C. Hence, increased temperatures combined with sufficient light will lead to higher C. raciborskii biomass, but blooms could become less toxic in tropical regions. Full article
(This article belongs to the Special Issue Paralytic Shellfish Toxins)
Show Figures

Figure 1

20 pages, 6252 KiB  
Article
Osmotic-Adaptation Response of sakA/hogA Gene to Aflatoxin Biosynthesis, Morphology Development and Pathogenicity in Aspergillus flavus
by Elisabeth Tumukunde, Ding Li, Ling Qin, Yu Li, Jiaojiao Shen, Shihua Wang and Jun Yuan
Toxins 2019, 11(1), 41; https://doi.org/10.3390/toxins11010041 - 14 Jan 2019
Cited by 27 | Viewed by 4331
Abstract
Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral [...] Read more.
Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral part of the mitogen activated protein kinase signal of the high osmolarity glycerol pathway. In this study, the AfsakA gene was deleted (∆AfsakA) then complemented (∆AfsakA::AfsakA) using homologous recombination and the osmotic stress was induced by 1.2 mol/L D-sorbital and 1.2 mol/L sodium chloride. The result showed that ∆AfsakA mutant caused a significant influence on conidial formation compared to wild-type and ∆AfsakA::AfsakA strains. It was also found that AfsakA responds to both the osmotic stress and the cell wall stress. In the absence of osmotic stress, ∆AfsakA mutant produced more sclerotia in contrast to other strains, whereas all strains failed to generate sclerotia under osmotic stress. Furthermore, the deletion of AfsakA resulted in the increase of Aflatoxin B1 production compared to other strains. The virulence assay on both maize kernel and peanut seeds showed that ∆AfsakA strain drastically produced more conidia and Aflatoxin B1 than wild-type and complementary strains. AfSakA-mCherry was located to the cytoplasm in the absence of osmotic stress, while it translocated to the nucleus upon exposure to the osmotic stimuli. This study provides new insights on the development and evaluation of aflatoxin biosynthesis and also provides better understanding on how to prevent Aspergillus infections which would be considered the first step towards the prevention of the seeds damages caused by A. flavus. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 687 KiB  
Review
Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic?
by Bernard Poulain and Michel R. Popoff
Toxins 2019, 11(1), 34; https://doi.org/10.3390/toxins11010034 - 11 Jan 2019
Cited by 58 | Viewed by 10668
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria [...] Read more.
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria that accidentally interact with their host engineered so diverse and so specific toxins targeting one of the most specialized physiological processes, the neuroexocytosis of higher organisms? The extreme potency of BoNT does not result from only one hyperactive step, but in contrast to other potent lethal toxins, from multi-step activity. The cumulative effects of the different steps, each having a limited effect, make BoNTs the most potent lethal toxins. This is a unique mode of evolution of a toxic compound, the high potency of which results from multiple steps driven by unknown selection pressure, targeting one of the most critical physiological process of higher organisms. Full article
(This article belongs to the Special Issue Toxins:10th Anniversary)
Show Figures

Figure 1

13 pages, 1067 KiB  
Article
Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B1 and Zearalenone
by Weiwei Huang, Juan Chang, Ping Wang, Chaoqi Liu, Qingqiang Yin, Andong Song, Tianzeng Gao, Xiaowei Dang and Fushan Lu
Toxins 2019, 11(1), 12; https://doi.org/10.3390/toxins11010012 - 10 Jan 2019
Cited by 33 | Viewed by 5287
Abstract
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects [...] Read more.
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health. Full article
Show Figures

Figure 1

14 pages, 893 KiB  
Article
Assessment of Toxigenic Fusarium Species and Their Mycotoxins in Brewing Barley Grains
by Karim C. Piacentini, Liliana O. Rocha, Geovana D. Savi, Lorena Carnielli-Queiroz, Livia De Carvalho Fontes and Benedito Correa
Toxins 2019, 11(1), 31; https://doi.org/10.3390/toxins11010031 - 10 Jan 2019
Cited by 37 | Viewed by 4918
Abstract
Fusarium species threaten yield and quality of cereals worldwide due to their ability to produce mycotoxins and cause plant diseases. Trichothecenes and zearalenone are the most economically significant mycotoxins and are of particular concern in barley, maize and wheat. For this reason, the [...] Read more.
Fusarium species threaten yield and quality of cereals worldwide due to their ability to produce mycotoxins and cause plant diseases. Trichothecenes and zearalenone are the most economically significant mycotoxins and are of particular concern in barley, maize and wheat. For this reason, the aim of this study was to characterize the Fusarium isolates from brewing barley and to assess deoxynivalenol and zearalenone contamination in grains. Characterization of the Fusarium strains was carried out by the phylogeny based on two loci (EF-1α and RPB2). Mycotoxin detection and quantification were performed by LC-MS. The results show that Fusarium was the predominant genus. Phylogenetic study demonstrated that the majority of the strains clustered within the Fusarium sambucinum species complex followed by the Fusarium tricinctum species complex. The results revealed high incidence of deoxynivalenol (DON) and zearalenone (ZEA) contamination (90.6% and 87.5%, respectively). It was observed that 86% of the samples contaminated with ZEA were above the limits set by the EU and Brazilian regulations. These results may highlight the importance of controlling Fusarium toxins in barley, mainly because of its use in the brewing industry and the resistance of various mycotoxins to food processing treatments. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in the Mycotoxins Studies)
Show Figures

Figure 1

17 pages, 2425 KiB  
Article
Generation of a Broadly Cross-Neutralizing Antibody Fragment against Several Mexican Scorpion Venoms
by Lidia Riaño-Umbarila, Ilse V. Gómez-Ramírez, Luis M. Ledezma-Candanoza, Timoteo Olamendi-Portugal, Everardo Remi Rodríguez-Rodríguez, Guillermo Fernández-Taboada, Lourival D. Possani and Baltazar Becerril
Toxins 2019, 11(1), 32; https://doi.org/10.3390/toxins11010032 - 10 Jan 2019
Cited by 25 | Viewed by 4431
Abstract
The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity [...] Read more.
The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization. Full article
(This article belongs to the Special Issue Discovery of Antibodies and Novel Antivenoms against Envenoming)
Show Figures

Graphical abstract

15 pages, 1585 KiB  
Review
Multi-(myco)toxins in Malting and Brewing By-Products
by Kristina Mastanjević, Jasmina Lukinac, Marko Jukić, Bojan Šarkanj, Vinko Krstanović and Krešimir Mastanjević
Toxins 2019, 11(1), 30; https://doi.org/10.3390/toxins11010030 - 9 Jan 2019
Cited by 42 | Viewed by 7644
Abstract
Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real [...] Read more.
Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real problem is their harmful metabolites—toxins that, due to their thermostable properties, can easily be transferred to malting and brewing by-products. Besides fungal metabolites, other toxins originating from plants can be harmful to animal health. Precise and accurate analytical techniques broadened the spectrum of known toxins originating from microorganisms and plants that can pose a threat to animal health. Multi-(myco)toxin analyses are advanced and useful tools for the assessment of product safety, and legislation should follow up and make some important changes to regulate yet unregulated, but highly occurring, microbial and plant toxins in malting and brewing by-products used for animal feed. Full article
(This article belongs to the Special Issue Food Safety and Natural Toxins)
Show Figures

Graphical abstract

12 pages, 885 KiB  
Review
Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity
by Haixiu Wang, Zifu Zhong, Yu Luo, Eric Cox and Bert Devriendt
Toxins 2019, 11(1), 24; https://doi.org/10.3390/toxins11010024 - 8 Jan 2019
Cited by 94 | Viewed by 13266
Abstract
Enterotoxigenic Escherichia coli (ETEC) are an important diarrhea-causing pathogen and are regarded as a global threat for humans and farm animals. ETEC possess several virulence factors to infect its host, including colonization factors and enterotoxins. Production of heat-stable enterotoxins (STs) by most ETEC [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) are an important diarrhea-causing pathogen and are regarded as a global threat for humans and farm animals. ETEC possess several virulence factors to infect its host, including colonization factors and enterotoxins. Production of heat-stable enterotoxins (STs) by most ETEC plays an essential role in triggering diarrhea and ETEC pathogenesis. In this review, we summarize the heat-stable enterotoxins of ETEC strains from different species as well as the molecular mechanisms used by these heat-stable enterotoxins to trigger diarrhea. As recently described, intestinal epithelial cells are important modulators of the intestinal immune system. Thus, we also discuss the impact of the heat-stable enterotoxins on this role of the intestinal epithelium and how these enterotoxins might affect intestinal immune cells. Finally, the latest developments in vaccination strategies to protect against infections with ST secreting ETEC strains are discussed. This review might inform and guide future research on heat-stable enterotoxins to further unravel their molecular pathogenesis, as well as to accelerate vaccine design. Full article
(This article belongs to the Special Issue Heat-Resistant Toxins of Animal, Plant and Microbial Origins)
Show Figures

Figure 1

16 pages, 3093 KiB  
Article
The Impact of Dietary Grape Seed Meal on Healthy and Aflatoxin B1 Afflicted Microbiota of Pigs after Weaning
by Iulian A. Grosu, Gina C. Pistol, Ionelia Taranu and Daniela E. Marin
Toxins 2019, 11(1), 25; https://doi.org/10.3390/toxins11010025 - 8 Jan 2019
Cited by 29 | Viewed by 4038
Abstract
The study investigated the effect of grape seed (GS) meal, aflatoxin (AFB1), or their combination on the large intestine microbiota of weanling piglets. Twenty-four piglets were allocated into four groups based on diet composition: (1) Control group; (2) AFB1 (320 g/kg feed) group; [...] Read more.
The study investigated the effect of grape seed (GS) meal, aflatoxin (AFB1), or their combination on the large intestine microbiota of weanling piglets. Twenty-four piglets were allocated into four groups based on diet composition: (1) Control group; (2) AFB1 (320 g/kg feed) group; (3) GS group (8% inclusion in the diet); (4) AFB1 + GS group. After 30 days of experiment, the colon content was used for microbiota analyses; after isolation of total bacterial genomic DNA, V3/V4 regions of the 16S rRNA amplicons were sequenced using the Illumina MiSeq platform. The raw sequences were analyzed using the v.1.9.1 QIIME pipeline software. 157 numbers of OTUs were identified among all four dietary groups with 26 of them being prevalent above 0.05% in the total relative abundance. GS and AFB1 increase the relative abundance of phylum Bacteroidetes and Proteobacteria, while decreasing the Firmicutes abundance in a synergic manner as compared with the individual treatments. An additive or synergistic action of the two treatments was identified for Lactobacillus, Prevotella and Campylobacter, while rather an antagonistic effect was observed on Lachnospira. The action mechanisms of aflatoxin B1 and grape seed meal that drive the large intestine microbiota to these changes are not known and need further investigations. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 826 KiB  
Review
Overview of Fungi and Mycotoxin Contamination in Capsicum Pepper and in Its Derivatives
by Jéssica Costa, Rodrigo Rodríguez, Esther Garcia-Cela, Angel Medina, Naresh Magan, Nelson Lima, Paola Battilani and Cledir Santos
Toxins 2019, 11(1), 27; https://doi.org/10.3390/toxins11010027 - 8 Jan 2019
Cited by 78 | Viewed by 12152
Abstract
Capsicum products are widely commercialised and consumed worldwide. These substrates present unusual nutritional characteristics for microbial growth. Despite this, the presence of spoilage fungi and the co-occurrence of mycotoxins in the pepper production chain have been commonly detected. The main aim of this [...] Read more.
Capsicum products are widely commercialised and consumed worldwide. These substrates present unusual nutritional characteristics for microbial growth. Despite this, the presence of spoilage fungi and the co-occurrence of mycotoxins in the pepper production chain have been commonly detected. The main aim of this work was to review the critical control points, with a focus on mycotoxin contamination, during the production, storage and distribution of Capsicum products from a safety perspective; outlining the important role of ecophysiological factors in stimulating or inhibiting mycotoxin biosynthesis in these food commodities. Moreover, the human health risks caused by the ingestion of peppers contaminated with mycotoxins were also reviewed. Overall, Capsicum and its derivative-products are highly susceptible to contamination by mycotoxins. Pepper crop production and further transportation, processing and storage are crucial for production of safe food. Full article
(This article belongs to the Collection Understanding Mycotoxin Occurrence in Food and Feed Chains)
Show Figures

Figure 1

16 pages, 2245 KiB  
Article
Factors Associated with Systemic Bleeding in Bothrops Envenomation in a Tertiary Hospital in the Brazilian Amazon
by Sâmella S. Oliveira, Eliane C. Alves, Alessandra S. Santos, João Pedro T. Pereira, Lybia Kássia S. Sarraff, Elizandra F. Nascimento, José Diego De-Brito-Sousa, Vanderson S. Sampaio, Marcus V.G. Lacerda, Jacqueline A.G. Sachett, Ida S. Sano-Martins and Wuelton M. Monteiro
Toxins 2019, 11(1), 22; https://doi.org/10.3390/toxins11010022 - 7 Jan 2019
Cited by 40 | Viewed by 4649
Abstract
Bothrops snakebites usually present systemic bleeding, and the clinical–epidemiological and laboratorial factors associated with the development of this manifestation are not well established. In this study, we assessed the prevalence of Bothrops snakebites with systemic bleeding reported at the Fundação de Medicina Tropical [...] Read more.
Bothrops snakebites usually present systemic bleeding, and the clinical–epidemiological and laboratorial factors associated with the development of this manifestation are not well established. In this study, we assessed the prevalence of Bothrops snakebites with systemic bleeding reported at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, in Manaus, Amazonas State, Brazil, and the clinical–epidemiological and laboratorial factors associated with systemic bleeding. This is an observational, cross-sectional study carried out between August, 2013 and July, 2016. Patients who developed systemic bleeding on admission or during hospitalization were considered cases, and those with non-systemic bleeding were included in the control group. Systemic bleeding was observed in 63 (15.3%) of the 442 Bothrops snakebites evaluated. Bothrops snakebites mostly occurred in males (78.2%), in rural areas (89.0%) and in the age group of 11 to 30 years old (40.4%). It took most of the patients (59.8%) less than 3 h to receive medical assistance. Unclottable blood (AOR = 3.11 (95% CI = 1.53 to 6.31; p = 0.002)) and thrombocytopenia (AOR = 4.52 (95% CI = 2.03 to 10.09; p < 0.001)) on admission were independently associated with systemic bleeding during hospitalization. These hemostatic disorders on admission increase the chances of systemic bleeding during hospitalization. Prospective studies are needed to clarify the pathophysiology of systemic bleeding in Bothrops snakebites in the Amazon region. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

15 pages, 1979 KiB  
Article
Grape Seed Proanthocyanidin Extract Alleviates AflatoxinB1-Induced Immunotoxicity and Oxidative Stress via Modulation of NF-κB and Nrf2 Signaling Pathways in Broilers
by Shahid Ali Rajput, Lvhui Sun, Ni-Ya Zhang, Mahmoud Mohamed Khalil, Zhao Ling, Li Chong, Shuai Wang, Imran Rashid Rajput, Dost Muhammad Bloch, Farhan Anwar Khan, Aftab Shaukat and Desheng Qi
Toxins 2019, 11(1), 23; https://doi.org/10.3390/toxins11010023 - 7 Jan 2019
Cited by 62 | Viewed by 6475
Abstract
Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study [...] Read more.
Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study was to investigate the protective effects of GSPE against AFB1-induced immunotoxicity and oxidative stress via NF-κB and Nrf2 signaling pathways in broiler chickens. For the experiment, 240 one-day old Cobb chicks were allocated into four dietary treatment groups of six replicates (10 birds per replicate): 1. Basal diet (control); 2. Basal diet + AFB1 1mg/kg contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg (GSPE); 4. Basal diet + AFB1 1 mg/kg + GSPE 250 mg/kg (AFB1 + GSPE). The results showed that GSPE significantly decreased serum inflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-10, and IL-6 induced by AFB1. Similarly, GSPE + AFB1 treated group revealed a significant decrease in mRNA expressions of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) in the splenic tissue compared to the AFB1 treatment group. In addition, western blotting results manifested that GSPE treatment normalized the phosphorylation of nuclear factor kappa B (p65) and the degradation of IκBα protein induced by AFB1. Furthermore, GSPE enhanced the antioxidant defense system through activating the nuclear factor-erythroid-2-related factor (Nrf2) signaling pathway. The mRNA and protein expression level of Nrf2 and its down streaming associated genes were noted up-regulated by the addition of GSPE, and down-regulated in the AFB1 group. Taken together, GSPE alleviates AFB1-induced immunotoxicity and oxidative damage by inhibiting the NF-κB and activating the Nrf2 signaling pathways in broiler chickens. Conclusively, our results suggest that GSPE could be considered as a potential natural agent for the prevention of AFB1-induced immunotoxicity and oxidative damage. Full article
Show Figures

Figure 1

Back to TopTop